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Abstract In this paper, we study the generalized Pell p-sequences modulo
M. Also, we define the generalized Pell p-sequences and the basic
generalized Pell p-sequences in groups and then we examine these
sequences in finite groups. Furthermore, we obtain the periods of the
generalized Pell p-sequences and the basic periods of the basic generalized

Pell p-sequences in the binary polyhedral groups (#,2,2), (2,72) and
(2,2,n).
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1 Introduction and Preliminaries

Many of the obtained numbers by using homogeneous linear recurrence
relations and their miscellaneous properties have been studied (see [5,6,15-
24,27,29-37,39]). The study of recurrence sequences in groups began with
the earlier work of Wall [38] where the ordinary Fibonacci sequences in
cyclic groups were investigated. The concept extended to some special
linear recwrrence sequences by several authors (see [1-3,7-
13,25,26,28,38,40]). In this paper, we extend the theory to the generalized
Pell p-sequences.

In [23], Kilig and Tasg: defined the A sequences of the generalized order-
Pell numbers as follows:

for 7>0 and 1<i<k
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5’=25.. + PIF-2+ + P/:-k’
with initial conditions
;1 ifn=1-4
= > forl-k<n<0,
! {0 otherwise,
where P isthe 7" term of the / sequence.

In [22], Kilig defined the generalized Pell ( p,/) numbers as follows:
for p(p=12..), n> p+1 and 0<i< p,
P () =2P(n-1)+ A (n- p-1), N
with initial conditions
W)= = AY()=0 nd AI(j+1)= = F)(pe1)=1.
Note that if i=0, the initial conditions are
B0)=FI@= = (pr)=.

In [22], the generalized Pell p-matrix A has been given as:

2 0 0 1
1 0 00
A=[a,,]wnxw)= 0 1 0]. )
0
0 010

Also, in [22] Kili¢ obtained that

-Ff,"’(n-c- p+1) PA(n+1) PP (n+2) AP (n+ p) ]
B(ren) B A A9(nepo)
A=
AO(1+2)  B(n-pe2) BO(n-pe3)  AO(n+1)
A (n+1)  PA(n-pe1) AO(n-pe2)  A(m) )
(€))
and
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[P+ p+1)] [ AO(n+p) ]
W) || A o)
= A . “)
AA(n+2) A? (n+1)
| Ay | | ARG

A sequence is periodic if, after a certain point, it consists only of repetitions
of a fixed subsequence. The number of elements in the repeating
subsequence is called the pericd of the sequence. For example, the sequence
abecdbcdbecd,.. is periodic after the initial element 2 and has
period 3. A sequence is simply periodic with period £ if the first & elements
in the sequence form a repeating subsequence. For example, the sequence

abcd,ab,cdab,cd,.. is simply periodic with period 4.

2 The Generalized Pell p-Sequences Modulo /m
Reducing the generalized Pell p-sequence {P‘(,”)(n)} by a modulus m, we
can get a repeating sequence, denoted by

{Pp(ﬁ-’”)(”)} ={P,(”‘”')(l), %(p.ﬂ')(z)’___, ;;(n.m)(p), e(nm)(p_,,,)’._.’ H,“"’"’(I),...}

where Ff,”"") (n= F}”) (A(mod m). Also, it has the same recurrence
relation as in (1).

Theorem 2.1. {Fj,(”'”') (n)} is a simply periodic sequence.

Proof. Let W={()q,xz,...,xp+,)]0sx,. < m—l} . Then we have |W|=m"
being finite, that is, for any />0, there exist /> j such that
P (j+ p+1)= PP ( j+ p+1),

P (jv p)= PP ( j+ p),..., PP (i+1)= BP™(j+1). It is easy to
see from (1) that F;,(ﬂ.m) (I)s ,:;’(M)(/), B,("”‘)(i—l)a ﬁ,(""")(/'—l),...,
l-';(”"") (7- j+1)= F;(""") (1). Then we get that the { ﬂ,‘”""’(ﬂ)} is a simply
periodic sequence. o
Let A7(m) denote the smallest periods of { /‘},(”"") (II)} .
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For a given matrix A =[n,/.] with 7,’s being integers, //(mod /) means

that every entries of AN are reduced modulo m, that is,
N (mod m) = (1, (mod m)). Let (A),, ={A’ (mod /(")Iiz 0} be a cyclic

group such that 4 is a prime and let I( A) ‘,,l denotes the order of (A),, . Itis

easy to see from (3) that h:(k”):KA),,,I .

Example. We have {£®(n)}={0,0,1,21,0,2,2,1,1,1,0,1,..}. So, we get

£(3)=13.

Theorem 2.2. Let ¢ be the largest positive integer and let ¢ be a prime
such that h,‘,’(u):h;(u’). Then h:(tf)=lf"-h:(u) forevery a>t.

Proof. Let 7 be a positive integer. Since AP 2y (mod U"“'), that is,
A < [ (mod ur), we get that #2(u°) divides 42(u™'). On the other
hand, writing A +(a,-,-‘”) ¥4 ) , we have
A"“”("')”=(/+(a,.,""-U"))U=§(‘;J(a,}”)-u”)is /(mod &),
which yields that Af(¢™) divides AJ(")-u. Therefore,
R (u™)=h3(e") or M5 ()= hZ()- v, and the latter holds if and only
if there is an 4, which is not divisible by 4. Since #2(u')= h2(¢™),

there is an 4, which is not divisible by , thus, n (U"")¢ m (U’*z) .
The proof is finished by inductionon /. a

4
It is easy to prove that if m=]]u’ (t=1) where ;s are distinct primes,
=1

then A7 (m)=lcm [h,’,’(u,"')] .
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3 The Generalized Pell p-Sequence and The Basic Generalized Pell p-
Sequence in Groups
Let G be a finite jgenerator group and let X be the subset of

GxG@xGx x@G such that (&,,\;,...,Xj_,)e)( if and only if G is
j

generated by X, Xyees Xpy - We call ()(,,)q,..., X,_,) a generating j-tuple for
G.
Each generating j-tuple ()(,,)q ,...,X,_l) € X maps to |Aut GI distinct
elements of X under the action of elements of Aut G . Hence there are
d,(6)=|X|/|Aut G (where | X| is the number of elements of X)
non-isomorphic generating /-fuples for G (see [9]).
The notation 4, (&) was introduced in [14].

Definition 3.1 (Knox [25]). A A-nacci sequence in a finite group is a
sequence of group elements X, X, X,..., X,,... for which, given an initial

(seed) set X, X, X,,..., X;, each element is defined by
N ={)(,)q...x,,_, for j< n<,
" X X gy X, fOr N2 K.
We also require that the initial elements of the sequence, X,,X,X,.... X,

generate the group, thus forcing the A-nacci sequence to reflect the structure
of the group. The kmnacci sequence of a group G generated by

X5 X5 X5y X;, is denoted by F(G; X, X, X)) -

In [25]), Knox had denoted the period of a #4mnacci sequence
ﬁ(G;)()’x’""X/-l) by 6(6;)6s)q""’x/-1)-

Definition 3.2 (Deveci and Karaduman [9]). For a jtuple
(A;,,&,...,X,,,)e X the basic K-nacci sequence 7k(6:)g,)q,...,xl_,) of
the basic period m is a sequence of group elements 4,4,4,...,4,,... for
which, given an initial (seed) set 4, =X,8=X,8 =x,...b,, = X,,, each
element is defined by

b=

n

b4..b,, forj<n<k,
b, b, 4B, fornzk.
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where m21 is the least integer with

b =0,6, 8 = 5,6, b, = 5,,0,.... b, = b0 »
for some feAutG. Since G is a finite j-generator group and
Dps Opyyseees Oy ;4 gemerate G, it follows that @ is uniquely determined. The
basic K-nacci sequence 7}(6 : )(,,)q,...,x,_,) is finite containing m

element.
In [9], Deveci and Karaduman had denoted the basic period of the basic £ -

nacci sequence 7-'/((6' :)(,,)q,...,x,_,) by BF,’,(G;)(,,)(,...,X,_,).

Definition 3.3 (Deveci and Karaduman [12]). A generalized order-# Pell
sequence in a finite group is a sequence of group elements X, X,..., X,,...

for which, given an initial (seed) set X,..., X, , each element is defined by

X xX%.(%.)  forjsn<k,
n —1
XXy ee( X, ) for n2 k.
It is required that the initial elements of the sequence, X,,...,X;,, generate

the group, thus, forcing the generalized order-# Pell sequence to reflect the
structure of the group. The generalized order-A Pell sequence of a group

generated by X,...,X;, is denoted by 0,,(6;)(,,&,...,X/_,).

In [12], Deveci and Karaduman had denoted the period of the generalized
order-# Pell sequence 0,,(6;)(,,)(,...,){/_,) by Pera,,(G;)(,,)q,...,X,_,).
Definition 3.4. A generalized Pell p-sequence ( £=2) in a finite group is a
sequence of group elements X, X,..., X,,... for which, given an initial (seed)
set X,... X.,, (P+12 j) each element is defined by

% (%)’ for j<n< p+1,
X =
" hp () fornz pel.
It is require that the initial elements of the sequence, X,,...,X,,, generate

the group, thus, forcing the generalized Pell p-sequence to reflect the
structure of the group. The generalized Pell p-sequence of a group

generated by X,,..., X, is denoted by 0"’)(6; Xops X geres X,-_,) .
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It is important note that the classic generalized Pell p-sequence ( pz2)ina
cyclic group C={(x) is as following

X=6X=6..X%,=6X=X
and

Xoup=Xps (Xpa) for n21.
Theorem 3.1. A generalized Pell p-sequence in a finite group is simply
periodic.
Proof. Let /7 be the order of G. Since there /7”*' distinct ( p+1)-tuple of
elements of G, at least one of the (p+1)-tuples appear twice in a
generalized Pell p-sequence of the group &G. Thus, the subsequence
following this ( p+ 1) -tuple repeats. Because of the repeating, the

generalized Pell p-sequence is periodic.
Since the generalized Pell p-sequence is periodic, there exist natural

numbers & and v, with #> v, such that
KXot = Xars Koz = Xuzooos Xy put = X s -
By the defining relation of the generalized Pell p-sequence, we know that
-2 -2
X =(Xu+p+1)'(’n+p) and X, =(Xv+p+|)'(xv+p) .

Therefore, X, = X,, and hence,

Xv = Xy = X5 Xomiy = Koyt = XKseos Xy p = Xevep = Xp>
which implies that the generalized Pell p-sequence is simply periodic.

o
We denote the period of the generalized Pell p-sequence

@ (G, %, %52 X,,) by Por@?(G;x,X,....x,,).

To examine the concept more fully we study the action of automorphism
group AutG of G on the generalized Pell p-sequence

d”’(G;)(,,){,...,X,_,), ()(,,)q,...,x,,,)e X. Now AutG consists of all
isomorphisms €:G— G and if e Aut G and ()q,,x,...,xl_,)eX then

(%6, %8.,...X,.6) € X .
Forasubset Ac G and @ Aut G the image of A under @ is
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Ap={ad:ac A}.
Lemma 3.1. Let (A{,,)q, ,X,_,)e X and let OeAutG. Then
(0“”(6‘;){,, Xyuors x,_,))a = 09(G; %0, %8....x,.,6).
Proof: Let &7 (G;)(,,,\;,...,X,_, ) ={a}. The result is obvious since
{a}o={ap} and
a,,0= (a,,, (2 pu )2)0 =4,,94,,,04,,9.
Suppose @ elements of Aut G map a” (G;,\{,,)q,...,x,_,) into itself. Then
there are |Aut G/w  distinct generalized Pell psequences
@2(G; %6, %6,...,X,.,6) for G Aut G. o
Definition 3.5. For a j -tuple ()(,,&,...,X,-_,) € X the basic generalized Pell
p-sequence —O(p)(G;x,,X, ,...,X,_,) , (P22, p+12 /) of the basic period m
is a sequence of group elements 4,,4,, 4,,...,4,,... for which, given an initial
(seed) set a4, =X, 4 =X, & =X,...d;, =X, , each element is defined by
, ={a‘,(a,,_,)2 for j< n< p+1,

a,,.(a,) fornzp+l
where m=>1 is the least integer with
a4=ap, 4=4a,0 &=3a,,0,.,3,=4,,0,
for some fOcAutG. Since G is a finite J-generator group and
3,y Ay @y, ., generate G, it follows that @ is uniquely determined.

The basic generalized Pell p-sequence Z?(p) G Xx,X,..X., ) is finite
00X j1

containing /M element.
We denote the basic period of the basic generalized Pell p-sequence

T(G; %, Xy X)) by BED(God, XX, ) -
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From the definitions, it is clear that the periods of the sequences
d”(G;)(,,&,...,XI_,) and Z?m( G;%,)(,...,X,_,) in a finite group depend
on the chosen generating set and the order of the generating elements.
Theorem3.2. Let G be a finite group and ()(,,,q,...,x,-_,)e X. If
Per@?(G: %, %,...X,,)=n and BG?(G;x,X,... X, )=m, then m
divides 7 and there are //m elements of AutG@ which map
o (G;)(,,x yeens X,_,) into itself.

Proof: We have 7=m-a where a is order of automorphism e Aut G
since

a( G;)(,,X.,...,x,_,);l.‘?(") (G5 %5 %5 X1, )(6) 0 @(G; %6, %8, X,,0)(6)
L 06, %6, %6,....x,,8*)(6) ...
and BO“"(G;)(,,,\;,...,X/_,)=BO(’)(G;)(,G,,\;B,...,X/_,H). So we get that
1,6,8,...,6°" map A2(G; %, % s 1) into
itself. o
4. Applications

In this section, we obtain the periods of the generalized Pell p-sequences
and the basic periods of the basic generalized Pell p-sequences in the binary

polyhedral groups (1,2,2), (2,n,2) and (2,2,7) as the applications of the
above results.
Definition 4.1. The binary polyhedral group (/,m n), for /,mn>1, is

defined by the presentation
(xnz:¥=y"=2=xz).
When /=2, we obtain for (2,m, ) the presentation
(nz:y"=2=(12)).
The binary polyhedral group (/,m,n) is finite if and only if the number

k= /m/G L 1) = mn+ ni+ Im— Imn 18 positive. Its order is 4/mn/ k.
m n
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For more information on these groups see [4, pp.68-71].

We consider binary polyhedral groups both as 2-generator and as 3-
generator groups.

Theorem4.1. Let G, be the group defined by the presentation

(Kp2:0 =y = 2 = x72).
i. Perd”(&‘,,;x,y,z):{

3n, niseven,
6n, nisodd

3n, niseven,
and 30(2)(60;)@%2)={3n nis odd

. 4n, niseven,

ii. Per@®)(6,;xy,2)= Bd”(&',,;x,y,z)={8m s odd

iii. Let p=>4.

1.1f there isno me[3, p—1] such that m is an odd factor of 7 then,
Per@” (G”; XV, Z) =BG (Gn; x,y,z) = {Z,Zf(pp':-ll)),’ l:’ 11582\::,

2. Let 1 be the biggest odd factor of /7 in [3, p-1], then two cases occur:
. If 1-37¢[3, p-1] for je ,then

I(n(p+l)), n iseven,

f(2n(p+1)), n isodd.

ii’. If s is the biggest odd number which is in [3, p~1] and s=1¢-3/

for je ,then

Per@? (G, x, y,2) = BO"”(G,,;X,y,z)={

s( n(p+ l)), nis even,

s(2n(p+1)), nisodd.

Proof. We first note that |{ =27, [){=4and |{=4.

i. The sequence 0(2)(6',,;)(, %) is
XNZX, 00, 2, 0, 2, X, 08, 2, % 8, 2,....

Per@? (G,;x y,2) = Bd"’(G‘n;)gy,z)={
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This sequence can be said to form layers of length six. Using the above, the
sequence G2 (G, % ,2) becomes:
N=XX=YX=2%=X" X =y X=2,
X=XX%=p %=Z%=X" K, =pf, X, =2,..,
X = X Xy = I Xy = 2Ky = X, Ky = 0 X = 2
So, we need the smallest /e  such that 4/=2nv for ve
If n is even, i=-;-7. Thus, Per@®(G;xy2)=BG?(G,;xy,2)=3n
since X=X, y9=y and 20 =2 where @ is inner automorphism induced
by conjugation by x".
If »n is odd, n=i. Thus, Per@?(G;xy2)=6n and
30(2)(6,,;,\',}/,2)=3n since X9=X"', 9=y and 290=27" where @ isa
outer automorphism of order 2.
ii. The sequence 0(3)(6',,;)(, %2) is
XWX X 8, 2, %0, e,z X, X, °, 2, % 0, X,z X, ...

This sequence can be said to form layers of length eight. Using the above,
the sequence G (G,; % ¥,2) becomes:

X=XX=Y =2 X=X" X=X, X=X =2, %=X

X=X, %=y Xo=Z X, = X" 0, =X, X, = 000, X, =2, Xy = X
X=X Xy = PRI Xy = 2 Ky = X,

Xina = X" X =J/X8h'6l‘6, X =23 Xt = Xpuan.

So, we need the smallest /e  such that 4/=2av for ve
If n is even, i=g. Thus, Pera(”(G,,;)gy,z) =4n.
If 7 isodd, n=/.Thus, Per@ (G, X y,2)=8n.

Also, PerO(S)( Gix),2)= 30(3)(6',,;)4 %,2) since X@=x, y9=y and
=2 where @ is the identity
automorphism.
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iii. If p=4, we have the sequence
X=XX=hh=2X= X 0 =R, K =X Xy = A (A;, =X 4<as p)
Kapayy = X, K poar = I, Xopuayr = 2 Ky = X5 Ko pupes = X7,
Kapaayos = X447 e =yt ()q,m,,m =X MM scag p I),
Kapaapiepez = e, Xapaappopes = z, Xepayopus = % Xapojiepus = x4,
Xaperpopss = X oo Ko porzgn = X
where A,,...,4,,,€ .Soweneedan / suchthat 4/=2/V for ve
1.If thereisno me[3, p—1] such that m is an odd factor of 7, then there
are two sub-cases:

Xapsae pe

First case: 1f n is even, then i=g. So, we get

Per@P (G x y,2)= M p+1).

Second case: 1If n is odd, then /=n. So, we get
Per@P (G x y,2) =2/ p+1).

2. If t is the biggest odd factor of /7 in [3, p—1], then two cases occur.

i’ If £-3/ ¢[3, p-1] for je , then there are two sub-cases:

s . . n
First case. If n is even, then I=t-—2-. So, we get

Per@?(G,; x, y,2)=(n( p+1)).

Second case: If n is odd, then /=1?-n. So, we get

Per@?(G,; X, y,2)=(2n( p+1)).

ii*. If § is the biggest odd number which is in [3, p-1] and s=1-3/ for
fe ,then there are two sub-cases:

First case: If n is even, then J/=s- So, we get

Per@? (G, x y,2) = s(n( p+1)).
Second case: If n is odd, then Jj=s-n. So, we get
Per@P(G,; x, y,2) = s(2n( p+1)).

NS
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Also, Per@?(G,;xy,2)=BA"(G;xy,2) for p24 since MW=x,
9=y and 28= 2 where @ is the identity automorphism. o
Theorem4.2. If the group G, is defined by the presentation

(y,z:M’:z2 =(yz)2),then
R v

iii. Let p=>3.

1. If there is no Mme[3, p] suchthat m is an odd factor of 7 then,
n(p+1), n iseven,

2n(p+1), A isodd.

2. Let ! be the biggest odd factor of 7 in [3, p], then two cases occur:

i If 1-3/¢[3, p] for je ,then

Per@? (6, y,2) ={

H(n(p+1)), niseven,

H(2n(p+1)), n isodd.

ii*. If s is the biggest odd number which is in [3, p] and s=1-3/ for
fe ,then

Perd’”(G,,;%z):{

s(n( p+l)), nis even,
s(2n(p+1)), nisodd.

Per@? (G, y,2)
, =2 )
Also, Bd”’(G,,;y,z)= 2 mod 4 for p>2.
Per@” (G ¥2), otherwise
If the group &, is defined by the presentation (X, Wz X=y'=2= xyz) R
then
Per0® (G, x, ¥, z)={ n(p+1), n iseven, n(p+1), 7 iseven,

Per@” (G, y,2) ={

U] . =
20(p+1), nisodd ™ Bd (6""”’2)’{11(;:“), n is odd.

Proof. We proceed similarly to the proof of the Theorem 4.1. Firstly, let us
consider the 2-generator case. We first note that |){=2n, |=4 and
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|y =4. The sequences @?(G,;5,2) and &7 (G,;,2)(p>2) are inthe
following forms, respectively:
X=hX=2X%=Y" =Y. %=2/, %= %=V,
X1 = M Xt = 2P, Xr = V™ Xy = 7, Kot = BP0 K =

and
K=Y R =2 0=y K= P Xy = Y (4= 35 @5 pe),

X=X = Y K= Pl = Y P (x,,M =" 1< B < p-2),...,
Xapay =¥ ., Xapoayn =" Y Kapaypa = V™ X puagps = ¥ ",
Kapeapos = V" s Xapipop = ¥ i) ()q,,.,,,., =y M) ycag pe 1),
Kapeapoper = D, o s = I Kapaiyoms = V% Kapaigops = Y
Xapapuapa = ¥+ ) (&,M,,.M, A R PY P 3)

where A,,...,4,,,, /€ . Then we obtain

Per@?(G,; y,

2

80(”)(6,,;}/,2)= 2 for n=2mod4 since 9=y and

29=_7" where @ is a outer automorphism of order 2,
Perd"’(b‘,,;y,z)= BG(”)(G,,;y,z) for n=2mod4 since 9=y and

29 = Z where @ is the identity automorphism.
Secondly, let us consider the 3-generator case. We first note that |q=4,

|4=2n and |4=4. The sequences @?(G;xx2) and
an (G,; %, ¥,2) (p>2) are in the following forms, respectively:
X=XX=)%=2.,
Xia =X Xy = V", Xy = X,
X=X X = Vs Kosa = W/

and
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X=X K= N =2 0=X, X=X, X =X, Xy = P X = P, Xy = Ky Xy = Xy
Xapsa)ion) = X, Xapoajp = . Xapsyipn = ', Xapap-prz = %oves Ko prggp = %

Xapeay = % Xapyn = Vs Xopayi = % Koprays = X s N2 prajep = L
where /e . Then we obtain

Pera(”)(G,,;X,y,z)= 30(”)(6',,;,\’,}’,2) if n isevensince XW=x, W=y
and 29=Z where @ is the identity authomorphism,

P . Z
Bd”’(G,,;X,y,Z)= Perd (26"’)(’}”) if n is odd since ¥@=x"',

9=y and 29 =z where @ is a outer automorphism of order 2. o
Theorem 4.3. If the group G, is defined by the presentation

(nz:9=2=(s2)), then
n(p+1), n iseven,
Per@”(G,;y,2)=
erd (6:52) {2n(p+l), n is odd
and
Perd? (G, ,2)
BA"(G,;y,2)= 2
Per@?(G,;y,2), otherwise.
If the group G, is defined by the presentation ()g Wz ¥=py=2= xyz) ,

then

, N=2mod4,

n( p+1), niseven,
Pera(ﬂ)(G,,;»\',y,Z)={2n(p+l)), n is odd

and
Per@? (G, x, ,2)
BAP (G, x 1, 2) = 2
Per@? (G, %, 1,2), otherwise.
Proof. Firstly, let us consider the 2-generator case. We first note that

I4=4,|4d=2nand |y7=4.

, Nisoddand p=2,
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Per@?(G,; y,
2

B0 (6, 0.9 = ) for n=2mod4 since yB=y" and

20 =2"" where @ is a outer automorphism of order 2,

Pera“’)(G,,;y,z) = BO“”(G,,;y,Z) for n=2mod4 since y9=y and
20 = Z where @ is identy automorphism.
Secondly, let us consider the 3-generator case. We first note that |X=4,
|Y=4 and |4=2n.
Per@? (G,; x, ¥, 2)

2

and 0= 2" where 8 is a outer automorphism of order 2,

Ba” (G x1,2)= Per@” (G;x)2) in other cases since Xg=x,
Y@=y and 20= 2z where @ is the identity automorphism.

The proof is similar to the proof of Theorem 4.1 and is omitted.
[m]

30(2)(6”;,\;}/,2)= if n is odd since W =x, y9=y'
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