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Abstract

The harmonic weight of an edge is defined as reciprocal of the
average degree of its end-vertices. The harmonic index of a graph
G is defined as the sum of all harmonic weights of its edges. In
this work, we give the minimum value of the harmonic index for any
n—vertex connected graphs with minimum degree § at least k(> n/2)
and show the corresponding extremal graphs have only two degrees,
i.e., degree k and degree n — 1, and the number of vertices of degree

k is as close to n/2 as possible.
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1 Introduction

All graphs considered in the following will be simple. Let G be a
connected graph with vertex set V(G) and edge set E(G). Let G(n,k)
be the set of connected simple n—vertex graphs with minimum vertex
degree at least k. The Randié¢ index R(G) of a graph G is defined as:

R(G) = ¥ uveE(c) (d(u)d(v)) , where d(u) denotes the degree of a ver-
tex u. It is also known as connectivity index or branching index. Randié
[23] in 1975 proposed this index for measuring the extent of branching of
the carbon-atom skeleton of saturated hydrocarbons. There is also a good
correlation between the Rg,ndié index and several physicochemical prop-
erties of alkanes: boiling points, surface areas, energy levels, etc. In (7]
Fajtlowitcz mentioned that Bollobds and Erdds asked for the minimum
value on the Randi¢ index among G(n,k) for every 1 < k < n — 1. This
problem turn out to be difficult and has been resolved completely by efforts
of many scholars, see references [1, 2, 16, 18, 21, 22] and references within.
For a comprehensive survey of the mathematical properties of the Randié¢
index, see the book of Li and Gutman [15] and the book of Gutman and
Furtula [10], or a survey of Li and Shi [19]. See also the books of Kier and
Hall (11, 12] for chemical properties of this index.

With motivation from the Randié index, the sum-connectivity index
x(G) and the general sum-connectivity index x*(G) were recently proposed
by Zhou and Trinajstié in [26, 27] and defined as x(G) = Y (d(x)+d(v))~ %,
and x*(G) = >_(d(uv)+d(v))*, where a is a real number.uft has been found
that the (gen:;;.l) sum-connectivity index and the Randi¢ index correlate
well between themselves and with the m-electronic energy of benzenoid
hydrocarbons [17, 20]. Some mathematical properties of the (general) sum-

connectivity index on trees, molecular trees, unicyclic graphs and bicyclic
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graphs were given in (3, 4, 5, 6, 26, 27).

In this work, we consider another variant of the Randié index, named the
harmonic index. For a graph G, the harmonic weight of an edge is defined
as reciprocal of the average degree of its end-vertices. The harmonic index
of a graph G is defined as the sum of all harmonic weights of its edges, i.e.,
HG) = WGZE:(G) 35)37(35 Note that H(G) = 2x~!(G) and H(G) < R(G)
for any graph G and the equality holds for the last formula if and only if
each component of G is regular. Thus, lower bounds of the harmonic index
are lower bounds of the Randié¢ index and upper bounds of the Randié

index are upper bounds of the Harmonic index.

For two vertex disjoint graphs, G and F, let G+ F denote their join, i.e.,
the graph obtained by joining edges from every vertex of G to all vertices
of F. We shall also denote by K,, the complement of K,,, which consists
of n isolated vertices. To our knowledge, this index first appeared in [8].
Favaron et al.[9] considered the relation between harmonic index and the
eigenvalues of graphs. Similar to the Randi¢ index, it is meaningful to
ask for the minimum value of the harmonic index among G(n, k) for every
1 <k < n-1. Zhong [25] found the minimum values of the harmonic index
among G(n,1) and the corresponding graph is the star, i.e., Kn—1 + Ki.
Recently, Wu et al. [24] found the minimum value of the harmonic index
for G(n,2) and the corresponding graph is K,z + K. In this work, we
will solve this problem for any n—vertex connected graphs with minimum
degree at least k for any k > n/2 and show the corresponding extremal
graphs have only two degrees, i.e., degree k and degree n — 1, and the
number of vertices of degree & is as close to n/2 as possible. Thus, we have
solved the problem of finding the minimum value of the harmonic index

among G(n, k) for k = 1,2 and at least n/2.
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2 A nonlinear programming model for the

Harmonic index

Before we go forwards to investigate the relationship between the Har-
monic index and the minimum degree §(G) of graphs, we give a nonlinear
programming model for the Harmonic index in this section, which is vital
in sequel. Let G be an n—vertex connected graphs with degree §(G) > k.
Denote by z;; (z:; = 0), the number of edges joining the vertices of de-
grees ¢ and j. Denote by n; the number of vertices of degree of i. Let
Tij = ninj — yij for i # j and z;; = () — ys,j for i = 5. Denote by
w(i,j) =1+ —} - '—_"‘_7 It is easy to see that w(i, j) is decreasing in ¢ and
increasing in j for k < j < j < n - 1. In [13] we have

> w(i)my L (21)

HG)=Z-
2 k<i<j<n—1

N =

Then the problem on the minimum value of H(G) in G(n,k) can be for-
mulated as the problem (P):

max y = Z w(t, jinin; — Z w(t, 5)yij

k<i<j<n-1 k<i<j<n-1
s.t. z Vij+t2i=Mn-1-in; for k<i<n-1;(22)
k<j<n-1
iR
N+ Npg1+ oo+ Ny =1 (2.3)
n; >0 for k<i<n-1; (2.4)
¥, 20 for k<i<j<n-—1; (2.5)
Yi s n,~eN,k$i<j§n—1. (26)
Denote y; = > w@,f)ninjand o = — Y w(i, 5y

k<i<j<n—1 k<i<j<n—1
Then max vy < max v; + max <2, where the maxima are subject to (2.2)-
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(2.6). It is evident that max <2 = 0 and it is achieved for y; ; =0,k <i <
j€n-landy;i=(n-1-in;/2,k<i<n-1

In next section we shall consider the problem of maximizing v; and all
sequences (1, -+ ,Np—1) reaching the maximum values of y; will be found
and so will be sequences for some second maximum of ,. These sequences
which have graphical realizations also reach the maximum of v, hence the
maximum of 4. In order to find max v; we can neglect constraints (2.2)
and (2.5), because for v; only constraints (2.3) and (2.4) are relevant. In
sequel, we will consider the problem of elements which maximizing v, and

the corresponding graphical realizations in D.

3 A technical lemma

Denote ¢(n) = max £(n—2); it follows that ¢(n) = "T’ forneven (£ = %)

and ¢(n) = 2=l fornodd (€= 2E). f 1<k <6 <A <n-1(5,A€N),

consider the function f(z) = 35  w(i,j)ziz; and the domains D =
k<i<j<n—1
{z = (k) Tt1,y - -+, Tn—1)|Tk+Thp1+. . -+ Tn_1 =n,n; €N, k<i<n-1}

and D, = D\{(%,0,...,0, %)} for n even.

Lemma 3.1 (1) Ifn > 4 is even, then maxp f(z) is reached for (n/2,0,...,
0,n/2) and maxp, f(z) for (5-5—2,0, .o, 0, %2) and ("—;r-ﬁ,o, eees 0, P—;—’-),
(2) If n > 5 is odd, then maxp f(zx) is reached for (251,0,...,0,2+) and
(2L,0,...,0,231).

Proof. First we shall determine the maximum of f(z) in the domain D.
If Zk4y = ... = Tn_2 = O then f(z) = w(k,n — 1)ZkTn—1 and the result
is obvious since zx + z,_; = n. Otherwise, denote by i(k +1 < i <

n — 1) the smallest index such that z; > 1l and by j(k+1 < j<n-1)

297



the greatest index such that z; > 1; obviously ¢ < j. Denote by O,
and O; the operations consisting of replacing z = (z,...,Zn-1) € D by
t' = (x,0,...,0,z;,...,2j_1,7; — 1,0,...,0,z,_1 + 1) € D and by 2" =
(zx +1,0,...,0,2; — 1,2x41,...,%50,...,0,2,—1) € D, respectively. We
have f(z')— f(z) = w(j,n—1)(z; —Tpn-1—1)+zx (w(k,n—l)-w(k,j)) +
j=1

£ (w:n 1) = 0.1) ). Since w(pn = 1) = w(p,1) > wGin—1) for

p=t
p=k,i,i+1,...,5 — 1, we have

fl@') = f(x) 2w@,n - 1)(zk +zi + Tigr + ... +Z; —Ta1 — 1) (3.7)

and this inequality is strict if at least one of zk,z;, Tit1,...,zj-1 is dif-

ferent from zero. Similarly, we have f(z"') - f(z) = w(k,i)(z; — zx —
j=1

1) + zp—y (w(k,n —-1) - w(i,n - 1)) +X (w(k,p) - w(i,p))zp. Since

p=i
w(k,p) — w(t,p) > w(k,i) forp=:i+1,...,j,n— 1, we have

f(&") = f(x) > wik,i)(zi + Tig1 + ...+ Tj+ Tp—1 — Tk —1)  (3.8)

and this inequality is strict if at least one of zx, z;, zi41, ..., T;- is different

from zero. If i = j we get
f(z") — f(z) 2 w(i,n — 1)(zk + 2s — 2p—y — 1) (3.9)
the inequality being strict if zx > 1 and
f(z") = f(z) = w(k,i)(zi + Tn-1 — Tk — 1) (3.10)

the inequality being strict if x,—; > 1. We shall prove that at least one of
the differences f(z') — f(z) and f(z") — f(z) is greater than zero, which
implies that all sequences z € D realizing maximum of f(z) satisfy zx4; =
... = Tp_p = 0. Consider first the case when i = j. It is clear that if
Iy = Tp—1 then f(z) = 0 which implies that (0,...,0,n;,0,...,0) cannot

maximize f. Otherwise, suppose that zx > 1. If T +2z; —2n-1—1 > 0 then
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(3.9) is strict and it follows that f(z') > f(z) and z cannot maximize f on
D. Otherwise, xr + z; — £n—1 —1 < —1. In this case z,_; > zx + z;, hence
ZTp—1+Zi —Tx —1 2> 2z; —1 > 1, which implies f(z") > f(z) and z cannot
maximize f. If ,_; > 1 the same conclusion follows since (3.10) is strict.
Suppose i < j. In this case z; > 0,z; > 0 and both inequalities (3.7) and
(3.8) are strict. If zx +x; + Zi41 + ... +2; —2p_1 — 1 > 0 then from (3.7)
it follows that f(z’) > f(z). Otherwise, Zn_; > zx +zi + ziy1 +... + Z;
and T; + Tip1 4o+ T F B — Tk~ 1 2> 2z + Tpqy + .. 7)) 1>
0, which implies f(z”) > f(z) from (3.8). Consequently, all sequences
maximizing f have the form (zy,0,...,0,z,_1) where 24 + z,_; = n; in
this case f(z,0,...,0,2,—1) = w(k,n — 1)zxzpn—1 < w(k,n — 1)¢(n) and

the conclusion follows.

Second, we consider that z € D) whenniseven. If rpyy = ... = 2p2 =
0 then f = w(k,n—1)xrr,—; and the result is obvious since T +zn—1 = n.
If £p41 + ...+ zp_2 > 2 then we have seen that by an operation O; or
O2 we can find sequence y € D; such that f(z) < f(y), hence = cannot
maximize f on D,. Now, we consider the case when zp4 1 +...+ 2,2 =1.
We shall prove that £ cannot maximize f if g3 +... + 24—2 = 1, i.e,,
there exists an index i,k +1 < i < n — 2 such that n; = 1 and n; = 0 for
every k+1<j<n-2and j#i. Let ¢ =min(zi,zn_1) < 252. Without

loss of generality suppose that ¢ = zx. If ¢ = "T‘z, then z; = -"—;—2- and
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F e F(3,k—3) for k even and n = 0 (mod 4), k odd and n = 2 (mod 4);

H(G) = ————w(k n—1) and G = F+Koaya, where F € F(252, k—242)
ifk > 22 for k even and n = 2 (mod 4), or H(G) = & — E=dy(k,n—1)
and G = F + Kn.a, where F € F(2£2,k — 252) for k even and n =
2 (mod 4).

(2) If n is odd, then: H(G) = 2—2=lw(k,n—1) and G = F+Kup, where
FeF(2t k- 2t) ifk > -’3"—1 for k even, k odd and n =1 (mod 4), or
H(G) = 2-2=ly(k,n—1) and G = F+Kac1, where F € F(2, k—251)
for k even, k odd and n = 3 (mod 4).

Proof. If n is even, from Lemma 3.1 we deduce that maxy, is reached only
for (nk,...,nn-1) = (5,0,...,0,%). It follows that the vertices of degree
n—1 induce a complete subgraph Kz and the remaining vertices, of degree
k, a subgraph which is regular of degree k — 3. This subgraph exists only
if 2(k — %) is an even number, i.e., when k is even and n = 0(mod 4), k is
odd and n = 0(mod 4) or when k is odd and n = 2(mod 4). In these cases
any extremal graph is of the form F + K3, where F belongs to F(3,k— %)

since maxy, =0 (z;; = nyn;j forn/2 <i<j<n-1).

In the remaining case (k even and n = 2(mod 4)) there is no giaphical
realization for (%,0,...,0, %) and we shall consider the second maximum
value for v;. This value is reached only for z! = (3 -1,0,...,0,%+1) and
z? =(%+1,0,...,0,2 —1). In the case of z! we deduce that there exists a
graphical realization, namely F + Ky 41, where Fe F(3 ~1,k— 3 - 1) if
k > 2+1 and k even and n = 2(mod 4). In this case also maxy; = 0, hence
this second extremal value of -; is also the second extremal value of v. If
the second extremal point is x2, there also exists a graphical realization
F+ Kgy_;, where F € F(§ + 1,k — 5 +1) if k even and n = 2(mod 4).

Note that for k = % it is not possible to have k even and n = 2(mod 4),
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Tn—1 = 5. Applying operation O; we deduce that

n—2 n+2 n—2 n
f(——,0,...,0, 5 )—f( 5 ,0,...,0,1,0,...,0,5)

2
= nTJ(w(k,n —1) —w(k, z)) - ;w(i,n -1)
_ (=2 -k)(n—1—d)(n—1+Fk+2i) (n—1-1)?2

jk+d)Gi+n-1)k+n-1) Tin-1)(i+n-1)
n-1—-i (n-2)i-k)(n—14+k+2)) n-1-k-1
'i(i+n—1)( 2(n-2)(k+n-1) - n-—1 )
n-1—-4¢ (1 n-%2-2
>i(i+n—1)(§' .. )>0’

where the first and second inequalities hold because g<k<is<n-2
Thus, = cannot maximize f if Tp41 +... +ZTp2 = 1. If g = zx < 3 -
2. It follows that z,_; > 232 and applying an operation O; we deduce
from (3.10) that f(z") — f(z) = w(k,i)(z:i + Tn_1 — zx — 1) > 0. In this
case f(z") < lzf-z- . -"—"2'2 - w(k,n — 1) < maxp f(z), which implies that =
cannot maximize f on D;. If min(zk,Zn—1) = z,—1 we deduce that only

(242,0,...,0, 252) maximize f(z) on D; by similar arguments. ]

4 Main results

In this section, we shall prove that every graph with minimum value of
harmonic index in G (n, k) is a join between a regular graph and a complete
graph. Let F(n,r) be the set of r—regular graphs of order n. We have

F(n,r) # 0 if and only if »r < n — 1 and nr is even (see for example [14]).

Theorem 4.1 If G is a graph with the minimum value of harmonic index
in G(n,k) for k > n/2, then G is a join between a regular graph and a
complete graph, namely:

(1) Ifn is even, then: H(G) = & - Zw(k,n—1) and G & F+ K, 5, where
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the extremal graph is only 7.;; + Ky.

If n is odd, then max +, is reached for z3 = (251,0,...,0, 2) or 2% =
(2+L,0,...,0,251). 23 correspond to a graphical realization F + K 241,
where F € F(251,k — 24L) if k > 2L for k even and n = 1(mod 4), k
even and n = 3(mod 4) and k is odd and n = 3(mod 4). For z* we obtain
F+4Kn1,where F € F(24,k — 251) if k is even and n = 1(mod 4), k is
even and n = 3(mod 4) or k is odd and n = 3(mod 4). All the corresponding
extremal values are immediate by (2.1). |
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