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Abstract

In this paper, we consider the domination number, the total domination
number, the restrained domination number, the total restrained domination
number and the strongly connected domination number of lexicographic
product digraphs.
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1 Introduction

Throughout this article, a digraph G = (V(G), E(G)) always means a
finite directed graph without loops and multiple arcs, where V' = V(G)
is the vertex set and E = E(G) is the arc set. Given two vertices u and
v in G, we say u dominates v if u = v or uv € E. For a vertex v € V,
Ng(v) and Nz (v) denote the set of out-neighbors and in-neighbors of v,
df(v) = |N4(v)| and dg(v) = | Ng (v)| denote the out-degree and in-degree
of v in G, §*(G) = min{d§(v) : Vv € V} and 6~(G) = min{dg(v) : Vv €
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V'} denote the minimum out-degree and in-degree of G, respectively. Let
Ng[) = N (v) U {v}. A vertex v dominates all vertices in N}[v]. A set
D C V is a dominating set of G if D dominates V(G). The domination
number of G, denoted by v(G), is the minimum cardinality of & dominating
set of G. A dominating set D is called a v(G)-set of G if | D| = 4(G). Note
that each dominating set of digraph G contains all vertices with in-degree
0 in G. Let D° be the vertex set of vertices with in-degree 0 in G, and
set |[D°| = i(G). Let D and U be two vertex sets of V, U is called a
monitor set of D if there exists a vertex v € U different from u such
that vu € E for each vertex v € D\ D°. The monitor number of D,
denoted by ¢(D), is the minimum cardinality of a monitor set of D. Set
«(G) = min{¢(D) : D is a v(G)-set of G}.

A set D C V is a total dominating set (TDS) if every vertex in V has
at least one in-neighbor in D. The total domination number of G, denoted
by 7:(G), is the minimum cardinality of a TDS of G. A TDS D is called
a 7(G)-set of G if | D| = 1(G). Clearly, v(G) < %(G). It is easy to verify
that 7,(G)-set exists for a loopless digraph G if and only if 6—(G) > 1. A
set D C V is a restrained dominating set (RDS) if every vertex not in D
has at least one in-neighbor in D and at least one in-neighbor in V' \ D.
Every digraph has a RDS, since D = V is such a set. The restrained
domination number of G, denoted by ~,(G), is the minimum cardinality of
a RDS of G. A RDS D is called a v.(G)-set of G if | D| = 7-(G). Clearly,
Y(G) € 71-(G). A set D C V is a total restrained dominating set (TRDS)
if every vertex in V' \ D has at least one in-neighbor in D and at least one
in-neighbor in V' \ D, and every vertex in D has at least one in-neighbor
in D. The total restrained domination number of G, denoted by ¥:(G),
is the minimum cardinality of a TRDS of G. A TRDS D is called a
Y2r(G)-set of G if |D| = 4:r(G). Clearly, v(G) < 4:+(G). A dominating set
D of G is called a strongly connected domination set (CDS) if the induced
subdigraph (D) is strongly connected. The strongly connected domination
number of G, denoted by 7.(G), is the minimum cardinality of a CDS of G.
A CDS D is called a v.(G)-set of G if | D| = 4.(G). Clearly, 7(G) < 7.(G)-

Let G; = (W4, E1) and G2 = (V2, E2) be two digraphs, where V; =
{z1,z2,...,2Zn,} and Vo = {y1,¥2,...,¥n,}- The lezicographic product
Gy [Gz] of G1 and G has vertex set V] x V5 and (:L',', yj)(a:,-:_, yj') € E(Gy [Gz])
if and only if either z;zy € Ey, or z; = zy and y;y;» € Ea. The subdi-
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graph G3' is the digraph with vertex set {(z:,y;) : V y; € 2} and arc set
{(zi,95)(zi,95) : V yjy5 € Bz}, Clearly, GZ* 2 G, for all z; € V;. From
the definition of lexicographic product, it is easy to see that G1[G2] can be
obtained from G by replacing each vertex of G with a copy of Gz, in such
a way that for every arc z;z; in Gy, contains all possible arcs from G3' to
Gy

There are many research articles on the domination number of undirected
graphs. However, to date only few results have been done on this concept
for digraphs (See [2]-[7] and the related references). In this paper, we
will consider the domination number, the total domination number, the
restrained domination number, the total restrained domination number
and the strongly connected domination number of lexicographic product
digraphs.

Terminologies not given here are referred to [1].

2 Main results

Clearly, for any two digraphs G; and Gy, if G; is an isolated vertex,
then G1[G2] = Gy, if G; is an isolated vertex, then G;[G2] = G;. Hence
we consider that G and G, are two digraphs with at least two vertices.

First, we consider the domination number of G,[G2).

Theorem 2.1. Let G, = (W, E;) and G2 = (Vs, E) be two digraphs with
at least two vertices. If v(G2) = 1, then ¥(G1[Ga]) = v(Gy).

Proof. Clearly, ¥(G1[G2]) > 7(G1). Now we prove that v(G1[G2]) <
¥(G1). Let Dy be a v(Gy)-set of Gy, and let D, = {y;} be a v(Gz)-
set of G2. Set D = Dy x {y1} € V(G1[G2)). Let (z,y) be an arbitrary
vertex of G1[Ga).

Case 1. z € D;.

If y =y, then (z,y) € D. If y # y1, then y1y € E; for 4(G2) = 1. Thus,
(z,1)(z,y) € E(G1[G2]) and (z,4) € D.

Case 2. ¢ ¢ Dl.

There exists a vertex z; € D) such that z;z € E;. Thus, (z;,31)(z,y) €
E(Gl[Gz]) and (a:g,yl) eD.

Therefore, every vertex in V(G1[G2]) \ D has at least one in-neighbor in
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D, D is a dominating set of G3[G2]. Hence,
Y(G1[G2]) < |D| = |D1| = ¥(Gh).

From above we have v(G1[Gz]) = v(Gy).
O

Theorem 2.2. Let Gy = (Wi, E;) and G2 = (V,E;) be two digraphs
with at least two vertices. If ¥(G2) > 2, then 7(G1) < Y(Gi[G2)) <
#{G1)(7(G2) — 1) +7(G1) + «(Gh).

Proof. Clearly, v(G1[G2]) = ¥(Gi). Now we prove that v(Gi[Gz]) <
i(G1)(1(G2) = 1) + ¥(G1) + «(G1). Let D be the vertex set of vertices
with in-degree 0 in G; and |D§| = i(G1). Let D; be a v(Gi)-set such that
there exists a minimum monitor set U of Dy with |U;| = «(D1) = ¢(G1),
and such that [U; N D,| is as small as possible. Let Dy be a y(G2)-set
of G;. Take two vertices y;,y2 € Do and set D = ((D; \ D?) x {m}) U
(U1 x {y2}) U(D? x D3) C V(G1[Gy2]). Let (z,y) be an arbitrary vertex of
G1[Ga).

Case 1. z € D).

If y € Dy, then (z,y) € D. If y ¢ Dy, then there exists a vertex y; € D2
such that y;y € E». Thus, (z,v:)(z,y) € E(G1[G2)) and (z,y;) € D.

Case 2. z € D, \ D).

If y = y1, then (z,y) € D. We consider the case that y # y;. If there
exists a vertex z; € D; such that z;z € E, then (z;,y1)(z,y) € E(G1[G2])
and (z;,1) € D. Otherwise, there exists a vertex z; € Up such that
zjz € Ey, since each vertex in D; \ D{ has at least one in-neighbor and
|U; N Dy| is as small as possible. Thus, (z;,¥2)(z,y) € E(G1(G2]) and
(zj y2) € D.

Case 3. z ¢ D;.

There exists a vertex z; € D; such that z;z € E;. Thus, (z;,n1)(z,y) €
E(G1[Ge)) and (z;,y1) € D.

Therefore, every vertex in V(G1[G2]) \ D has at least one in-neighbor in
D, D is a dominating set of G1[G3]. Hence,

Y(Gi[Ga]) < |D|=|Dy\ DY+ |U1| +|DY||D2|
¥(G1) — i(G1) + UGr) + i(G1)¥(G2)
i(G1)(7(G2) = 1) +7(G1) + ¢(G1)
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Therefore, we have v(G1) < ¥(G1[G2]) < i(G1)(7(G2) — 1) + v(Gy) +
¢(Gy). ]

Remark The lower bound and upper bound in Theorem 2.2 are sharp.
Let P4 denote the directed path with four vertlces and Cg denote the
dlrected cycle with three vertlces Clearly, 7(03) = 2,7(P4) =2, L(P4) =
1,i(P}) = 1, we have Y(F}[Ca]) = i(Pi)(+(C3) - 1)+'¥(P4)+L(P4) =1x(2-
1)+ 2+1 = 4. Thus, the domination number of P4[Ca] achleves the upper
bound. Let Gy be the digraph in Flgure 1, then 'y(Go[C3]) = v(Go) = 2.
Thus, the domination number of G [03] achieves the lower bound.

Go
Figure 1.

We study the total domination number of G[Gs] in the following. Since
7:(G1[G2])-set exists if and only if §~(G1[G2]) > 1. Thus, in order to make
7t(G1(Ga))-set exist, we have 6=(G1) > 1 or §—(Gz2) > 1.

Theorem 2.3. Let Gy = (V4, E;) and Gz = (V3, E3) be two digraphs with
at least two vertices. If 6=(Gy) > 1, then %(G1[G2)) < 1(G1)-

Proof. Since 6=(G1) > 1, let D} be a 7:(G1)-set of G1. Set D = D} x
{#1} € V(G1[G2)) for some vertex y; € V,. Let (z,y) be an arbitrary
vertex of G1[G2]. Then there exists a vertex z; € D} such that z;z € E;.
Therefore (zi,11)(x,y) € E(G1]|G2)) and (z;,y1) € D. Thus, every vertex
in V(G1[G2)) has at least one in-neighbor in D, D is a total dominating
set of G1[G3]. Hence,

1(G1[G2]) < |D| = |Dj| = %(G)).
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Theorem 2.4. Let Gy = (W}, E1) and Go = (Vo, Ey) be two digraphs with
at least two vertices. If 6~(G1) = 0 and §~(G2) > 1, then 1 (G1[Ga]) <
Y(G1)1(G2).

Proof. Let D; be a v(G1)-set of G; and let DY be a 7;:(G2)-set of G2. Set
D = Dy x D§ C V(G1[Ga)). Let (z,y) be an arbitrary vertex of G;[Ga].

Case 1. z € D;.

There exists a vertex y; € D} such that y;y € E; since D} is a v:(G2)-set
of G3. Thus, (z,¥:)(z,y) € E(G1[G2]) and (z,y;) € D.

Case 2. z ¢ D;.

There exists two vertices z; € D; and y; € Dj such that z;z € E; and
iy € Ep. Thus, (z;,u:)(z,y) € E(G1[G2]) and (zj,3:) € D.

Therefore, every vertex in V(G1[G2]) has at least one in-neighbor in D,
D is a total dominating set of G1[G;]. Hence,

1(G1[G2)) < |D] = |D1]ID5| = *(G1)%(Ga2).
O

Remark: The upper bounds in Theorem 2.3 and Theorem 2.4 are sharp.
Let Gy be the digraph in Figure 1, and G be any digraph with at least two
vertices, then ¥(Go[G2]) = 1:(Go) = 2. Thus, the total domination number
of Go[G3] achieves the upper bound in Theorem 2.3. Let K, (n>2) and
IT,,: (m > 2) denote a complete digraph of order n and a directed path of
order m, respectively. Then ‘Yg(I?,:) =2, 7(1_’,:) = [2] and 'Yg(P.—m)) does
not exist(see [6]). Therefore, 7t(P:[Fn]) = 2[%], the total domination
number of 7; (P:: [f,:]) achieves the upper bound in Theorem 2.4.

Next, we study the restrained domination number of G,[G2).

Theorem 2.5. Let Gy = (W3, E}) and G2 = (V, E2) be two digraphs with
at least two vertices. If v(G2) = 1 and .(G2) # |V2l, then 1.(G1[G2]) <
7(G1) +i(G1)((Gz) — 1).

Proof. Let Dy = {11} be a v(Gz)-set and let D} be a ,(G2)-set. Let D}
be the vertex set of vertices with in-degree 0 in G; and |DJ| = i(G1). Let
D; be a y(Gy)-set. Set D = ((Dl \Dg) X {yl}) U (D? X D;) C V(G1 [Gz]).
Let (z,y) be an arbitrary vertex of G;[Ga)].

Case 1. z € D).



If y € D3, then (z,y) € D. If y ¢ Dj, then there exist two vertices y; €
D3 and y; ¢ Dj such that yiy,y;y € Ez. Thus, (z,u)(z,y) € E(G1[G2))
and (zay‘i) €D, (z, yj)(zi y) € E(Gllazl) and (.’B, y.‘i) ¢ D.

Case 2. z € Dy \ DY.

If y = y1, then (z,y) € D. If y # y1, then y1y € By, (z,31)(z,y) €
E(G1[G]) and (z,y1) € D. Since z € Dy \ DY, z has at least one in-
neighbor z; in G), we find that there exists at least one vertex (z;,ys)
not in D since v.(Gz) # |V2|. Therefore, (zi,y:)(z,y) € E(G1[Gz]) and
(zi,95) ¢ D.

Case 3. z ¢ D;.

There exists a vertex z; € D; such that z;z € E;, and there must exist
two vertices (z;,11) € D and (zi,y:) ¢ D since v.(Gz) # |Vz|. Thus,
(z:,u1)(z,y) € E(G1[G2]) and (z:, 1) € D, (zi,4:)(z,y) € E(G1[G2}) and
(ziryt) ¢ D.

Therefore, every vertex in V(G1[G2])\ D has at least one in-neighbor in D
and at least one in-neighbor in V(G1[G2])\ D, D is a restricted dominating
set of G1[G2). Hence,

YGi[G2]) < |D|=|D1\Df|+|D?| D3|
¥(G1) = i(G1) + i(G1)7-(G2)
= 7(G1) +i(G1)(1(G2) - 1)

Therefore, we have v,(G1[G2]) < v(G1) +i(G1)(7(G2) - 1).

A

a

Theorem 2.6. Let G, = (Vi, Ey) and G3 = (Va, E3) be two digraphs with
at least two vertices. If v(G2) > 2 and ~(G2) # [Va|, then 7. (Gi1[G2)) <
Y(G1) + iG1)(1+(G2) ~ 1) + (Gh).

Proof. We claim that [V2| > 3 since ¥(G2) > 2 and 7,(G3) # |V2|. Let
DY be the vertex set of vertices with in-degree 0 and |D9| = i(G;). Let
D, be a y(G;)-set such that there exists a minimum monitor set U; of
D, with |U1] = ¢(D1) = ¢(G1), and such that [U; N Dy| is as small as
possible. Let D} be a v.(Gz2)-set of G3. Take two vertices y1,y2 € D} and
set D = (D1 \ DY x {w1}) U(Us x {92}) U (DY x D§) C V(G1[Ga)). By
Theorem 2.2, we known that D is a dominating set of G;[G2]. It is easy
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to see that |[DNV(G3)| < V2| — 1 for each vertex z € V;. Let (z,y) be an
arbitrary vertex in V(G1[Gz]) \ D.

If z € DY, then y ¢ Dj, there exists a vertex y; ¢ Dj such that y;y €
E since Dj is a v(Gz)-set of Ga. Thus, (z,¥:)(z,y) € E(G1][Ga]) and
(37 yi) ¢ D.

If z ¢ DY, then = has at least one in-neighbor z; in G;. Therefore,
there exists a vertex (z;,y:) ¢ D such that (z;,¥:)(z,y) € E(G1[Gz2]) since
7(G2) # |Va|. Hence, D is a restrained dominating set of G;[G2]. Thus,

Y(GilGa]) < |D|=|D1\ D}l + || +|D}IID3|

= 7(G1) = #G1) + «(G1) +i(G1)7(G2)
= (G1)(7(G2) — 1) +7(G1) + «(G1)

Therefore, we have v,.(G1[G2]) < 7(G1) + i(G1)(7(G2) — 1).
' o

We will discuss the total restrained domination number of G1[G2] in the
following theorem 2.7.

Theorem 2.7. Let G, = (W4, By) and G2 = (Va, E3) be two digraphs with
at least two vertices. If there exists a ¥:r(G1)-set of Gy, then 'n,(Gl [Ga)) <

'Ytr(Gl)

Proof. Let DY be a v;-(G1)-set of Gy. Set D = Di" x {y1} C V(G1[G2])
for some vertex y; € V. Let (z,y) be an arbitrary vertex of G1[G2).

Case 1. z € DY".

There exists a vertex z; € D" such that z;z € E;. If y = y;, then
(z,y) € D. We have (z:,y1)(z,y) € E(G:1(G2]) and (z;,11) € D. If y # 1,
then (z,y) ¢ D. We have (z:i,y1)(z,y) € E(G1[G2]) and (zi,11) € D,
(zi,9)(2,y) € E(G1[G7]) and (z:,y) ¢ D.

Case 2. z ¢ Di".

Clearly, (z,y) ¢ D. Therefore there exist two vertices z; € Dj{" and
z; ¢ DY such that z;z,z;x € E1. We have (z;,11)(2,y) € E(G1[G2))
and (z;,1) € D, (zj,y)(z,y) € E(G1[G:]) and (z;,y) ¢ D. Thus, every
vertex in V(G1[Gz]) \ D has at least one in-neighbor in D and at least
one in-neighbor in V(G1[G3]) \ D, and every vertex in D has at least one
in-neighbor in D, D is a total restricted dominating set of G1[(G2]. Hence,

7er(G1[G2)) < |D| = |DY| = %+ (Gh).
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Finally, we consider the strongly connected domination number of G4 [G3).
Note that if 7.(G1) = 1 and ¥(G2) > 2 and there does not exist strongly
connected dominating set with at least two vertices in G1, then 7.(G1[G))-
set does not exist.

Theorem 2.8. Let Gy = (W4, Ey) and G2 = (Vz, E3) be two digraphs with
at least two vertices. Then v.(G1[G2]) = 7.(G1), if one of the following
conditions holds:

(i) ¥(Gz2) =1 and 7.(G1) 2 1,

(i) 7(G2) 2 2 and 7.(G1) = 2.

Proof. Clearly, 7¢(G1[Gz]) > 7.(G1).

Case 1. 7(G2) =1 and 7.(G;) > 1.

Let Df be a 7.(G1)-set of Gy and Dy = {y} be a y(G2)-set of G». Set
D = Df x {n1} C V(G1[G2]). We know that D is a dominating set of
G1[G2] from the proof of Theorem 2.1. Since (D) is strongly connected,
(D) is also strongly connected. Thus, D is a strongly connected dominating
set of G1[G2). Hence,

1e(G1[G2]) £ |D| = |D§| = 7(Gh).

Case 2. v(G2) = 2 and v,(Gy) = 2.

Let Df be a v.(G1)-set of Gy. Set D = D§ x {y;} C V(G1[G)) for some
vertex y; € V2. Let (z,y) be an arbitrary vertex of G1[G;]. Since D§ is a
strongly connected dominating set of G, there exists a vertex z; € D§ such
that z;z € Ey. Thus (z4,y;)(z,y) € E(G1(G:]) and (z:,y;) € D. Hence,
D is a dominating set of G1[G2]. Since (Df) is strongly connected, (D) is
also strongly connected. Thus, D is a strongly connected dominating set
of G1[G2]. Hence,

7e(G1(G2)) < D] = |Dj| = 1(Gh)-

References

[1] G. Chartrand, L. Lesniak, Graphs and Digraphs, fourth ed., Chap-
man and Hall, Boca Raton, FL, 2005.

31



[2] K. Carlson, M. Develin, On the bondage number of planar and di-
rected graphs, Discrete Math. 306 (2006) 820-826.

[3] G. Chartrand, F. Harary, B.Yue, On the out-domination and in-
domination numbers of a digraph, Discrete Math. 197/198 (1999)
179-183.

[4] J. Ghoshal, R. Laskar and D. Pillone, Topics on domination in di-
rected graphs. In: T.W. Haynes, S.T. Hedetniemi and P.J. Slater,
Editors, Domination in Graphs: Advanced Topics, Marcel Dekker,
New York (1998), pp. 401-437.

[5] C. Lee, Domination in Digraphs, J.Korean Math.Soc. 35(4) (1998)
843-853.

[6] J. Huang, J.M. Xu, The total domination and bondage numbers of
extended de Bruijn and Kautz digraphs, Comput. Math. Appl. 53
(2007) 1206-1213.

[7) J. Huang, J.W. Wang, J.M. Xu, Reinforcement numbers of digraphs,
Discrete Appl. Math. (2009) doi:10.1016/j.dam.2009.01.002.

32



Optimal orientations of P; x K5 and Cs X K3
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Abstract. For a graph G, let D(G) be the set of all strong orientations of
G. Orientation number of G, denoted by d(G), is defined as min{d(D)|D €
D(G)}, where d(D) denotes the diameter of the digraph D. In this paper, we
prove that d{Psx K5) = 4 and d{CsxK3) = 6, where x is the tensor product
of graphs.

1 Introduction

Let G be a simple undirected graph with vertex set V(G) and edge
set E(G). For v € V(G), the eccentricity, denoted by eg(v), of v is
defined as eg(v) = max {dg(v,z)|z € V(G)}, where dg(v,z) denotes
the distance from v to = in G. The diameter of G, denoted by d(G), is
defined as d(G) = max{ec(v)|v € V(G)}.

Let D be a digraph with vertex set V(D) and arc set A(D) which
has neither loops nor multiple arcs (that is, arcs with same tail and
same head). For v € V(D), the notions ep(v) and d(D) are defined
as in the undirected graph. For z,y € V(D), we write z — y or
y « z if (z,y) € A(D). Forsets X,Y C V(D), X — Y denotes
{(z,y) € A(D) : € X and y € Y}. For distinct vertices vy, vs,...,vk,
vy — vz = ... — v represents the directed path in D with arcs
v — Vg, V2 — U3, ..., Up—1 —> Uk. For subsets V;,V5,...,Vi of V, we
write Vi = Vo — ... = Vi for the set of all directed paths of length
k —1 whose ith vertexisin V;, 1 <i < k.

For graphs G and H, the tensor product, G x H, of G and H is the
graph with vertex set V(G)xV(H) and E(GxH) = {(u,v)(z,y) : uz €
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