On some important classes of
row-cyclic array codes*

Sapna Jain
Department of Mathematics
University of Delhi
Delhi 110 007
India
E-mail: sapna@vsnl.com

Abstract. Row-cyclic array codes have already been introduced
by the author [9). In this paper, we give some special classes of row-
cyclic array codes as an extension of classical BCH and Reed-Solomon
codes.
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1. Introduction

In [6], the author introduced the notion of row-cyclic array codes
equipped with m-metric [10] and gave decoding algorithm of row-cyclic
array codes. The row-cyclic array codes are completely determined by the
generator m-tuple of polynomials (g1(z), - -, gm(z)). However, in general,
it is difficult to obtain information on the minimum m-distance of a row-
cyclic array code from its generator m-tuple even though the former is
completely determined by the later. On the other hand, if we choose some
special generator m-tuple of polynomials properly, then information on the
minimum m-distance can be gained and also simpler decoding algorithms
could apply. In this paper, by carefully choosing the genrator m-tuple
of polynomials, we obtain two important classes of row-cyclic array codes
as an extension of classical BCH and Reed-Solomon codes [2] and we call
them as the BCH array codes (or BCHA codes) and the Reed-Solomon ar-
ray codes (or RSA codes). We also introduce the Generalized BCHA codes
(or GBCHA codes) and the Generalized RSA codes (or GRSA codes).
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2. Definitions and Notations

Let F;, be a finite field of g elements. Let Maty,x,(F,) denote the linear
space of all m x s matrices with entries from F;. An m-metric array code
is a subset of Mat,xs(Fy) and a linear m-metric array code is an Fy-linear
subspace of Matmxs(Fy). Note that the space Matmx4(Fy) is identifiable
with the space F;"°. Every matrix in Matmxs(Fy) can be represented as
a 1 x ms vector by writing the first row of matrix followed by second row
and so on. Similarly, every vector in F7** can be represented as an m x s
matrix in Matmxs(Fy) by separating the co-ordinates of the vector into m
groups of s-coordinates. The m-metric on Mat,, xs(F;) is defined as follows
[10]:

Definition 2.1. Let Y € Mat; x,(F) with Y = (y1,¥2,--*,¥s). Define row
weight (or p-weight) of Y as
max {i |y #£0} HY #0
wty(Y) =
0 if Y=0.
Extending the definitions of wt, to the class of m x s matrices as

wto(4) = 3 wty(R)
i=1

Ry
where A = R2 € Matn,xs(F,) and R; denotes the itk row of A. Then
wt, satisfies 0 < wt,(A) < n(= ms) V A € Maty,xs(F,) and determines a

metric on Matp,xs(F,) known as m-metric (or p-metric).

Now, we define the row-cyclic array codes [6]:

Definition 2.2. An [m x s, k] linear array codes V C Mat,,xs(Fy) is said
to be row-cyclic if

a a12 - Qg
a21 a2 - Qzg

eV
Gml Qm2 *°* Qms
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215 @11 Q12 Q1 5-1

G2s G21 @22 ‘*:0@2,-1
= . . . . eV

Ams @ml Cm2 **°*Oms-—1

i.e. the array obtained by shifting the columns of a code array cyclically

by one position to the right and the last column occupying the first place

is also a code array. In fact, a row-cyclic array code V of order m x s
m

turns out to be of the form V = @Vi where each V] is a classical cyclic

i=1

code of length s. Also, every matrix/array in Mat,,xs(F,) can be identified
with an m-tuple in A™ where A™ is the direct product of algebra A,
taken m times and A, is the algebra of all polynomials over Fy; modulo the
polynomial z* — 1 and this identification is given by

0 : Maty,xs(Fy) — A™

¢ Ry
R 'Ry

H(A) =6 = . = (0’R1,0'R2, M) el-R‘m) (1)
R OR,.

where R;(i = 1 to m) denotes the it" row of A and ¢’ : F} — A, is given

by

6'(ag, a1, ,a5-1) =0 + Q1T + - -+ + @5_12° L.

An equivalent definition of row-cyclic array code is given by [6]:

Definition 2.3. An m x s linear array codes V C Mat,, x,(F,) is said to
be row-cyclic if
m
v-dv

i=1
where each V; is an [s, k;, d;] classical cyclic code equipped with m-metric.
m

m
The parameters of row-cyclic array code V are given by [mxs, E ki, mi{l dy].
. =

i=1
If g1 () is the generator polynomial of classical cyclic code V;, then the m-
tuple (g1(z) - -, gm(z)) is called the generator m-tuple of row cyclic code
V.
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3. The BCH Array Codes(or BCHA Codes)

Definition 3.1. Let (a;, a3, -+, an) be an m-tuple of primitive elements
of Fyr(r > 1) and denote by Mi(j )(:c), the minimal polynomials of of (i =
1,2,---,m,j = 1,2,---) over F. A (primitive) BCHA code of order m x
(g" — 1) with the designed m-distances § is a g-ary row-cyclic array code
generated by m-tuple ((g1(z), g2(z), " -, gm(x)), where for every i = 1 to
m)
gi(z) = lem (M{*)(2), M{**D(@), -, M{*** I (2)),

and a;’s are nonegative integers depending upon i. Furthermore, the code
is called narrow-sense if a; = 1 for all i = 1 to m.

Note. For m = 1, the definition of BCHA codes reduces to the classical
definition of BCH codes [2].

Example 3.2. Let a; be a root of 23 + z+1 and a3 be a root of 23 + 2 +1
over F. Then (a;,az) is a 2-tuple of primitive elements of Fys. A narrow-
sense binary BCHA code V of order 2 x 7 equipped with the m-metric and
with designed m-distance § = 3 is generated by the 2-tuple ((g1(z), g2(z))
where

a(@ = lem (MP(z), M®(z))
= M(I)(:c)
= z2°+z+1.

Similarly, we have go(z) = z° + 2% + 1.
2
LetV = @V} where each V; is a [7,4,4] classical cyclic code equipped with

q==1

the m-metric and generated by the generator polynomial g;(z)(t = 1,2).
Therefore, V is a [2 x 7,4 + 4,4] row-cyclic array code and is an example
of BCHA code. A generator matrix for code V is given by

G, 0
G= ( 0 G )
where
1101000
G = 0110100
0 011010
0 001101
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and

1011000
c,=| 0101100
2’"loo10110

0001011

Now we obtain a lower bound on the dimension of a BCHA code.

Theroem 3.3. A g-ary BCHA code of order of m x (¢" — 1) with designed
m-distnace § has dimension at least

m((g" - 1) - (5 - 1)). ()

Proof.Let V = @Vg be a BCHA code with generator m-tuple (g1 (z),- - -,

i=1
«++,gm(z)) and with designed m-~distance 8. Let Cj, denote the cyclotomic
coset of ¢ modulo (¢" — 1) containing l;(I; > 0). Put

. ai+6—2
c®= |J a.
li=a;
Now
a@ = tlm (] e-ad I e ]I )
€Caq 7€Cay+1 €(Cag+6-2)
.
jec®

Thus the dimension of V; is equal to " — 1 — deg (gi(z)) i.e.

ki = ¢ -1-|CY)
ai46-2

= qr—l_l U C‘il (3)
li=ay
ai+8-2
2 ¢-1- Z lCliI
l¢=ai
ai+6—-2
> q-1- Y r

ly=a;
(as ¢" = 1(mod ¢" — 1), therefore, each cyclotomic coset contains

atmost r elements i.e. |Cy;| < 7V §;)

309



= ¢ -1-r(a;i+6—-2—a;+1)
= g —-1—-7(6-1).

Therefore

m m

Y g -1-r(@E-1)

i=1 i=1

m((¢" — 1) - (6 - 1)).

Ang
o
v

Example 3.4. Consider the binary BCHA code V of Example 3.2. Here
2
V= @Vi where for each ¢ = 1,2 V; is a [7,4,4] m-metric classical cyclic

i=1

code of length 7 with generator polynomials g;(z) where qi(z) =¥ +z+1
and go(z) = 23 + 224+ 1. Also, k) = k; =4 and dim V = k; + ky = 8.
Moreover, R.H.S. of (2) is equal to

2((2°-1)-3(3-1) =2
We note that for this example, the dimension of code V is strictly bigger
than the lower bound obtained in Theorem 3.3.

Example 3.5. Consider the binary BCHA code V with designed m-distance
4 = 3 and having (g1(z), g2(z)) as generator 2-tuple where

91(2) = ga(x) = lem (M®(z), M®)(z))
where M()(z) is the minimal polynomial of ¢ for ¢ = 2,3 and « is the
primitive element of Fy« (Here r = 4).
Since o(a) = 15, therefore V' is a binary BCHA code of order 2 x 15.

We can write

2
V=®V,-

=1
where for each i = 1,2, V; is a [15, k;] classical cyclic code equipped with
the m-metric and having generator polynomial g;(z).

Consider the cyclotomic cosets of 2 modulo 15, we have

Co = {0},
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Ci = Cp=Cy=C3=1{1,2,4,8},

C3 = Cg=0Cy=0Ci2={3,6,9,12},

C = Cyp=1{510},

Cr = Cy=Ci3=0Cu={7,11,13,14}.
Now, from (3)

k1 =15—|Cy+Ca|=15-8=7.
Similarly, ko = 7.
Therefore,
dim (V) =k + k2 = 14.

Also,

2((2* - 1) -4(3-1))
= 14.

R.HS. of (2)

Thus, the lower bound in Theorem 3.3. is attained in this example.

The following result gives a sufficient condition under which the lower bound
in Theorem 3.3 can be achieved.

Theorem 3.6. A narrow-sense q-ary BCHA code of order m x (¢" — 1) with
designed m-distance § has dimension ezactly equal to m((¢"—1)—r(6 —1))
provided

ged (" —1,e)=1 forl1<e<d-1.

Proof. For all i = 1 to m, we have

5-1
g -1-| UC¢‘| (on taking a; =1 in (3))
li=1

5-1
= ¢-1-|Jal (4)
=1

ki

where C; stands for cyclotomic coset of ¢ modulo ¢" — 1 containing .

We claim that

ICil=rV1 <I<é-1, (5)
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and

CiNC,=¢V1<i<p<d-1. (6)

Proof of Claim in (5). For any integer 1 <t < r — 1, we claim that
l#¢ll(modg"—1)for1<i<d—1.
Let, if possible

l=q¢'l(mod ¢"—1)for 1<I<éd -1,
= (¢-1)l=0modqg —1)for1<I<s—-1. )

Since ged (¢" - 1,1) = 1 for 1 £ 1 < § — 1, therefore (7) gives
(¢ —1) =0(mod ¢" - 1),

which is contradiction as 1 <t <r-—1.
Thus, for 1 <t <r -1, we have
l=ql(mod ¢" —1)for 1 <1<é -1,

= |C|=rfor1<I<d-1.

Proof. of Claim in (6). For any integers 1 <! < p < § — 1, we claim
that
p #Z ¢°l(mod ¢" — 1) for any integer s > 0.

Let, if possible
p = ¢°l(mod ¢" — 1) for some integer s > 0
Also,

Il = l(modgqg" —1)
= p-—-I1l=(¢° —1)l(mod ¢" — 1),

This forces
p—1=0(mod q" - 1).
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A contradiction to the fact that
ged(p-1l,g-1)=1lasl<p-1<d-1.

Thus
p #Zq¢°l(mod ¢" —1) for any integer s > 0.

Hence
CiNCp=¢ foreveryl1<l<p<dé-1
Now, from (4), (5) and (6) we get
ki = (¢@-1)-r(6-1)

m((¢" — 1) = (6 - 1)).

4
N
F
I

D

Now, the following theorem relates the designed m-distance & with the
actual minimum m-distance of a BCHA code.

Theorem 3.7. A BCHA code with designed m-distance § has minimum
m-distance § has actual minimum m-distance at least 4.

Proof. Let (a1, g, -+, a4m) be an m-tuple of primitve elements of Fyr and
let V be a BCHA code generated by (g1(z),::,gm(z)) where for every
i =1 tom,

gi(z) = lem (ML (z), M+ (@), .., M*-D ().

It is clear that the elements of*, af‘“, crey af""“z(z) are the roots of g;(z)

for every i =1 to m.

Let if possible, the minimum m-distance of code V' is less than §. Then there
exists a nonzero code array (wi(z),w2(z), -+, wm(z)) in V with m-weight
(wi(z)) = d; and

di+da+--+dn<d.

This implies that d; < d Vi =1 to m.
Choose i(1 < i < m) such that d; # 0 and fix it.
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Let 0 # w;(z) = w((,') + w{"):c +-+ wgi_)lz°‘l.
Now,
m-weight (wi(z)) = di(< 6) = wl) | #0

and

o =0y = 0ffy == 0l =0 ®

Now, w;(z) is an element of the ideal generated by g;(z) in the algebra A,,
the algebra of polynomials modulo the polynomial z* — 1, therefore we have

wi(e]) =0 Vj=aia+1,---,0i+6-2

ie.
1 % (a™)? .. (a0)s-1 .w‘()")
1 a:}:-l-l (aarl-l) (aai‘l-l)a- wgi)
1 a:}¢+2 (aa;+2)2 (aa¢+2)a—1 wg‘) =0 (9)
, r5-2 +6-2 ' 5—2y0— ,
1 a?i'l' (aa + )2 v (a:-""' )a 1 (_)1
In view of (8), the system of equations in (9) reduces to
1 o ( aa)2 . (aa()d‘ -1 (’)
1 aq:-f-l (o a(+1)2 . (aa4+l )d‘—l (t)
1
1 a:}i+2 (aa‘+2)2 (aa‘+2)d4—1 (l) =0 (10)
k=2 aitb-22 5-2yd;—
1 a? + (a° + ) cen (a""" )d‘ 1 ws‘)_l

Sinced; < 6 -1= d; —1 < — 2, choosing first d; equations from the
system of equations in (10) gives

Looaf @) e (a)s wp)

a.+1 (a?a+l)2 (aa‘+l)d‘—1 wg')
1 a.+2 (a?i+2)2 (aa4+2)d‘—1 wgl) =0 (11)
i aag+d,—l (aa¢+d‘-—l)2 . . (a?i"'di.—z)d‘—l w(g)
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The determinant D of the coefficient matrix of system of equations in (11)
is equal to

(1 1 1 1
di=1 1 o @ o o
D = H(a‘:‘)j det | 1 (@2 -+ (ad)H?
=0 Do : :
\ 1 of™h (o) oo (oftThyE!
( 1 1 1 1
(0x)° (a;)! (@) - (ea)h?
di-1 @° (@) (a@)P - (e])*!
= H(a?i)j det . . . . .
j=0
\ (@F )0 (of ) (@ e (o
di-1 di-1
= H(a}")jx H (af —af*) #£0.
j=0 1,m=0:

i>m

Therefore, the coefficient matrix in (11) is a nonsingular matrix and since
(11) is a homogeneous system of equation, we must have

Wo
wf? °
@ | |0
Wy = . (12)
: 0
wfii)- 1

= wi(z) = w((,i) + wgi):c + o+ wf,i_)lz"‘l = 0. A contradiction. Thus
there does not exist a nonzero code array in V having m-weight less than
0. Hence minimum m-distance of code V is at least 4. o

4. The Reed-Solomon Array Codes

RS codes in classical coding were introduced by I.S. Reed and G.
Solomon in the year 1960. we extend the notion of RS codes to array codes
equipped with m-metric and introduce RSA codes as a subclass of BCHA
codes.
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Cosnider a ¢g-ary BCHA code of order m x (¢" — 1) with designed m-
distance § and generated by (g1(z),: - -,gm(z)) where for every i = 1 to m,

gi(z) = lem (M (z), ML (), -- -, M- ().

and M,-(“‘)(:c) is the minimal polynomial of o} over Fy and (o, 2, - -, atm)
is an m-tuple of primitve elements of Fy-. If r = 1, then we obtain a g-ary
BCHA code of order m x (¢ —1). In this case, the m-tuple (o, 2, -+, m)
is an m-tuple of primitive elements of F; and moreover, the minimal poly-
nomial of af* over Fj; is £ — of*. Thus for § < ¢—1,gi(z) fori=1,2,---,m
is given by

gi(z) =lem ((z ~ of*), (=~ af*™), -+, (& = of*+07%)

= (@-of)z—of*!) - (z~af*?)

ai+1
y

since o', o gi+6-2

o are pairwise distinct.

Defintion 4.1. A g-ary RSA code quipped with m-metric is a g-ary BCHA
code of order mx (g—1) generated by m-tuple of polynomials (g; (), g2(z), - - -
-+ -gm(x)) where for every i = 1 to m, g;(z) is given by

0i(z) = (z — a%)(z — a®*1) - - (z — 02+2)

with a; > 0,2 < d < ¢— 1 and o4 is a primitive element of Fj.

Theorem 4.2. For RSA codes, actual minimum m-distance is equal to the
designed m-distance.

m
Proof. Let @V, be an RSA code generated by (g1(z), g2(z),- -, gm(z))
i=1

and having designed distance J. Here each V; is a [g — 1, k;, d;] m-metric
array code. Sincedeg g;(z) =d—1 = k; = ¢—1—(0—1) = g—06 = &§ = q—k:.
By Singelton’s bound for component codes, we have

d;

=> mind;

(q—l)—k.-+1=q—k,-=6

=d

IANIAN A

(13)

m
where d = min d; is the actual minimum m-distance of RSA code V.
i
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Also, by Theorem 3.7, we have
d>d (14)
From (13) and (14), we get
d=24.

Thus for an RSA code, actual minimum m-distance is equal to the designed
m-distance. o

Example 4.3. Let (a1, a2) = (3,5) be a 2-tuple of primtive elements of
2
F;. Consider the 7-ary RSA code V = @Vi of order 2 x 6 with designed

=1
m-distance § = 4 and generated by 2-tuple of polynomials (g1(z), g2(x))
where
91(z) = (z - 3)(z - 3)(z - 3%)

and
g2(z) = (z - 5)(z — 5%)(z - 5%).

The generator matrix of code V; is given by

6 1 3100
0 61310].
0 06131

Since no nonzero linear combination of elements of fourth column of G,
over F7 is zero, therefore, the minimum m-distance of code V; is 4.

Similarly, the minimum m-distance of code V5 = 4.

Thus the minimum m-distance of RSA code V' is min(4,4) = 4. Hence
Theorem 4.1 is verified.

Theorem 4.4. The dual of RSA code is again RSA code.

n
Proof. The proof follows from the fact that if V = @K is a row-cyclic
i=1
n
array code, then V< = @V;’- and the dual of a classical RS code is again

i=1

an RS code. |

Reamrk 4.5. RSA codes are not MDS.

317



Proof. From Example 4.3 we have

2
S
i=1
is a RSA code where each V; is [6,3,4] code.
Therefore, V is [2 x 6,3 + 3, 4] i.e. [12,6,4] code.

Here parameters of V' do not meet the Singelton’s bound since for code V,
we have
n—k+1=12-6+1=7>4=d.

5. The Generalized BCHA and RSA codes

We begin with the definition of generalized BCHA and generalized
RSA codes:

Definition 5.1. Let (aj,a2---,a.;) be an m-tuple of primtive elements
of F, (r > 1) and denote by M (z), the minimal polynomial of of = (i =
1,2,:--,m,j=1,2,--) over F;. The generalized BCHA code (or GBCHA
code) of order mx (¢"—1) with designed m-distance tuple (6;, 2, - 6m)(2 <
d; < g"—1) is a g-ary row-cyclic array code generated by m-tuple (g1(z), g2(z),
-+ +,gm(z)) where foreachi=1tom

gi(®) = lem (M (), M+ (z), .-, MPH4~D(a)),
and a;'s are nonnegative integers depending upon :.

Furthermore, the code is called narrow-sense if a; = 1 for all i =
1 to m.

Defintion 5.2. A g-ary GRSA code equipped with m-metric is a g-ary
GBCHA code of order m x (g — 1) generated by m-tuple of polynomials
(91(z), g2(z), - -+, gm(x)) Where for every i = 1 to m, g;(z) is given by

9i(z) = (z — a®)(z — o). . (z — a?iH0i-2)
with a; > 0,2 < §; < ¢ — 1 and o; is a primitive element of Fj.

Remark. If we take designed m-distance tuple (8;,d3,---,dy) tobe (4,4, ---,9)
for some 2 < § < ¢" — 1, then the GBCHA and GRSA codes reduce to the
BCHA codes and RSA codes respectively.

318



The following theorems on GBCHA and GRSA codes can easily be
proved parallel to the theorems in Section 3 and 4.

Theroem 5.3. A g-ary GBCHA code of order m x (¢" — 1) with designed
m-distance tuple (81,02, -,0m) has dimension at least

m(q" —1) — r(zm:& —m).
i=1

Theorem 5.4. A narrow-sense g-ary GBCHA code of order mx (q" —1) has
m
dimension ezactly eugal to m(q"— 1)—r(26,~ —m) provided ged(q™—1,¢;) =
i=1 »
1V1<e; £6:;—-1,i=1,2,---,m.
Theorem 5.5. A GBCHA code with designed m-distance tuple (61,02, -,
m
-++8pm) has minimum m-distance at least r,ni{uS.'.
i=
Theorem 5.8. For a GRSA code with desigend m-distance tuple (6,02, - -,
m
-+« 8y ), the actual minimum m-is equal to l{_l_i{l&,-.

Theroem 5.7. The dual of a GRSA code is again a GRSA code.
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