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1 Introduction

Many topological indices (molecular-structure descriptors) have been put
forward in different studies, from biochemistry to pure mathematics. The
Wiener index, which is one of the oldest and most widely used indices in
quantitative structure-activity relationships, has been received great atten-
tion by mathematicians and chemists (for example, see [4, 6, 7, 18, 19}).
Recently, some researchers considered terminal distance matrix {11, 13} and
found that it was used in the mathematical modelling of proteins and ge-
netic [11, 13, 14] and regarded it as a source of novel molecular-structure
descriptors [13, 16]. Due to study on the terminal distance matrix and its
chemical applications, Gutman, Furtula and Petrovié [8] first proposed the
concept of terminal Wiener index, which is defined as the sum of distances
between all pairs of pendent vertices of trees. The terminal Wiener in-
dex is also arisen in the study of phylogenetic tree reconstruction and the
neighborhood of trees [1, 12]. For more information on the terminal Wiener
indices, the readers may refer to the recent papers (2, 3, 5, 9, 10, 15, 17, 20]
and the references cited therein.

Let T = (V(T), E(T)) be a tree of order n with vertex set V(T) and
edge set E(T). The distance between vertices v; and v; is the number of
edges in the shortest path from v; to v; and denoted by dr(v;,v;) (or for
short d(v;,v;)). Moreover, terminal Wiener indez TW (T) of a tree T can
be expressed as

TW(T)= Y  dr(v,v;), (1)
{093 YCL(T)

where L(T') is the set of pendent vertices in V(T), i.e., the set of vertices
with degree 1 in V(T'). Gutman et al. [8] gave a formula for the terminal
Wiener index of trees

TW(T)= Y pulelT)pu(elT), C ()
e=uveE(T)

where p,(e|T) and p,(e|T) denote the number of pendent vertices of two
components of 7' — e containing v and v, respectively. The rest of the
paper is organized as follows. In Section 2, we present a sharp upper and
lower bounds for terminal Wiener index of a tree in terms of the number
of vertices and diameter and characterize all extremal trees which attain
these bounds. In section 3, we investigate the properties of terminal Wiener
index of a tree with fixed maximum degree.
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2 Trees with fixed diameter

In this section, we only consider the terminal Wiener index of n—vertex
trees with a fixed diameter d. Let 7, 4 denote the set of all the trees of
order n with fixed diameter d and let 7, 4; denote the set of all the trees
of order n with fixed diameter d and the number [ of the pendent vertices.
Clearly, 7,4 consists of only star Ky n_; for d = 2, and only path for
d = n —1. Moreover, 2 <! < n—d+ 1 with the left equality holding if
and only if d =n—1. A tree T is called caterpillar if the graph from T by
deleting its all pendent vertices is a path. A tree is called starlike tree of
degree k if there is only one vertex with degree k > 3. Gutman et al. [§]
presented the following result.

Theorem 2.1 [8] Let T be an n—vertez tree with the number | > 3 of
pendent vertices. Then

TW(T) > (n-1)(1 - 1) (3)
with equality if and only if T is starlike of degree l.

In order to present the main result in this section, we need the following
lemma.

Lemma 2.2 Let T be an n—vertex tree with diameter d and the number !
of the pendent vertices. Then

[

n—1
15)
n—2
[
1]
Proof. Let P = vgv; - - - v4 be a longest path since the diameter of T is d.
For any vertex u € V(T)\{vo, - -, vd}, the distance between vertex v and
the path P is at most | $], i.e., dist(u, P) = min{d(u,v) |v € V(P)} < 14).
Otherwise the diameter of T is larger than d. Since every vertex in u €

V(T)\{vo, - - - ,va} lies on a path from some pendent vertex except {vo,va}
to the path P, we have |§](! ~ 2) +d +1 > n. Therefore if d is even, then

[§Jl>n—-1,ie,12> TTT_JI]* if d is odd, then [§]lI > n~2,ie., !> fﬁ% .
So the assertion holds. Il

Now we are ready to present a sharp lower bound for the terminal
Wiener index of n—vertex trees with fixed diameter d.

1<i<n—-d+1, ifd iseven; 4

1<i<n—-d+1, ifdisodd. (5)

- Theorem 2.3 Let T be an n—vertex tree with fized diameter d, i.e.,, T €
Tn.d. Then
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where
1 if d is even,
lp =

%3% if d is odd.
Moreover, if d > 3, equality (6) holds if and only if T is starlike trees of
degree ly and diameter d.

Proof. If d = n — 1, the assertion holds. Assume that d < n —2. Let T*
be an n—vertex tree with diameter d such that

TW(T) > TW(T*) for T € Tra.

Denote by ! the number of pendent vertices of 7*. By Lemma 2.2, > |, >
3. On the other hand, T™ € 7,41 C 7n, . Hence by Theorem 2.1, we have
TW(T*) 2 (n —1)(! — 1) with equality if and only if T* is starlike trees of
degree I. Therefore

TW(T) 2 TW(T*) > (n— 1)1 - 1) 2 (n —1)(lo — 1)

with equality if and only if T is starlike trees of degree ly with diameter d.
]

Remark For given an n and d < n — 2, there always exists at least one
n—vertex starlike tree T of degree lp with diameter d. For example, the
n—vertex tree T is obtained from Iy — 2 paths of length [ | and 2 paths of
length [§],n — | (o — 2) — [¢] — 1, respectively, by identifying one end
of their paths. Moreover the following result can be easily obtained from
the proof of Theorem 5 in [8].

Lemma 2.4 [8] Let g(z) = z(z — 1) + (n — z —1)|$][%] be positive in-
teger function on x, where n > 3 is positive znteger Then g(x) is strictly
increasing with respect to 2 < z < |_2"J + 2; and strictly decreasing with
respect to |22t ] +2 < x < n — 2. Moreover,

?1.,(71 +9n2+9n-27), if3|m;
g(z) < { FH(n®+9I%+6n-16), if3|(n—1); (7)
2.,(n +9n2+6n-2), if3]|(n-2);
with equality holding if and only if
[?J+2 if 3| n;
2] +20r |28 ) +2, if 3|(n—1);
[%J+2 if 3] (n-2).
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Theorem 2.5 Let T be an n—vertex tree with diameter d, i.e., T € Tp 4.
Ifd > (253, then

n—-d+1 n-d+1

Moreover, if n — d + 1 is even, then equality in (8) holds if and only if T
is obtained from the path P;_, of order d — 1 by attaching to each of its
terminal vertices ";.lfﬂ new pendent vertices and this tree is unique. If
n—d+1 is odd, then equality in (8) holds if and only if T is obtained from
the path Py_1 of order d — 1 by attaching to each of its terminal vertices
l_%ﬂj new pendent vertices and by attaching one pendent verter to some

vertez of Py_y and there are |$] distinct trees.

TW(T) < (n—d+1)(n—d) + (d—2)|

Proof. If n = 3p, let ! be the number of pendent vertices of T. Then
I<n-d+1<3p-(p—1)+1=2p+2=[%]+2. By Theorem 4 in (8]
and Lemma 2.4,

TWT) < Wi-1)+m-1-D)5)f5]

(n—d+ 1 —d)+ @~ 2et o dty

IA

If equality in (8) holds, then by Lemma 2.4, ! = n — d + 1. Moreover, by
Theorem 4 in 8], all non-terminal edges e = uv, we have p,(e|T) = | 2=5t1
and p,(e|T) = [1‘:%*—1] Let Py = vov1 -+ vq be the longest path of T
Hence if n — d + 1 is even, then for e; = vyv and eg.y = vg4—_2v4—;, We
have py, (e1|T) = 2=¢*L and py,_,(€4—2|T) = 1‘;2"—"'—1-. So T is obtained
from the path P;_; of order d — 1 by attaching to each of its terminal
vertices %’11 new pendent vertices and this tree is unique. If n —d +1
is odd, then py, (e1|T) > [2=2*!| and py,_, (ea—2|T) > [2=Zt!|. Hence
T is obtained from the path P;_; of order d — 1 by attaching to each of
its terminal vertices [1‘;;‘—1'—1] new pendent vertices and by attaching one
pendent vertex to some vertex of Py_; and there are |§] distinct trees.
Conversely, it is easy to show that the equality holds.

If n =3p+1 and n = 3p+ 2, then by similar method, we can prove the
assertion holds. ll

Remark If d = 2 or d = 3, Theorem 2.5 is still true. But if 4 <
d < |_"—3’£J, Theorem 2.5 is, in general, not true. With aid of computing
calculation, trees Ty, T5, T3, Ty (see Fig.1) have the largest terminal Wiener
indices among all trees of order n = 23 with d = 4, n = 30 with d = 5,
n = 40 with d = 6, and n = 40 with d = 7, respectively.
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TW(T;) = 582 TW(Ty) = 1162

L ) s e LN ]
11 11 11
TW(Ts) = 2508 TW(Ts) = 2502

Fig.1 T,T»,Ts,T; have the maximum terminal Wiener index
of trees in 723,4,730,5, Td0,6 and T30,7, respectively
3 Terminal Wiener index with fixed maximum degree

Let 75, denote the set of all the trees of order n and with maximum degree
A. If A =2, Ty 2 consists of path P, of order n, and TW(P,) = n — 1.
If A =n~1, then 7, n_; consists of star Ky n—; and TW (K ,-1) =
(n —1)(n — 2). By [3], the extremal trees having the minimum terminal
Wiener index in 7n a are starlike trees. It is natural to ask which are
extremal trees having the maximum terminal Wiener index. Through this
section, assume that 3 < A <n—2. Atree T in T, 4 is called optimal
tree if TW(T™*) > TW(T) for all T € T, a. In this section, we discuss some
properties of optimal trees. Schmuck, Wagner and Wang [15] proved the
following result.

Theorem 3.1 [15] Let Tz be the set of all trees with a given degree sequence
7= (di,dp, -+ ,dn) anddy 2dy > - 2 di 22> dgys =+ =dy = L.
Ifdy >3 and TW(T*) > TW(T) for any T € T, then T* is an n—vertez
caterpillar associated with v,,- - - vy vertices on the backbone of T* in this
order with d(v;) =z; +2,i=1,.--k, and

TW(T*) = (n—-1)(n—k —1) + F(z1,- -, Tx), 9
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where
k-1 i k
F(z1,- -+ zx) =maz{F(ys,---,9) = D O_ui)( Y v):v1 > w}
i=l j=1 =i+l

and the mazimum is taken over all permutations (yi,---,yx) of (d1 —
<y e — 2).
b

It follows from the method of [15] and [21] that we are able to prove the
following result.

Lemma 3.2 Let wy > wy > --- 2 wi > 0 be the integers with k > 5 and
let

F(xl)” "xk) = max{F(yl" ’yk) = Z(Zyj)( Z yJ) Nz 2> yk}a

i=1 j= j=i+l

where the mazimum is taken over all permutations (y1,- - -, yx) of (w1, -+ -, wg).
Then there exists a 2 <t < k — 2 such that the following holds:

Ty +Za+ o+ 21 S Tep2+ -+ Tk (10)
and
Tyt zo+ o+ T > Teyz+ o+ Tke (11)
Further, if equation (10) is strict, then
Ty> T2 2T 2T 2 Tl S Teg2 <000 < Ty (12)
if equation (10) is equality, then
T1 2Ty 2 2 Te-1 2Tt 2 T4l S Teqp2 S -0 S Tk (13)
or
Ty 232> 2 T3 2T S Teyt STz <00 < Tk (14)

Proof. By the definition of F(z,---,zt), we get

0 < F(x1, 1 %ic1,Tiy Tig1y - Tk) — F(T1,+ , Tie1, Tig1, Tiy »++ 1 Tke)
i—-1 k
= @i—z)Q_z5i— Y 75)
j=1 j=it2

(Zi41 — z:) F(3),
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where f(i) = E z; — i zj for 1 < i < k- 1. Obviously, f(1) < 0,
Pl
f(2) <o, f(k - l) >0and f(i+1) 2 f(i) (1 <i<k~—1). Hence there
exists a 2 < ¢t < k — 2 such that f(t) <0, f(t+1) > 0, i.e (10) and (11)
hold.
Furthermore, f(1) < f(2) < - < f(t) SO0 < f(t+1) < f(t+2) <
-+ < f(k). If (10) is strict, i.e f(t) <0, then

i—1 k
Za:_,-< Z z; for 1<i<t,
i=1

J=i+2

i-1 k
Yozi> Y =z for t+1<i<k-1.
i=1 j=it2
Hence, we obtain
Zip1 —Z; L0 for 1<i<t

and

$i+1—.’ti>0 fOT t+1S2Sk-—1,
which means
T 2T22 2T 2Tt41 STeqp2 S STk

i.e (12) holds.
If (10) is equality, i.e f(t) = 0, then exists a 1 < s < ¢ such that
FOYLf2)<---<f(s) < f(s+1)=.--= f(t) =0. Then we have

T12%22 2Tt 2041 S T2 < <1

or
12222 2Tt S Te41 S T4 < - - STk

i.e (13) or (14) holds. This completes the proof. ll
Theorem 3.3 Let m = (dy,dp,-+-,dy) withdy > --- 2 dp > 2> dy1 =

-« =d; =1 and dy > 3, then if T* is a mazimum optimal tree in T, with
F(zy,---,zt) in equation (9), then there exists a 2 <t < k — 2 such that

t—1 k t k
DTS Do Ty m> ) wm (15)
i=1 i=t+2 i=1 1=t43
and either
T 2222 22 2T131 S T2 S S

or
Ty 2T 2 2% STe41 S T2 X000 S Tge
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Proof. It follows from Theorem 3.1 and Lemma 3.2 that the assertion
holds. W

Corollary 3.4 Let T, a denote the set of all the trees of order n and with
mezimum degree A. If3 < A <n -3 and T* is an optimal tree in Ty A,
then T* is an n—caterpillar tree and vy, -+, vy vertices on the backbone of
T* such that d(v;) = z; + 2 and there ezists ¢ 2 < t < k — 2 such that

inﬁ Z zi,Zz.-> Z T; (16)
i=1 ist42 i=l i=t+3
and eiiher
T 2T22 28 2 Te4l STep2 S 00 S Tk
or

212222 2% STep1 STe42 < - S Tk

Proof. If A = n — 2, then it is easy to see that the assertion holds. If
A < n -3, denote by ® = (dp,--,d,) the degree sequence of T with
dy > -+ >dn. If dy =2, T* is a starlike tree of degree A and TW(T*) =
(n — 1)(A — 1). The assertion holds. If d; > 3, by Theorems 3.1 and 3.3,
the assertion also holds. ll

Lemma 3.5 Let T* be an optimal caterpillar with v,,--- vy vertices on
the backbone of T* in the order and d(v;), 1 < i < k satisfying d(vy) >
<o >d(vn) 23 and3 <d(vy) - Ldw),t<s If3<A<L<n-3,
d(vi—1) < A and d(vs) < A, then d(vi—2) = d(vs41) = A, d(ve) = 3 and
Pue_y (V- 12| T*) = po, (ve—10e|T") +1 = 0.

Proof. Let T} be a caterpillar from T* by deleting one pendent edge
at vertex v, and adding one pendent edge at vertex v,—;. Let T be a
caterpillar from T* by deleting one pendent edge at vertex v, and adding
one pendent edge at vertex v,. Then

TW(T*) — TW(T1) = po,_, (ve—19¢|T*) ~ py, (ve—19:|T*) +1 >0 (17)

and

TW(T*) = TW(T2) 2 (s — t){—2(d(v¢) — 2) + 2 — (py,_, (ve—1ve|T™)
~Pu, (Us—10:|T*) +1)} 2 0 )
18
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Hence by (17) and (18), d(v;) = 3 and
Doy (V10| T*) = py, (ve—1v|T*) + 1= 0. (19)

Suppose that d(v;—2) < A. Then let T3 be a caterpillar from T* by deleting
one pendent edge at vertex v,—; and adding one pendent edge at vertex
vy—2. Hence by (19),

0 < TW(T*)-TW(T)
= —2(d(Ve-1) — 2) + Pvoey (Ve-10|T") = Py, (Ve 10| T") + 1
~9(d(ve_1) — 2) < 0,

which is a contradiction. So d(v;—2) = A. Suppose that d(v,+1) < A. Then
let Ty be a caterpillar from T by deleting one pendent edge at vertex v,
and adding one pendent edge at vertex v,4;. Hence

0 < TW(T*)-TW(Ty)
= =2((d(ve) = 2) + -+ (d(vs) — 2)) = (P, (Ve—1%|T™)
~Pu, (Ve—1%|T") + 1) + 2
= —2((d(v) = 2) + -+ (d(vs) — 2)) +2 < 0,

which is a contradiction. So d(ve41) = A. l

Lemma 3.6 Let T* be an optimal caterpillar with vy,- .- vy vertices on
the backbone of T* in the order and d(v;), 1 < i < k satisfying d(v;) >
cev2d(v) 23 and3 <d(v,) <---<d(w),t<s. If3<A<n-3,
d(ve-1) < A, d(v,) = A and s > t+ 1, then d(v,—2) = A, d(v) = 3 and
Pop_y (V—10¢|[T™*) — Py, (Ve—19|T*) +1 = 0.

Proof. Let T; be a caterpillar from T* by deleting one pendent edge at
vertex v; and adding one pendent edge at vertex v;—; and Let Tg be a
caterpillar from T* by deleting one pendent edge at vertex v, and adding
one pendent edge at vertex vey;. Then

TW(T*) — TW(Ts) = Pu._, (Ve=19|T*) = po,(ve—1ve|T*) +1 >0 (20)

and

TW(T*) - TW(T5) = —2(d(ve) — 3) — (Pue_, (ve—1ve|T")

=Py, (ve—1%|T*) +1) 2 0. (21)

Hence by (20) and (21), we have d(v;) = 3 and p,,, _, (Ve—19¢|T™*) — Py, (Ve—101|
T*) +1 =0. Suppose that d(v;—2) < A. Then let 77 be a caterpillar from
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T* by deleting one pendent edge at vertex v,—; and adding one pendent
edge at vertex v;..;. Hence

0 < TW(T*)-TW(Ty)
Pve_y (Ve—19|T) = pu, (Ve—19e|T*) + 1 — 2(d(ve-1) — 2)
—2(d(11g..1) - 2) <0,

I

which is a contradiction. So d(v;—z) = A. H

Lemma 3.7 Let T* be an optimal caterpillar with vy,---vi vertices on
the backbone of T* in the order and d(v;), 1 < i < k satisfying d(v;) 2
~od(v) >3 and3<d(v,) <---d(vk), t<s. If3<A<n-3, d(v-1) <
A, d(vs) = A and s =t + 1, then d(vi—3) = A.

Proof. If d(v;—2) = A, then d(v;—3) = A. Hence assume that d(v;—2) < A.
let T5 be a caterpillar from T* by deleting one pendent edge at vertex v;_;
and adding one pendent edge at vertex v;—» and let Ty be a caterpillar from
T* by deleting one pendent edge at vertex v,_; and adding one pendent
edge at vertex v¢. Then

TW(T*) — TW(T3) = po,_, (ve—10|T*) — po, (ve—10:|T*) + 1 (22)
—2(d(vi-1) —2) > 0

and
TW(T*) — TW(Ts) = —Pu,_, (Ve—10|T*) + po, (ve—1v|T*) +1 > 0. (23)

Hence by (22) and (23), we have d(v,—1) = 3 and p,,_, (v—1ve|T*) —
Do, (Ve—10:[T*) — 1 = 0. Suppose that d(v,—3) < A. Then let Tjp be a
caterpillar from T™* by deleting one pendent edge at vertex v;_» and adding
one pendent edge at vertex v;_3. Hence

0 < TW(T")—-TW(T)
= DPve_, (vt—lvtlT‘) - Pw,(vt—lvtlT*) +1 - 2(d(ve-2) + d(v,-l) —-4)
—2(d(v¢-2) - 2) <90,

which is a contradiction. Hence the assertion holds. Il

Theorem 3.8 Let T* be an optimal caterpillar with vy, - - v vertices on
the backbone of T* in the order and d(v;), 1 < i < k satisfying d(v;) =
s 2d(v) 23 and3<d(w,) S+ Sd(wk), t<s. If3<A<n-3, then
the following result holds.

(1). If d(ve—1) < A, d(vs) < A, then d(ve_3) = d(vs41) = A.
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(2). If d(ve—1) < A,d(vs) = A and s >t + 1, then d(v;—3) = A

(3). If d(ve—1) < A,d(vs) = A and s =1t + 1, then d(v,—3) = A.

(4). If d(ve—1) = A,d(vs) < A, d(ve) < A and d(vs41) < A, then
d(”a-l-?) =A

(5). If d(vi-1) = A,d(vs) < A, d(v;) = A and d(vs41) < A, then
d(vs43) = A

Lemma 3.9 Let T be a caterpillar with vy, - - - v vertices on the backbone

of T in the order and d(v;), 1 < i < k,k 2 3. Ifd(v;) = ---d(v) = 3,

d(v,) = ---d(ve) = 3, then

1-1)(2+71-12)
6

where | = n — k is the number of the pendent vertices of T

Tw(T) =

FE+DI-(E+))n+2-20), (24)

Proof. s —t =n+3 — 2l and | + k = n. Moreover,
TWT) = W(-1)+2(1-2)+3(1-3)+---+t(l-1)
+E+DI-E+ D]+ -+ @+ - (t+1))
+E+2) - +2)]+---+ (-2 -(1-2)]

(-1 + M1 1) =+ Dl(n 42— 20).

Lemma 3.10 Let gl(x) Lﬂ)_{z_ﬂ_z_-l_%z +Z Z(n+2-21) and g2(z) =

(3"”(32*'7’—12) + £ "l(n +2 - 2z) Then gl(:z:) and go(x) are strictly
zncmasmg with respect to z in z € (1, -ﬂ'—)

Proof. Note

~4z23 + (3n 4 18)z% — 38z + 24
(1) (!B) = 12 )

0i(z) = i(-12z2 +2(3n+18)z ~ 38) > 0

for z € (1,24%). Hence g;(z) is strictly increasing with respect to z in
z € (1, 24*). Moreover,

—472% + (3n +18)z% — 327 — 3n + 18
92(x) = 12 .

Then

g2(z) = —2( —122% 4 2(3n + 18)z - 32) >
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for z € (1,2%%). Hence go(x) is strictly increasing with respect to z in
ze (254

Theorem 3.11 Let T* be an optimal tree in T, 3 withn > 6.

(1).If n = 4p, then T* is a caterpillar with vy, - - vzp_, vertices on the
backbone of T in the order and d(v;) = 8 fori =1,--.,2p — 1. In other
words,

_p4p’ +18p—4)
3

with equality if and only if T is a caterpillar with vy, - -vap_1 vertices on
the backbone of T in the order and d(v;) =3 fori=1,...,2p—1.

(2). If n =4dp+ 1, then T* is a caterpillar with vy, .- - vyp vertices on
the backbone of T in the order and d(v;) =3 fori=1,---,p,p+2,---,2p.
In other words,

TW(T) < TW(T") for T € T3

p(4p? +21p—1)
3

with equality if and only if T is a caterpillar with vy, - - vy, vertices on the
backbone of T in the order and d(v;) =3 fori=1,---,p,p+2,---,2p.

(3). If n=4p+2, then T* is a caterpillar with v,,- - - vq, vertices on
the backbone of T in the order and d(v;) = 3 for i = 1,---,2p. In other
words,

TW(T) < TW(T*) = for T € Tna

_ (2p+1)(2p* +11p+3)
- 3

with equality if and only if T is a caterpillar with vy, - - - vap, vertices on the
backbone of T in the order and d(v;) =3 fori=1,.--,2p.

(4). If n =4p+3, then T* is a caterpillar with vy, - - vapy1 vertices on
the backbone of T in the order and d(v;) =3 fori=1,---,p,p+2,---,2p+1.
In other words,

TW(T) < TW(T™) for T € Tn3

(202 +11p+3)
3

TW(T) < TW(T*) = 2+ +(p+1)? for T€Tos
with equality if and only if T is a caterpillar with vy, - - vap41 vertices on the
backbone of T in the order and d(v;) =3 fori=1,---,p,p+2,--+,2p+ 1.

Proof. Let T* be an n—vertex optimal tree in 7;, 3. By Corollary 3.4, T*
is an n—caterpillar with vy, - -, v vertices on the backbone with d(v;) >
cord(vg) 2 3 and 3 < d(vs) £---d(mr), 1 £t < s < k. So, d(v;) = 3, for
i=1,.--,t,and i = s,---,k. Denote by ! the number of pendent vertices
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of T*. Then !+ k = n and | < k + 2, which implies that | < 2£2. By (24),
we have

(-1 +7-12)
6
(-1)(2+7-12
6

If n = 4p, then by Lemma 3.10,

TW(T*) +(t+2)(—(t+2)(n+2-20)

<

Ly i m+2-2)

p(—8p* + (3n+6)p+3n —4) _ p(4p® +18p—4)
3 - 3

Hence the assertion holds. If n = 4p + 1,4p + 2,4p + 3, then by the same
argument, the assertion holds. Il

TW(T*) < ga(2p+1) =
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