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ABSTRACT. The matching preclusion number of a graph is the min-
imum number of edges whose deletion results in a graph that has
neither perfect matchings nor almost-perfect matchings. For many
interconnection networks, the optimal sets are precisely those inci-
dent to a single vertex. Recently, the conditional matching preclusion
number of a graph was introduced to look for obstruction sets beyond
those incident to a single vertex. It is defined to be the minimum
number of edges whose deletion results in a graph with no isolated
vertices that has neither perfect matchings nor almost-perfect match-
ings. In this paper, we find this number and classify all optimal sets
for the star graphs, one of the most popular interconnection networks.

Keywords: Interconnection networks, perfect matching, star graphs

1. INTRODUCTION AND PRELIMINARIES

A perfect matching in a graph is a set of edges such that every vertex is
incident with exactly one edge in this set. An almost-perfect matching in
a graph is a set of edges such that every vertex except one is incident with
exactly one edge in this set, and the exceptional vertex is incident to none.
So if a graph has a perfect matching, then it has an even number of vertices;
if a graph has an almost-perfect matching, then it has an odd number of
vertices. The matching preclusion number of a graph G, denoted by mp(G),
is the minimum number of edges whose deletion leaves the resulting graph
without a perfect matching or almost-perfect matching. Any such optimal
set is called an optimal matching preclusion set. We define mp(G) = 0 if
G has neither a perfect matching nor an almost-perfect matching. This
concept of matching preclusion was introduced by Brigham et al. in [1]
and further studied in [2,4]. They introduced this concept as a measure
of robustness in the event of edge failure in interconnection networks, as
well as a theoretical connection to conditional connectivity, “changing and
unchanging of invariants” and extremal graph theory. We refer the read-
ers to [1] for details and additional references. In this paper, we will use
standard definition for common terms without explicitly defining them [8].
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Useful distributed processor architectures offer the advantage ot im-
proved connectivity and reliability. An important component of such a
distributed system is the system topology, which defines the inter-processor
communication architecture. In certain applications every vertex requires
a special partner at any given time and the matching preclusion number
measures the robustness of this requirement in the event of link failures as
indicated in [1]. Hence in these interconnection networks, it is desirable to
have the property that the only optimal matching preclusion sets are those
whose elements are incident to a single vertex.

Proposition 1.1. Let G be a graph with an even number of vertices. Then
mp(G) < §(G), where §(G) is the minimum degree of G.

If the inequality in Proposition 1.1 holds as equality, then the set of
edges incident to a single vertex is a trivial optimal matching preclusion
set. As mentioned earlier, it is desirable for an interconnection network to
have only trivial optimal matching preclusion sets. It is unlikely that in the
event of random link failure, all of them will be at the same vertex. So it
is natural to ask what are the next obstruction sets for a graph with link
failures to have a perfect matching subject to the condition that the faulty
graph has no isolated vertices. This motivates the definition given in [3]
and further studied in [7]. The conditional matching preclusion number of
a graph G, denoted by mp,(G), is the minimum number of edges whose
deletion leaves the resulting graph with no isolated vertices and without a
perfect matching or almost-perfect matching. Any such optimal set is called
an optimal conditional matching preclusion set. We define mp,(G) = 0 if
G has neither a perfect matching nor an almost-perfect matching. We
will leave mp, (G) undefined if a conditional matching preclusion set does
not exist, that is, we cannot delete edges to satisfy both conditions in the
definition.

Therefore, the question is: by deleting edges, what are the basic obstruc-
tions to a perfect matching or an almost-perfect matching in the resulting
graph if no isolated vertices are created? In Proposition 1.1, we see that
without the condition of no isolated vertices, an isolated vertex will be the
basic obstruction and so deleting all edges incident to G will produce a
trivial matching preclusion set. Now for a resulting graph with no isolated
vertices, a basic obstruction to a perfect matching will be the existence of
a path © — w — v where the degree of u and the degree of v are 1. So to
produce such an obstruction set, one can pick any path « — w — v in the
original graph and delete all the edges incident to either u or v but not the
edges (u,w) and (w,v). We define

Ve(G) = min{dg(u) + dg(v) — 2 — yo(¥,v) : v and v are ends of a 2-path}
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where dg(-) is the degree function and ye(u,v) = 1 if u and v are adjacent
and 0 otherwise. (We will suppress G and simply write d and y if it is clear
from the context.) So mirroring Proposition 1.1, we have the following easy
result.

Proposition 1.2. Let G be a graph with an even number of vertices. Sup-
pose every vertex in G has degree at least three. Then

mpy(G) < ve(G).

We note that the condition “6(G) > 3” is to ensure that the resulting
graph (after edges have been deleted) has no isolated vertices. Moreover,
this condition is not strictly necessary if we are willing to exclude certain
exceptions such as the 4-cycle. For our purposes, Proposition 1.2 suffices.

We call an optimal solution of the form induced by v, a trivial optimal
conditional matching preclusion set. As mentioned earlier, the matching
preclusion number measures the robustness of this requirement in the event
of link failures, so it is desirable to have the property that the only optimal
matching preclusion sets are the trivial ones. Similarly, it is desirable to
have the property that the only optimal conditional matching preclusion
sets are the trivial ones as well. In [3], the authors introduced this concept
and considered the conditional matching preclusion problem for a number
of basic networks including the hypercubes, and they were proven to have
this desired property. Since the star graphs are superior to the hypercubes
in many aspects, it is natural to ask whether they measure up under this
parameter. In this paper, we investigate this property for the star graphs.
We now define this popular class of interconnection networks. Let n > 3.
The star graph S,, has the n! permutations on {1,2,...,n} as the vertex
set. Two vertices [a1,az,...,a,] and [b1,bs,...,b,] are adjacent if there
exists ¢ € {2,3,...,n} such that @ = b;, by = a; and a; = b; if j €
{2,3,...,n}—{i}. In other words, they are adjacent if one can be obtained
from the other by interchanging the symbols in position 1 and position i
for some i = 2,3,...,n. Such an edge is called an i-edge. So S, is (n — 1)-
regular and bipartite with the set of even permutations and the set of odd
permutations as the partite sets. It is not difficult to see that .S, has girth
6 (that is, the smallest cycle is of length 6), and that S, is both vertex-
transitive and edge-transitive. Figure 1 gives S;. For convenience, we may
write @102 . .. a, rather than [a;,ay,...,a,] in this paper.

An important property of the star graph is its recursive structure. Such
an structure is particularly useful for an inductive argument. Assumen > 4.
Then S, can be decomposed into smaller S,,_1’s as follows: Let 2<p < n
be fixed and let H; be the subgraph of G induced by vertices with 7 in the
pth position for 1 < i < n. Then H; is isomorphic to S,-;. We say S,
is decomposed along the pth position. The edges whose end-vertices are in
different H; are the cross-edges with respect to the given decomposition.
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We note that each vertex is incident to exactly one cross-edge and there are
(n — 2)! independent! cross-edges between two different H;'s. Frequently,
for notational convenience, it is assumed that the decomposition is along
the nth position.

1234 4231
a--4324 Q2134 32419 24319 - -d
2314Q 3124 ~c b-/~@ 2341 3421
1324 4321
3412 2413
431 1439 /-4 a-\ €¥4213 9 1423
b--® 1342 8 4132 1243 4@ --c
3142 2143

FIGURE 1. S,

2. THE MAIN RESULT

Before we prove the conditional matching preclusion result for S,, we
need some preliminary results. The first is the result of the matching preclu-
sion problem for S,,.

Theorem 2.1 ( [4]). Letn > 3. Then mp(S,) = 6(S,) = n—1. Moreover,
if n > 4, then the only optimal solutions are the trivial matching preclusion
sets.

We need a number of Hamiltonian results for this paper. The first is
Theorem 2.2 which we will now state.

Theorem 2.2 ( [5]). Let n > 4. Then for every pair of vertices z and y
in different partite sets of Sy, there is a Hamiltonian path between z and y
in Sp.

Theorem 2.2 can be generalized in a number of ways. One way is to
consider both vertex faults and edge faults, that is, consider deleting both
vertices and edges. Indeed, we need one version of such stronger result

1A set of edges is independent if no two of them share an endpoint.
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position to decompose S, such that the number of faulty cross-edges is
maximized. We may assume it is along the last position. Let H; be the
subgraph of G induced by vertices with i in the last position for 1 <i < n.
So H; is isomorphic to S,_1. Let B be the set of cross-edges. Since B
induces a perfect matching, [F N B| > 1. We claim that |[E(H;) N F| <
2(n — 1) —'5 for every i. (So we can apply the induction hypothesis for
every H;.) If |F| = 2n — 5, then since we chose B to be the set of cross-
edges with the most elements of F, |[FFN B| > 2 since (2n - 5)/(n—1) > 1
for n > 5. (This is one of the reasons why n = 4 is one of the base cases.)
So |[EH)NF| < 2n~-5-2=2n—-7 = 2(n—1) — 5 for every i. If
|F| £ 2n—6, then |[E(H;)NF|<2n-6-1=2n-7=2(n—-1)-5
for every i. Then by the induction hypothesis, H; — F either has a perfect
matching or H; — F has an isolated vertex, for each i. In order for H; — F
to have an isolated vertex, we must have |E(H;)NF| > n—2, and hence at
most one of these H; — F’s has an isolated vertex. Hence we may assume
that exactly one of them has an isolated vertex. For notational convenience,
we may assume it is H; — F. It is clear that it has exactly one isolated
vertex as Hj is an (n — 2)-regular bipartite graph with girth 6 and we are
deleting at most 2n — 7 edges. Suppose v is such an isolated vertex. Let
€1,€2,...,en_2 be the edges incident to v in H; and e,_; be the cross-edge
incident to v. Since G — F has no isolated vertices, e,—; is not a faulty
edge. Now by Lemma 2.5, there exist n — 2 cycles, Cj, j =1,2,...,n— 2,
such that C; contains e; and e,—; for all j. Moreover, the n — 2 paths
C; — {ej,en—1} are pairwise edge disjoint. Since e, es,...,e,_o are faulty
edges, we have 2n —5— (n—2) = n—3 unidentified faulty edges. So at least
one of these n — 2 paths is fault-free, that is, it contains no faulty edges.
Again, for notational convenience, we assume that it is C) — {e1,en—1}.
Now C, is a 6-cycle. Then by the proof of Lemma. 2.5, it is of the form
v—U3—U3—U4 ~Us —Vg—v Where v,vg € V(H}), vo, v3 are vertices of another
H;, say Hj (for notational simplicity) and vy, vs are vertices of another H;,
say Hj3 (for notational simplicity). Indeed, (v,vs) is the edge e;. Now Hy
has at most 2n — 5 — (n — 2) — 1 = n — 4 faulty edges, so every vertex in
Hj — F has degree at least 2. Let F; be the elements of F'N E(H>) together
with all the edges in Hy that are incident to v, except the edge (v2,v3).
Then Hy — F, has no isolated vertices and |F2| < (n —4) + (n - 3) =
2n — 7 = 2(n — 1) — 5, so by the induction hypothesis, Hy — F5 has a
perfect matching M,. Moreover, (v2,v3) is an element of M,. Similarly, we
can find a perfect matching in H3 — F containing the edge (v4,vs). Since
|FNE(H;)| < 2(n~1) -5, if we let F; = (FnNE(H;))— {(v,v6)}, then
|Fi| < 2(n — 1) — 6. Again H; — F; has no isolated vertices as H; — F'
has only one isolated vertex. By the induction hypothesis, H; — F; has
a perfect matching M,. Moreover, (v,vs) is an element of M;. Now, for
i24,|FNEH;)] <2n-5-(n—2)—1=n-4. So by Theorem 2.1,
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H; — F has a perfect matching M;. Let M = M UM, U.-.-UM,. We let
M' = (M — {(v2,v3), (va,vs), (v, v6)}) U {(v, v2), (v3, va), (v5,v6)}. Clearly,
M’ is a perfect matching in G — F', and we are done. O

Lemma 2.7. mp,(S4) = 4. Moreover, every optimal conditional matching
preclusion set is trivial.

Proof. The first statement follows from Theorem 2.6. Let F be a set of
edges of size 4 that is a conditional matching preclusion set. We can de-
compose S along ¢ = 2,3,4. Since 4/3 > 1, we may assume that decom-
posing along n = 4 gives us at least 2 faulty cross-edges. If there are more
than 2 cross-edges that are faults, then there is at most one fault left. So
clearly, Sy — F' has a perfect matching just by using the edges from the four
6-cycles corresponding to the H;'s. Now one of the 6-cycles cannot have
perfect matchings, so one of them contains exactly two faulty edges. We
may assume that it is Hy. (From Figure 1, one can see that a left-right flip
or a top-bottom flip gives an automorphism.) So we have two cases.

We first assume that the two faults in Hy are incident to the same ver-
tex. This vertex can be any one of the 6 vertices in Hy. The proof of
these 6 cases are similar. So we only present the case for 1234. Hence
(1234,3214),(1234,2134) € F and therefore (1234,4231) ¢ F. We will
exhibit 3 perfect matchings in Sy — {(1234, 3214), (1234,2134)} with the
property that they share only one cross-edge, namely, (1234,4231). Since
the other two faults must be cross-edges, at least one of the 3 perfect match-
ings is fault-free. The matchings given in Figure 2, Figure 3 and Figure 4
have this property.

1234 4231

a--@ 321;1 2134 324 uslI
23140\31 OQM 3421

1324 4321

3412 213

43II :bp a- 042.13\0 1423
13}0 4132 124 :}D

3142 2143
FIGURE 2

The second case is when the two faults are not incident to the same
vertex. Moreover, deleting them will destroy all perfect matchings in Hy,
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"a 6-cycle. There are three possibilities and they are similar. So we only
present the case when the faults are (1234,2134) and (2314,1324). The
goal is to show that one of the following is true:

(1) (1234,4231),(2314,4312) € F
(2) (2134,4132),(1324,4321) € F.

(This will show that F is a trivial conditional matching preclusion set.)
Suppose not. Then one of the following must occur.

(1) (1234,4231),(2134,4132) ¢ F
(2) (1234,4231),(1324,4321) ¢ F.
(3) (2314,4312),(2134,4132) ¢ F
(4) (2314,4312),(1324,4321) ¢ F.

However, each case allows a perfect matching. It is clear that Figure 4 is a
perfect matching for (2), and Figure 5 is a perfect matching for (3). Now
assume we have (1). If neither Figure 3 nor Figure 4 is a perfect matching,
then we have identified the two faults that are cross-edges, and Figure 6
will be a perfect matching. The case for (4) is similar. This finishes the
proof. a

Theorem 2.8. Let n > 3. Then mp,(S,) = 2n — 4. Moreover, every
optimal conditional matching preclusion set is trivial.

Proof. The first statement is just Theorem 2.6. So we only have to classify
all the optimal conditional matching preclusion sets. If n = 3, then it is a
6-cycle and the result is clearly true. The case n = 4 is given by Lemma 2.7.
We proceed with induction. Assume n > 5. (The first part of the proof is
very similar to the proof of Theorem 2.6 but the analysis is tighter.) Let F
be an optimal conditional matching preclusion set. Now |F| = 2n — 4. We
may assume that decomposing S, along the last position maximizes the
number of faulty cross-edges. We define the H;’s as usual. By the choice
of the decomposition, |Fn B| > 2.

Since the proof is rather lengthy, we start with an outline of the proof.
We consider the following condition:

(1) |[E(H;)N F| £ 2(n—1) — 5 for every i.

The proof can be divided into two steps.
¢ In Step 1, we show that Condition (1) will lead to a contradiction.
e In Step 2, we consider the possible cases when Condition (1) is
violated.

Step 1. We assume Condition (1) is satisfied. Since F is a conditional
matching preclusion set, at least one H; — F does not have a perfect match-
ing. By Theorem 2.6, F' N E(H;) is not a conditional matching preclusion
set for every i. So H; — F either has a perfect matching or H; — F' has an
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1234 4231

Aism 2134 3241 24310 --d
AN

1324 4321

3412 2413

431/:439- d 4213 ’_I 1423
0\|3.42 4132 114“1

3142 2143
FIGURE 3
4231

AIszp;Izm 324I 2431I
23149 31 2341 @ 3421

@ 9
1324 4321

3412 243&
4311 :}D 14213 1423
|3.4y 4132 14 :7

3142 2143

FIGURE 4

isolated vertex, for each ¢. In order for H; — F to have an isolated vertex, we
must have |E(H;) N F| > n — 2, and hence at most one of these (H; — F)’s
has an isolated vertex. Hence we may assume that exactly one of them has
an isolated vertex. For notational convenience, we may assume it is Hy — F'.
It is clear that it has exactly one isolated vertex as H; is an (n — 2)-regular
bipartite with girth 6 and we are deleting at most 2n — 6 edges. Suppose v
is such an isolated vertex. Let ey, e2,...,en—2 be the edges incident to v in
H, and e,,_; be the cross-edge incident to v. Since G — F has no isolated
vertices, e,_1 is not a faulty edge. Now by Lemma 2.5, there exist n — 2
cycles, C;, j = 1,2,...,n — 2, such that C; contains e; and e,_, for all
j. Moreover, the n — 2 paths C; — {ej,en—1} are pairwise edge disjoint.
Since ey,ey,...,en_2 are faulty edges, we have 2n -4 - (n —2) =n -2
unidentified faulty edges. We consider two cases depending on whether any
of these paths is fault-free.
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1234 FIGURE 5 a2
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3412 2413
431 k, 0{2.13
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»

FIGURE 6

Case 1: One of these n — 2 paths is fault-free. Again, for notational
convenience, we assume that it is Cy — {ej,en—1}. Now C) is a 6-cycle.
Then by the proof of Lemma 2.5, it is of the form v — vy — v3 — vy — v5 —
vg — v where v,vg € V(H}), v, v3 are vertices of another H;, say Hy (for
notational simplicity) and vy, vs are vertices of another H;, say Hj (for
notational simplicity). Indeed, (v,vs) is the edge ;. Now Hj has at most
2n — 4 — (n — 2) — 2 = n — 4 faulty edges, so every vertex in Hy — F has
degree at least 2. Let F> be the elements of F N E(Hs) together with all
the edges in Hp that are incident to vz except the edge (vz, v3), which we
know is not a faulty edge. Then H; — F; has no isolated vertices and |F5| <
(n—4)+(n—3) = 2n—7 = 2(n—1)—5 edges, so by Theorem 2.6, H, — F; has
a perfect matching Ms. Moreover, (v2,v3) is an element of M,. Similarly,
we can find a perfect matching in H3 — F containing the edge (vq4,vs)-
Recall that |[F N E(H;)| £ 2(n~ 1) — 5. Let F; = (F N E(H,)) - {(v,v)}
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and then |Fj| < 2(n — 1) — 6. Again H; — F} has no isolated vertices as
H; — F has only one isolated vertex. So by Theorem 2.6, H; — F; has
a perfect matching M,;. Moreover, (v,vg) is an element of M;. Now, for
i24, |[FNEH;) <2n-4-(n—2)—2 = n —4, so by Theorem 2.1,
H; — F has a perfect matching M;. Let M = M UM, U-.-UM,,. We let
M = (M - {('U27 03)9 (’04, 'US)’ (’U, '06)}) U {(”1 02)) (03’ '04)) (‘05,1)6}. Cleaﬂy,
M’ is a perfect matching in G — F, which is a contradiction.

Case 2: None of these n — 2 paths is fault-free. Then each path must
have exactly one faulty edge. Suppose we consider C; — {e1,en—1}, where
Cy is v — vp — v3 — vg — v5 — vg — v as before, where v,vg € V(H}), v2,v3
are vertices of another H;, say Hj, for notational simplicity, and v4,vs are
vertices of another H;, say Hj, for notational simplicity. Indeed, (v,vg) is
the edge e;. Now H; has at most 2n — 4 — (n — 2) — 2 = n — 4 faulty
edges, so every vertex in Ho — F has degree at least 2. Let Fy be the
elements of F'N E(H?) together with all the edges in H, that are incident
to vy except the edge (vq,vs3). (That is, if (vo,vs) is a faulty edge, we
remove it as a faulty edge.) Then Hy — F, has no isolated vertices and
|Fo| £ (n—4)+(n—3) = 2n—7 = 2(n—1)—5, so by Theorem 2.6, H,— F; has
a perfect matching M,. Moreover, (v2,v3) is an element of M,. Similarly,
we can find a perfect matching in H3—F' containing the edge (v4,vs). Recall
that |FN E(H;)| € 2(n—1)—5. Let ;} = (FN E(H)) — {(v,vs)} and
|F1] < 2(n—1)—6. Again Hy—F; has no isolated vertices as H, — F has only
one isolated vertex. By Theorem 2.6, H; — F; has a perfect matching M.
Moreover, (v, vg) is an element of My. Now, fori > 4, |FNE(H;)| < 2n—4—
(n—2)—2 =n—4. By Theorem 2.1, H; - F has a perfect matching M;. Let
M=MUMU---UM,. Welet M' = (M — {(v2,v3), (vs,s), (v,v6)}) U
{(v,v2), (vs,v4), (vs,v6)}, which is a perfect matching. So the proof still
holds if none of (v,v2), (va,vs), (vs,ve) is a faulty edge. We already know
(v, v2) is not a faulty edge. Note that (v3,v4) and (vs, vg) are cross-edges. So
the argument fails if one of (vs,v4) and (vs, vs) is a fault. Therefore, if this
argument fails for every C;, we have found n — 2 faulty edges that are cross-
edges. So H; must have exactly n—2 faulty edges and they are all incident to
v. Now recall that e,_; is not a fault. For notational simplicity, we assume
the end-vertices of e,_; are v and us, and us is a vertex in H;. Now, we can
find non-fault cross-edges (v, uz), (w2, u3), (w3, %a), .. ., (Wn—-1,Un), (Wn,u1)
where vy € V(H,) and u;,w; € V(H;) for i = 2,3,...,n such that all
these vertices are distinct, v and u; belong to different partite sets, and
w; and u; belong to different partite sets for i = 2,3,...,n. (There are
(n — 2)! independent cross-edges between two H;’s and half of them are
edges between vertices in prescribed partite sets. But there are only n — 2
cross-edges that are faults. Now (n—2)!/2 > n -2 is clearly true for n > 6.
For n = 5, we have equality. But this can only occur for one pair of H;’s.
Hence we may assume that they don’t occur in consecutive H;’s as we may
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reorder H3, Hy, ..., H, in the construction.) Now, each of Hy, Ha,...,H,
has no faults and there are exactly n — 2 faults in H;, namely, the edges in
H; that are incident with v. Now, by Theorem 2.2, there is a Hamiltonian
path P; between w; and u; in H; for i = 2,3,...,n. In addition, we will
ignore the n—2 faults in H; to obtain a Hamiltonian path P, between v and
u; in H;. We note that P, contains exactly one fault. Now, P, Ps,..., P,
and (v, ug), (we,us), (wa,uq),...,(Wn-1,un), (Wn,u;) form a Hamiltonian
cycle in S,, and it contains exactly one fault. Hence S, — F contains a
fault-free perfect matching, a contradiction.

Step 2. What we proved is the following: If Condition (1) is satisfied,
then it leads to a contradiction that F is a conditional matching preclusion
set. Suppose |[FNB| > 3. Then |[E(H;)NF|<2n—4-3=2n-7=
2(n — 1) — 5 for every i, satisfying Condition (1), which will lead to a
contradiction. So |F N B| = 2. In addition, we may assume Condition (1)
is violated (otherwise it leads to a contradiction), that is, one of the H;’s
has at least 2n — 6 faulty edges. This can occur only once. For notational
simplicity, assume it is H;. Since |F'N B| = 2, H; has exactly 2n — 6 faulty
edges. So we have found all the faults. Now each H; has a perfect matching
for i =2,3,...,n. So Hy — F has no perfect matching. We consider two
cases depending on whether H; — F has isolated vertices.

Case 1: Hy — F has isolated vertices. Let v be an isolated vertex in
H,. Then the cross-edge incident to v is not a faulty edge as S, — F
has no isolated vertices. Let this cross-edge be (v,uz), and for notational
simplicity, assume us is a vertex of Hy. Now let F be the set obtained from
Fn E(H;) by deleting edges that are incident to v in Hj, that is, let F’ be
the elements of F except the n — 2 edges in H; that are incident to v. Then
|F'| =2n—6—(n—2) = n-4. Now, we can find non-fault cross-edges
(‘U, u2): (w27 u3)a (11)3,1.&4), cey (wn—lyun)’ ('wm ul) where u; € V(Hl) and
u;, w; € V(H;) for i = 2,3,...,n such that all these vertices are distinct,
v and u; belong to different partite sets, and w; and u; belong to different
partite sets for i = 2,3,...,n. (The reason why these edges exist is similar
to the reason given in Case 2 of Step 1. In fact, the argument is somewhat
simpler as |[FF N B| = 2.) Now, each of Hy, H3,...,H, has no faults. By
Theorem 2.2, there is a Hamiltonian path P, between w; and u; in H; for
i=2,3,...,n. By Theorem 2.3, there is a Hamiltonian path P, between
v and u; in Hy — F'. We note that P, contains exactly one element of F.
NOW, PI,P21 sy Pn and ('U,'U.Q), ('UJ2,’U3), (1[)3, ’ll,4), veey (wﬂ.—l’uﬂ)’ (wnyul)
form a Hamiltonian cycle in S,, and it contains exactly one fault. Hence
Sp — F contains a fault-free perfect matching, a contradiction.

Case 2: Hy — F has no isolated vertices. Then by the induction hy-
pothesis, F N E(H;) is a trivial conditional matching preclusion set in
H;. So there is a path (of length 2) 23 — zp — 23 such that Fn E(H,) =
(N, (21) U Ny, (23)) — {(1, 22), (22, 23)}. We want to prove that the two
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faults in B are exactly the cross-edge incident with 2; and the cross-edge in-
cident with z3. By way of contradiction, suppose this is not the case. Then
without loss of generality, we may assume the cross-edge incident with z; is
not a fault. Let the neighbours of 2; in H; other than 23 be 41, ¥2,...,¥n-3-
If n > 6, then at least one of the y;’s is incident to a cross-edge that is not
a fault. If n = 5, then we cannot find such a y; if both y; and i, are
incident to cross-edges that are faults. But then we have found the two
unique cross-edges that are faults. So let the neighbours of z3 in H; other
than z; be vy, vs. Since H; is bipartite and of girth 6, the y;’s are distinct
from the v;’s. So z3 and v; are incident to cross-edges that are not faults.
So relabel if necessary, and we may assume z; and y; are incident to cross-
edges that are not faults. Our objective is to find a perfect matching M; in
Hy — (FU{z1,11}). Now by Theorem 2.4, there is a Hamiltonian cycle C;
in Hy — {z1,1}. If C; uses (22, 23), then C) contains exactly one element
of F, and hence C contains a perfect matching in Hy — (FU{z1,%}). Now
suppose C; does not use (23, 23). Let C; be z3 — Py | — 20 — P12 — 23, that
is, Py;; and P2 are the two paths obtained from C; by deleting z2 and z3.
Since z; and 23 are in different partite sets, each of P, ; and P, » has an even
number of vertices. So P, 1, and P, 2 together with (22, 23) contain a perfect
matching in Hy — (FU{z1,y1}). Now let (21, u2) and (y;, wn) be the cross-
edges. We note that ua,w, belonging to the same H;’s clearly impossible
from the definition of S,,. So we may assume us and w, belong to different
H;’s, say up is in Hy and w, is in H,. Then we can use the usual argu-
ment to find non-fault cross-edges (w2, us), (ws, u4), ..., (Wn-1,%,) Where
ui, w; € V(H;) for ¢ = 2,3,...,n, the vertices are all distinct, and u;
and w; belong to different partite sets for ¢ = 2,3,...,n. Now each of
Hj,Hs,...,H, has no faults. By Theorem 2.2, there is a Hamiltonian
path P; between u; and w; in H; for ¢ = 2,3,...,n. Now, P,,..., P, and
(w2, u3), (w3, u4), ..., (Wn-1,%n), (21, 42), (y1,wn) give a path covering all
the vertices in Hp, H3,...,H, and {z1,1}. Because this path has even
length, it contains a perfect matching on the vertices of Hy, Ha,..., H,
and {z1,y1}. Together with M, this gives a perfect matching of S, - F,
a contradiction. Hence the two faults in B are exactly the cross-edge inci-
dent with z; and the cross-edge incident with z3. So F is trivial, and we
are done. a

3. CONCLUSION

In this paper, we solved the conditional matching preclusion problem
for S, and classified all the optimal conditional matching preclusion sets.
Since this problem is a refinement of the matching preclusion problem, ob-
viously we have to use the result of the matching preclusion problem for S,
(Theorem 2.1). In addition, three Hamiltonian results were used, namely,
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