On the interior H-points of H-polygons
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Abstract

An H-polygon is a simple polygon whose vertices are H-points,
which are points of the set of vertices of a tiling of R? by regular
hexagons of unit edge. Let G(v) denote the least possible number of
H-points in the interior of a convex H-polygon K with v vertices.
In this paper we prove that G(8) = 2, G(9) = 4, G(10) = 6 and
Gv) > %, -2+ %l— 1 for all v > 11, where [z] denotes the
minimal integer more than or equal to z.
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1 Introduction

Let i, ¥ be two linearly independent real vectors in R2. The set of all points
X = mii + n¥ with integral m,n is called a general lattice A generated by
% and ¥. Specially, if ¥ and ¢ are mutually orthogonal unit vectors, the
lattice A is called an integral lattice Z? and a point of the integral lattice is
called an integral lattice point. Without confusion, an integral lattice point
is called a lattice point for short in this paper.

A simple polygon in the plane with vertices in the integral lattice Z2 is
called a lattice polygon. For a lattice polygon P, we use v = v(P), b = b(P)
and ¢ = i(P) to denote the number of vertices, the number of boundary
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lattice points and the number of interior lattice points of P respectively.
The problem of finding the relationships between the numbers v, b and # is of
great interest and has been investigated by many authors and in different
setting (not only for the integral lattice), see among others ([2][5][7][8])-
Rabinowitz [7] has obtained many relationships between the numbers v
and ¢. Following Rabinowitz we define the function: g(v) = min{i(K) :
v(K) = v}, where K is a convex lattice polygon in the plane. In [1][7] the
property of the function g(v) is studied. It is known that g(3) = g(4) =0,
9(5) = g(6) =1, g(7) = g(8) = 4, 9(9) = 7 and ¢(10) = 10.

Geometrically, the integral lattice Z2 is the set of corners of a tiling of
R? by unit squares. In this paper we are motivated to investigate analogous
properties of polygons with vertices in the set H consisting of all corners of
a monohedral tiling H of R? by regular hexagons with unit edge. Let H be
the set of corners of tiling H. A point of H is called an H-point. Completely
analogously, we can define an H-polygon P as a simple polygon in R? whose
vertices lie in H. To avoid confusion, in this paper for an H-polygon P
we use vy (P), by(P) and iy (P) to denote the number of vertices, the
number of boundary H-points and the number of interior H-points of P
respectively.

Let K be a convex H-polygon in the plane. Similarly, we define the
function

G(v) = min{ig(K) : vg(K) = v}.

Trivially, it is known that G(3) = G(4) = G(5) = G(6) = 0. The first
‘results about G(v) appeared in [3] and it is only shown that G(7) = 2. As
yet little is known about the function G(v). In this paper we discuss the
property of the function G(v). In section 2, sonie basis denotations and
lemmas are presented. In section 3, It is shown that G(8) = 2, G(9) = 4,

G(10) = 6. Furthermore, a lower bound of G(v), [ﬁ%’ -3+ -é--l -1,1is

presented in this paper.

2 Preliminaries

In fact, the set H can be regarded as a disjoint union of two sets H+ and
H~, where all points in H* have three tiling edges leaving the points in
the same three directions, and all points in H~ have edges which leave in
the opposite three directions, as shown in Figure 1. A point of H* (resp.
H~) is called an H*-point (resp. H™-point). Let C denote the set of all
centers of the hexagonal tiles which determine H. A point of C is said to
be a C-point.

Without loss of generality, we build a cartesian coordinate system of R?
with the origin at an H*-point and the z-axis lying along one edge of a
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Figure 1: H+-points and H-points

regular hexagonal tile, as shown in Figure 1. Let @ = (3, l?), 7= (0,V3). -
It is easy to see that the set H* is a general lattice generated by the two
non-collinear vectors ¥ and #. That is to say,

H* = {si+tV]|s,t € Z}. (2.1)

It is not difficult to see that the set H~ and C can be considered to be
a general lattice translated by the set H+, hence the set H~ and C can be
represented as

H™ ={(-1,0)+ sz +tv|s,t €Z},C ={(1,0) + s+ t7| s,t € Z}.

Furthermore, it is clear that HUC is a general lattice generated by two
vectors up = (3, 3‘?) and % = (1,0). HUC is called a triangular lattice
T. A point of T is called a T-point. Similarly, a simple polygon in R? with
all vertices in T (resp. C) is called a T-polygon (resp. C-polygon). For
an T-polygon P, we use vp(P), br(P) and ir(P) to denote the number
of vertices, the number of boundary T-points and the number of interior
T-points of P respectively.

Clearly an H-polygon or a C-polygon is also a T-polygon. Particularly,
a triangle with three vertices in C is called a C-triangle. A C-triangle A
is said to be primitive if A N C consists only of the three vertices of A. A
segment with endpoints in C is called a C-segment. In [3] [9] the property
of C-triangle and C-segment has been investigated. Here the following two
lemmas are very useful.

Lemma 2.1 ([9]). Any C-segment contains zero or an even number of
H -points.
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Lemma 2.2 ([3], [9]). Let A be a primitive C-triangle. If there erists
one side of A which contains H-points, /A contains at least 2 H-points,
otherwise A contains at least one H -point in its interior.

Lemma 2.3. Let Y = {c1,¢c2, -+ ,cn} be a set of n C-points withn > 3
such that not all elements are collinear. Then Y can span at least n — 2
pairwise interior-disjoint primitive C-triangles.

Figure 2: C-points span primitive C-triangles

Proof. Let ¢; = (zj,y;) (=1,2,---,n). We may assume without loss of
generality that ¥ = min{y; : ¢ =1,2,3,--- ,n}, zy = min{z; : ys = y1,i =
1,2,3,---,n}. Sort Y \ {c1} radially around c¢; (clockwise), to produce

m
rays r1,72,*-+ ,m such that 7; N (Y \c1) # 0, Y\ U r; = @, where
j=1
j=123,---,m. Now we renumber all the C-points in Y as follows.
If rj N (Y \ &1)| = k;, we renumber those k; C-points by ¢},c},- , ¢}, y

such that |eic]| < Jeid)| < -+ < |c1c,’; |, as shown in Figure 2. Now let
W; denote the wedge formed by r; and Tj41, where j = 1,2,..- ,m—1.

It' is easy to see t.hat line segments C{C{“, C‘Ié“v"' :C{d;ﬂ,’ cl’:,,l.é»
cij:lc%, o ,c,l:':l ¢k, form k;+k;41—1 pairwise interior-disjoint C-triangles

m—1 m m—1
in Wj. Therefor Y canspan ) (kj+kjt1—1) = Y ki+ > (kj—1)-1=
=1 =1~ j=2

m—1
n—2+ Y (kj41 — 1) 2 n— 2 pairwise interior-disjoint C-triangles. Since
j=2

each non-primitive C-triangle contains at least one primitive C-triangle,
the proof is complete. O
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Let K be a convex lattice polygon in the plane. Denote by H(K) the
interior hull of K, that is, the convex hull of the lattice points lying in the
interior of K. Notice that H(K) might degenerate into a segment, a point,
or even the empty set. The following lemmas from (7] and [2] will be useful.

Lemma 2.4 ([7]). Let K be a convex lattice polygon with interior hull
H(K). Ifv(K) > 17, then v(H(K)) 2= [3v(K)]; if v(K) 2 9, then
Y(H(K)) > [§v(K)].

Lemma 2.5 ([2]). A convez lattice nonagon can have 7 interior lattice
points or 10 interior lattice points, but it cannot have either 8 or 9 inlerior
lattice points.

Lemma 2.6 ([2]). A convex lattice decagon can have 10 interior lattice
points or 13 interior lattice points, but it cannot have either 11 or 12 inte-
rior lattice points.

Lemma 2.7 ([2]). If H(K) is the interior hull of a convex lattice decagon
with 10 interior lattice points, then v(H (k)) = 6, b(H(K)) = 8 and i(H(K))
2.

Remark 1. Since there is a linear transformation mapping 7 : z’ =z —
laéy, Yy = 243@3/ Under this mapping 7 the integral lattice Z? transforms
into the triangular lattice T'. It is easy to check that under this mapping 7
all the statements in Lemma 2.4 to Lemma 2.7 still hold for corresponding
T-polygons.

3 Main Results

In this section we determine some values of the function G(v).

Theorem 3.1. G(8) = 2.

Proof. Firstly, we'll prove that G(8) = 2. Take a convex H-octagon K
and embed it into the triangular lattice T. Then clearly K is a convex
T-octagon. By Lemma 2.4 and Remark 1, the interior hull of K has at
least four vertices. Thus there exist at least four interior T-points, say, a;,
ag, a3, a4 in K such that conv{a;,as,a3,a4} is a quadrangle. There are
three cases to consider.

OIK|HN {al,az,aa,a4}| 22, then G(8) > 2.

(ii) If [HN{ay, a3, as, a4 }| = 1, we may assume without loss of generality
that a4 € H, a1,a3,a3 € C. Trivially, ay ¢ A = conv{a,, az,as}. Further-
more, we may assume that the triangle A is a primitive C-triangle (if not,
there must be a primitive C-triangle contained in A). By Lemma 2.2, A
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contains at least one H-point. Therefore there are at least two H-points
lying in K, namely, G(8) > 2.

(iii) If |H N {ay,a2,a3,a4}| = 0, then by Lemma 2.3 these four non-
collinear C-points can span at least 2 interior-disjoint primitive C-triangles.
By Lemma 2.2, K must contain at least 2 interior H-points, which means
G(8) = 2.

Thus we prove that G(8) > 2.

P
Figure 3: A convex H-octagon with two interior H-points

Furthermore, we construct a convex H-octagon with exactly 2 interior
H-points, as shown in Figure 3. That is to say, G(8) < 2.

Combining the above discussions, we have G(8) = 2. The proof is
complete. a

Theorem 3.2. G(9) = 4.

Proof. Let K be a convex H-nonagon and we embed it into the triangu-
lar lattice T. By Lemma 2.5 and Remark 1, ir(K) 2 7, ir(K) # 8,9.
Furthermore, by Lemma 2.4 and Remark 1, for the convex hull H(K) of
the interior T-points in K, we have vp(H (X)) > 5, br(H(K)) 2 6. Since
g(5) = 1, ip(H(K)) = 1. We firstly prove that G(9) > 4. According to the
number of T-points in the interior of K, there are two cases to consider.

Case 1. ip(K)=17.

Denote these seven T-points by a1, -+ ,a7. If [ HN{ay,--- ,a7}| > 4, we
are done. Otherwise, notice that G(9) > G(8) = 2, there are two subcases
to consider.

Subcase 1.1. ig(K) = 2. Since T' = HUC, it is easy to see that there are
5 non-collinear interior C-points in K, which can span at least 3 primitive
pairwise interior-disjoint C-triangles (by Lemma 2.3). By Lemma 2.2, these
three primitive C-triangles contain at least 3 H-points, which contradicts
the condition iy (K) = 2.

Subcase 1.2. ig(K) = 3. Then we may assume that a;,az,a3 € H
and a4,a5,06,a7 € C. Recalling that vp(H(K)) > 5, br(H(K)) > 6,
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ir(H(K)) 2 1 and ir(K) = 7, we know that H(K) is either a convex
pentagon with one interior T-point and six boundary T-points, or a convex
hexagon with one interior T-point. Clearly, a4, as, ag, a7 are not collinear.
Let Q = conv{aq,as,as,a7}. By Lemma 2.3, Q can span at least 2 interior-
disjoint primitive C-triangles A; and A3, and therefore contains at least
2 H-points (by Lemma 2.2). In order to prove G(9) > 4, we only need to
prove the following Claim.

Claim 1. |Q N {a;,az,a3}| < 1.

Proof of Claim 1. (i) If |Q N {a1,a2,a3}| = 3, namely, @ contains all
a1,a2,a3, then H(K) = Q. Notice that vp(Q) < 4, which contradicts the
condition vr(H(K)) 2 5.

(ii) If |Q N {a1,a2,a3}| = 2, we can assume that Q contains two H-
points a; and ap. Firstly, if @ contains both a; and as in its interior, this
contradicts the condition i7(H(K)) = 1, which is impossible. Secondly, if
a1 and a3 are both boundary points of @, Lemma 2.1 implies that a; and a2
are lying on the same side of Q. By Lemma 2.2, we can see that primitive
C-triangles AA; and A; must contain at least one H-point other than a
and ag, this contradicts iy (K) = 3. At last, if a; is a interior points and
a is a boundary points of Q. Notice that @ = conv{a,,as,ag,ar}, we
can assume that a; is lying on the C-segment @ja;. By Lemma 2.1, the
C-segment @zas must contain at least one H-point other than a;, which
also contradicts i (K) = 3.

By Claim 1, Q contains at most one of three H-points a1, a2, a3. Thus
K must contain at least 4 interior H-points, namely, G(9) > 4.

Case 2. ip(K) > 10.

We suppose the contrary that ig(K) < 3. Then ic(K) > 7. Notice
that vr(H(K)) > 5, br(H(K)) > 6 and ir(H(K)) > 1. It is easy to
see that these C-points are not collinear. Combining with Lemma 2.2 and
Lemma 2.3, we can conclude that there exist at least 5 interior H-points
in K, which is a contradiction. Therefore, G(9) 2> 4.

Further, the left figure in Figure 4 illustrates that there exists a convex
H-nonagon with exactly 4 interior H-points. That is to say, G(9) < 4.

Combining the above discussions, we have G(9) = 4. The proof is
complete. (]

Theorem 3.3. G(10) = 6.

Proof. On the basis of Lemma 2.7, Lemma 2.6 and g(10) = 10, we can prove
that G(10) > 6 by an analogous method used in the proof of Theorem 3.2,
and the details are omitted here. Furthermore, the right figure in Figure 4
illustrates that G(10) < 6. Therefore, we can obtain that G(10) =6. O
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Figure 4: convex H-polygons with interior H-points

Recall that g(v) is the least possible number of lattice points in the
interior of a convex lattice v-gon. Rabinowitz gave a lower bound of f—,
% +1] for g(v) in [8]. Next we present bound for G(v) on the basis of the
result for g(v). Firstly, the following lemma is fundamental for proving the
result.

Lemma 3.4. If K is a convezx H-polygon with v > 11 vertices and contains
at least 3 interior C-points, then not all of the C-pomts in the interior of
K are collinear.

Proof. Let K be a convex H-polygon which contains at least 3 interior C-
points, and V(K) be the set of vertices of K, where |V(K)| > 11. Similarly,
we use ic(K') to denote the number of interior C-points of K, then ic(K) >

We suppose the contrary that all interior C-points in K are collinear,
and denote the line determined by these C-points by ly. The line Iy divides
K into two polygons, saying K; and K,. Notice that |V(K)| > 11, then
|K1NV(K)| > 6 or |[KoNV(K)| > 6. Without loss of generality, we assume
that |[K; NV(K)| > 6.

Let ap € Ky NV (K) farthest vertex to line lp in K. With the similar
method used in the proof of Lemma 2.2, translating the line /g towards ay,
we have the family of parallel lines

L={Lll||lo,inTNK, #0,i=1,2,---,s}.

Clearly ag € I;, and the distance between ; and ;. is the same for every
i. Since |K; N V(K)| 2 6, it is obvious that s > 3. There are two cases to
consider.

Case 1. loN H # 0.

In this case, we know each line of the family parallel lines £ contains
three types of T-points. H~-points, H*-points and C-points appear pe-
riodically on each line. Furthermore, the distances between consecutive
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T-points along these lines are the same, which denoted by d;. Notice that
ic(K) = 3, we may suppose that ¢;,¢2, ¢3 € int K are consecutive C-points
along the line ly. From Lemma 2.1 it follows that each C-segment ¢7¢z and
C2¢3 must contain exactly two H-points in their relative interiors. By the

Figure 5: T-triangles

property of T-points, we know |lp N K| > |¢7¢3| = 6d;. Since s > 3, thus
the line I contains a T-point e such that e € K, as shown in Figure 5. Let
Ar = conv{e,cy,c3}, it is easy to see Ar \ {e} C intK. Geometrically, we
know |l; N K| > |y N Ar| = 3dy. Thus |l; NintK NT| > 3, that is to say,
K must contain at least one interior C-point which is not lying on the line
lo, which is a contradiction.

Case 2. l[gNH = 0.

In this case, we know that each line in the family of parallel lines £
contains one and only one type of T-points, namely, H~-points, H*-points
or C-points. If i = 0 (mod3), then the line /; contains only infinitely
many C-points; if i # 0 (mod3), then the line /; contains only infinitely
many H-points. Furthermore, the distances between consecutive T-points
along these lines are the same. We denote the distance by d2. Notice that
ic(K) 2 3, thus |lo N K| > 2d;. By the property of T-points, we have the
following three statements.

(D). iz7, then ;A KNH=0. fl;,nKnNH # 0, that is to say
the line /; contains H-points in K. Notice that Jlp N K| > 2d; and ¢ > 7.
Geometrically, |l3 N K| > 153 .2d, = =32 _ 94, _ 841 5 g, Therefore,
we have I3 Nint K N C # @, which contradicts all interior C-points in K are
collinear.

(ii). luNnKNH| L 1. If iy,NnKNH| > 2, namely, |l4N K| > d2. Notice
that |lpNK| > 2d,, thus |l3N K| > da. Then we also have [3Nint KNC # @,
which contradicts the condition.

(iii). [lsnKNH| < 1. The statement can be reached by similar method.

Notice that |K; N V(K)| > 6, we can suppose that aj,as, - ,a6 €
K, NV(K) are H-points such that P = conv{ai, a3, a3, ++- ,a6} is an
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H-hexagon, that is to say, these six H-points a,, a3, a3, --- ,a6 are the
vertices of P, denote them by V(P). By above three statements we have
[hnV(P)NH| = |lanV(P)NH| =2, |4,nV(P)NH| = |lsNnV(P)NH| = 1.
Similarly, notice that g(6) = 1, by Remark 1 we know that P contains at
least one interior T-point f. If f € C, this contradicts the condition.
Thus f € H, it is not difficult to see the H-point f is lying on the line
ly. Therefore, |l N K N H| > 3, namely, |l N K| > 2d2. Geometrically,
3N K| > da, that is to say, l3Nint K NC # B, which contradicts all interior
C-points in K are collinear.

The proof is complete. O

Theorem 3.5. G(v) 2> [ﬁ% —§+%] — 1, where v is the number of
vertices of any conver H -polygon.

Proof. Let K be a convex H-polygon with v vertices. It is easy to verify
that G(v) > [ig—;; -3+ -%] — 1 holds for v £ 10. Now we assume that
v 2 11. Similarly, embed K into the triangular lattice T. By Remark 1,
we have

'U3 v
;. S| —— - +

where iT(K) is the number of interior T-points in K. Notice that T =
HUC, thus

in(K) +ic(K) > [i - +1] .
872 2
Ific(K) < 2, then we have ig(K) > [ — 3 +1]-2> [ - § +1] -
1. If i¢(K) > 3, Combining Lemma 3.4, Lemma 2.3 and Lemma 2.2, it is
clear that igr (K) > ic(K)—2. Then we haveig(K) > 1 [W —yq 1] _1
Noticing that G(v) is an integer, we obtain

3 v 1
) PR )
G(v) [16#2 4+2] 1
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