A Result on Linear Arboricity of Planar Graphs *

Zhaoyang Luo^{1,2} †

Department of Mathematics, Changji University, Changji, 831100, China
School of Mathematics, Shandong University, Jinan, 250100, China

Abstract

The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. In this paper, it is proved that if G is a planar graph with maximum degree $\Delta \geq 7$ and every 7-cycle of G contains at most two chords, then $la(G) = \lceil \frac{\Delta(G)}{2} \rceil$.

Key words: Planar graph; Linear arboricity; Cycle

1 Introduction

Throughout this paper, we only consider finite, simple and undirected graphs. For a real number x, $\lceil x \rceil$ is the least integer not less than x and $\lfloor x \rfloor$ is the largest integer not larger than x. Let G be a graph with vertex set V(G) and edge set E(G), we use $\Delta(G)$ and $\delta(G)$ to denote the maximum (vertex) degree and the minimum (vertex) degree, respectively. All undefined terminologies and notations follow that of Bondy and Murty [2].

A linear forest of a graph G in which each component is a path. A map φ from E(G) to $\{1,2,\cdots,t\}$ is called a t-linear coloring if $(V(G),\varphi^{-1}(\alpha))$ is a linear forest for $1 \leq \alpha \leq t$. The linear arboricity la(G) of a graph G defined by Harary [9] is the minimum number t such that G has a t-linear coloring. Akiyama, Exoo and Harary [1] conjectured that $la(G) = \lceil \frac{\Delta(G)+1}{2} \rceil$ for every regular graph G. It is obvious that $la(G) \geq \lceil \frac{\Delta(G)}{2} \rceil$ for any graph G and

^{*}Supported by the National Natural Science Foundation (11271006) of China and the Scientific Research Programs (XJEDU2014I046,XJEDU2014S067) of the Higher Education Institution of Xinjiang Uygur Autonomous Region.

[†] E-mail: sdmlzy@163.com.

 $la(G) \ge \lceil \frac{\Delta(G)+1}{2} \rceil$ for any regular graph G. So the conjecture is equivalent to the following Linear Arboricity Conjecture (for short LAC):

Conjecture 1.1. (LAC) For any simple graph G,

$$\lceil \frac{\Delta(G)}{2} \rceil \le la(G) \le \lceil \frac{\Delta(G) + 1}{2} \rceil. \tag{1}$$

Although Péroche [10] showed that LAC is an NP-hard problem. In fact, the linear arboricity has been determined for many classes of graphs and some corresponding results can be found in [1, 6, 7, 8, 15, 17]. Many results are also obtained for planar graphs, see [3, 4, 11, 13, 16]. Up to now, LAC has already been proved to be true for all planar graphs, see [14, 18]. But determining the planar graphs with linear arboricity $\lceil \frac{\Delta(G)}{2} \rceil$ (or $\lceil \frac{\Delta(G)+1}{2} \rceil$) are still an open problem.

In the following, we only consider the planar graph G with maximum degree $\Delta \geq 7$. Wu [16] et al. proved that if G does not contain 4-, 5-cycles, then $la(G) = \lceil \frac{\Delta(G)}{2} \rceil$. Chen [4] and Wang [13] et al. improved this result and got that if G does not contain chordal i-cycles for some $i \in \{4, 5, 6, 7\}$, then $la(G) = \lceil \frac{\Delta(G)}{2} \rceil$. Here, we generalize this result and get the following result.

Theorem 1. Let G be a planar graph with maximum degree $\Delta \geq 7$. If every 7-cycle of G contains at most two chords, then $la(G) = \lceil \frac{\Delta(G)}{2} \rceil$.

We first introduce some more notations and definitions. Let G be a planar graph with face set F(G). For a vertex v of G, the degree d(v) is the number of edges incident with v, and for a face f of G, the degree d(f) is the length of the boundary walk of f. Let $uv \in E(G)$ and d(u) = k, then we call vertex u is a k-neighbor of v. A k-vertex, k^- -vertex or a k^+ -vertex is a vertex of degree k, at most k or at leat k, respectively. Similarly, we can define a k-face, k^- -face and a k^+ -face. A k-face with consecutive vertices v_1, v_2, \cdots, v_k along its boundary in some direction (such as the clockwise order) is often said to be a $(d(v_1), d(v_2), \cdots, d(v_k))$ -face. Two cycles are said to be adjacent if they share at least one edge and two cycles are said to be intersecting if they share at least one vertex.

For a t-linear coloring φ and a vertex v of G, we denote by $C_{\varphi}^{i}(v)$ the set of colors appears i times at v, where i = 0, 1, 2. Then

$$|C^0_{\omega}(v)| + |C^1_{\omega}(v)| + |C^2_{\omega}(v)| = t.$$

Let x be a vertex of G, denote $\varphi(x) = (\varphi(xy_1), \varphi(xy_1), \cdots, \varphi(xy_k))$, where vertices y_1, y_2, \dots, y_k are distinct neighbors of x. For any two vertices u and v, let $C_{\varphi}(u,v)=C_{\varphi}^2(u)\cup C_{\varphi}^2(v)\cup (C_{\varphi}^1(u)\cap C_{\varphi}^1(v)),$ i.e., $C_{\varphi}(u,v)$ is the set of colors that appear two times at u and v. A monochromatic path is a path of whose edges receive the same color. For two different edges e_1 and e_2 of G, they are said to be in the same color component, denoted by $e_1 \leftrightarrow e_2$ if there is a monochromatic path of G connecting them. Furthermore, if two ends of e_i are known, i.e., $e_i = x_i y_i (i = 1, 2)$, then $x_1 y_1 \leftrightarrow x_2 y_2$ denotes more accurately that there is a monochromatic path from x_1 to y_2 passing through the edges x_1y_1 and x_2y_2 in G (i.e., y_1 and x_2 are internal vertices in the path). Otherwise, we use $x_1y_1 \leftrightarrow x_2y_2$ (or $e_1 \leftrightarrow e_2$) to denote that such monochromatic path passing through them does not exist. Note that $x_1y_1 \leftrightarrow x_2y_2$ and $x_1y_1 \leftrightarrow y_2x_2$ are different. $(u,i) \leftrightarrow (v,i)$ denote that uand v have a monochromatic path of color i between them. The number of d-vertices adjacent to a vertex v is denoted by $n_d(v)$ and the number of d-faces incident with a vertex v is denoted by $f_d(v)$.

2 Proof of Theorem 1

In [5], it is proved that $la(G) = \lceil \frac{\Delta(G)}{2} \rceil$ holds for an arbitrary planar graph G with maximum degree $\Delta \geq 9$. It suffices to prove the following result.

(*) Let G be a planar graph such that $\Delta(G) \leq 8$ and every 7-cycle of G contains at most two chords. Then G has a 4-linear coloring.

Let G = (V, E, F) be a minimal counterexample to (*) in terms of the number of edges. We first show some known properties.

Lemma 1. [13] let $uv \in E(G)$ and φ be a 4-linear coloring of G - uv. Then the following results hold.

- $(1) |C_{\varphi}(u,v)| = 4;$
- (2) If there is a color i such that $i \in C^1_{\varphi}(u) \cap C^1_{\varphi}(v)$, then $(u, i) \leftrightarrow (v, i)$;
- (3) $d_G(u) + d_G(v) \ge 10$;
- (4) If uv is incident with a 3-cycle uvwu and d(u) + d(v) = 10, then d(w) = 8;
- (5) If d(u) = 7, d(v) = 3 and uv is incident with a 3-cycle, then all neighbors of u except v are 4^+ -vertices.

By Lemma 1, we obtain that

- (a) $\delta(G) \geq 2$.
- (b) Any two 4⁻-vertices of G are not adjacent.
- (c) Any 3-face is incident with three 5⁺-vertices, or at least two 6⁺-vertices.
 - (d) Any 7--vertex has no neighbors of degree 2.

Note that in all figures of the paper, vertices marked \bullet have no edges of G incident with them other than those shown and pair of vertices marked \circ can be connected to each other.

Lemma 2. [4, 11, 13] G has no configurations depicted in Fig. 1.

Proof. The proofs of (1), (3) and (6) can be found in [13], the proof of (2) can be found in [11] and the proofs of (4), (5) and (7) can be found in [4], respectively.

Fig. 1. Reducible configurations of Lemma 2.

Fig. 2. Special configurations of G depicted in Lemma 3(a).

It is easy to obtain the following lemma, so we omit its proof here.

Lemma 3. If a planar graph G with 7-cycles contains at most two chords and $\delta(G) \geq 2$, then we have

- (a) G has no configurations depicted in Fig. 2, where all the vertices showing in Fig. 2 are different.
 - (b) Every 6^+ -vertex v is incident with at most $\lfloor \frac{4d(v)}{5} \rfloor$ 3-faces.

By the Euler's formula |V| - |E| + |F| = 2, we have

$$\sum_{v \in V} (2d(v) - 6) + \sum_{f \in F} (d(f) - 6) = -12 < 0.$$
 (2)

We first define ch to be the initial charge. Let ch(v) = 2d(v) - 6 for each $v \in V(G)$ and ch(f) = d(f) - 6 for each $f \in F(G)$. Then we will reassign a new charge denoted by ch'(x) to each $x \in V(G) \cup F(G)$ by means of the discharging rules. Since our rules only move charges around, and do not affect the sum, we have

$$\sum_{x \in V(G) \cup F(G)} ch'(x) = \sum_{x \in V(G) \cup F(G)} ch(x) = -12.$$
 (3)

Now, let us apply the following rules to redistribute the weight that leads a new charge ch'(x).

R1 Each 8-vertex sends 1 to each of its adjacent 2-vertices.

R2 Let f be a 3-face uvw such that $d(u) \leq d(v) \leq d(w)$.

R2.1 If $d(u) \leq 3$, then f receives $\frac{3}{2}$ from each of v and w.

R2.2 If d(u) = 4, then f receives $\frac{1}{2}$ from u and $\frac{5}{4}$ from each of its incident 6^+ -vertices.

R2.3 Suppose d(u)=d(v)=5. If some of u and v is incident with five 3-faces, say the vertex is u, then f receives $\frac{4}{5}$ from u, $\frac{6}{5}$ from v, and 1 from w. Otherwise, f receives $\frac{7}{8}$ from u, $\frac{7}{8}$ from v, and $\frac{5}{4}$ from w.

R2.4 If d(u) = 5, $d(v) \ge 6$ and $d(w) \ge 6$, then f receives $\frac{1}{2}$ from u, $\frac{5}{4}$ from v and $\frac{5}{4}$ from w.

R2.5 If $d(u) \ge 6$, then f receives 1 from each of its incident vertices. **R3** Let f be a 4-face.

R3.1 If f is incident with two 3⁻-vertices, then each 7⁺-vertex incident with f sends 1 to f.

R3.2 If f is incident with a 3⁻-vertex and a 4-vertex (or 5-vertex), then each incident 7⁺-vertex of f sends $\frac{3}{4}$, and the 4-vertex (or 5-vertex) sends $\frac{1}{2}$ to f.

R3.3 If f is incident with a 3⁻-vertex and three 6⁺-vertices, then each incident 6⁺-vertex of f sends $\frac{2}{3}$ to f.

R3.4 If f is incident with four 4^+ -vertices, then f receives $\frac{1}{2}$ from each of its incident 4^+ -vertices.

R4 Let f be a 5-face. If f is incident with two 3⁻-vertices, then f receives $\frac{1}{3}$ from each of its incident 7⁺-vertices. Otherwise, f receives $\frac{1}{4}$ from each of its incident 4⁺-vertices.

In the following, we will show that $ch'(x) \ge 0$ for each $x \in V(G) \cup F(G)$, a contradiction to (3), this completes the proof.

Let $f \in F(G)$. Clearly, $ch'(f) = ch(f) = d(f) - 6 \ge 0$ if $d(f) \ge 6$. If d(f) = 5, then f is incident with at most two 3⁻-vertices by Lemma 1 and then we can obtain that $ch'(f) \ge ch(f) + \min\{3 \times \frac{1}{3}, 4 \times \frac{1}{4}, 5 \times \frac{1}{4}\} = 0$ by R4. If d(f) = 4, the $ch'(f) \ge ch(f) + \min\{2 \times 1, 2 \times \frac{3}{4} + \frac{1}{2}, 3 \times \frac{2}{3}, 4 \times \frac{1}{2}\} = 0$ by R3. Suppose that d(f) = 3. Then f is not a (3, 7, 7)-face, (4, 6, 6)-face, (4, 6, 7)-face, (5, 5, 5)-face, (5, 5, 6)-face and (5, 5, 7)-face by Lemma 1. Thus $ch'(f) \ge ch(f) + \min\{2 \times \frac{3}{2}, 2 \times \frac{5}{4} + \frac{1}{2}, \frac{4}{5} + \frac{6}{5} + 1, 2 \times \frac{7}{8} + \frac{5}{4}, 3 \times 1\} = 0$ by R2.

Let $v \in V(G)$. If d(v) = 2, then $ch'(v) \ge ch(v) + 2 \times 1 = 0$ by R1. If d(v) = 3, then ch'(v) = ch(v) = 0. If d(v) = 4, then $ch'(v) \ge ch(v) - 4 \times \frac{1}{2} = 0$ by R2, R3 and R4. Suppose that d(v) = 5. If $f_3(v) = 5$, then $ch'(v) \ge ch(v) - 5 \times \frac{4}{5} = 0$ by R2. Otherwise, $ch'(v) \ge ch(v) - (f_3(v) \times \frac{7}{8} + (5-f_3(v)) \times \frac{1}{2}) = \frac{12-3f_3(v)}{8} \ge 0$ by R2 and R3. Suppose that d(v) = 6. Then each neighbor of v is a 4^+ -vertex and $f_3(v) \le 4$ by Lemma 1 and Lemma 3(b). If $f_3(v) = 4$, then $ch'(v) \ge ch(v) - \max\{4 \times \frac{5}{4} + 2 \times \frac{1}{2}, 4 \times \frac{5}{4} + \frac{1}{2} + \frac{1}{4}\} = 0$ by R2, R3 and R4. Otherwise, $ch'(v) \ge ch(v) - (f_3(v) \times \frac{5}{4} + (6-f_3(v)) \times \frac{2}{3}) = \frac{24-7f_3(v)}{12} > 0$ by R2 and R3.

Suppose that d(v)=7. Then each neighbor of v is a 3^+ -vertex and $f_3(v) \leq 5$ by Lemma 1 and Lemma 3(b). We use $f_3^*(v)$ to denote the number of 3-faces incident with v, each of which is incident with a 3-vertex. Then $f_3^*(v) \leq 2$ by Lemma 1. Suppose that $f_3^*(v)=0$, that is to say, each 3-face incident with v is only incident with 4^+ -vertices. If $f_3(v)=5$, Then $ch'(v) \geq ch(v) - 5 \times \frac{5}{4} - 2 \times \frac{1}{2} = \frac{3}{4} > 0$ by R2 and R3. Otherwise, $ch'(v) \geq ch(v) - (f_3(v) \times \frac{5}{4} + (7 - f_3(v)) \times 1) = \frac{4 - f_3(v)}{4} \geq 0$ by R2 and R3. Suppose that $f_3^*(v)=1$. Then v is adjacent to only one 3-vertex, and it follows that $ch'(v) \geq ch(v) - (\frac{3}{2} + (f_3(v) - 1) \times \frac{5}{4} + (7 - f_3(v)) \times \frac{3}{4}) = \frac{5 - f_3(v)}{2} \geq 0$ by R2 and R3. Suppose that $f_3^*(v)=2$. If $f_3(v) \leq 4$, then $ch'(v) \geq ch(v) - (2 \times \frac{3}{2} + (f_3(v) - 2) \times \frac{5}{4} + (7 - f_3(v)) \times \frac{3}{4}) = \frac{9 - 2f_3(v)}{4} > 0$ by R2 and R3. Otherwise, v is incident with a face f such that $d(f) \geq 4$ and f is incident with at least four 4^+ -vertices, or d(f)=3 and all vertices incident with f are 6^+ -vertices. So $ch'(v) \geq ch(v) - (2 \times \frac{3}{2} + \max\{3 \times \frac{5}{4} + \frac{3}{4} + \frac{1}{2}, 2 \times \frac{5}{4} + 1 + 2 \times \frac{3}{4}\}) = 0$ by R2 and R3.

Let v be a 8-vertex. Then v is adjacent to at most two 2-vertices by Lemma 1 and $f_3(v) \le 6$ by Lemma 3(b).

Case 1. v is not adjacent to any 2-vertex.

Suppose $f_3(v) \leq 4$. Then $ch'(v) \geq ch(v) - (f_3(v) \times \frac{3}{2} + (8 - f_3(v)) \times 1) = \frac{4 - f_3(v)}{2} \geq 0$ by R2 and R3. Suppose $f_3(v) = 5$. If $f_4(v) = 3$, then $ch'(v) \geq ch(v) - max\{5 \times \frac{3}{2} + 1 + \frac{2}{3} + \frac{1}{2}, 5 \times \frac{3}{2} + 3 \times \frac{2}{3}\} = \frac{1}{3} > 0$ by R2 and R3. If $f_4(v) \leq 2$, then $ch'(v) \geq ch(v) - (5 \times \frac{3}{2} + f_4(v) \times 1 + (8 - 5 - f_4(v)) \times \frac{1}{3}) = \frac{9 - 4f_4(v)}{6} > 0$ by R2, R3 and R4. Suppose $f_3(v) = 6$, then $f_5(v) \leq 2$ and it follows that $ch'(v) \geq ch(v) - (6 \times \frac{3}{2} + 2 \times \frac{1}{3}) = \frac{1}{3} > 0$ by R2 and R4.

Case 2. v is adjacent to exactly one 2-vertex, say u.

Subcase 2.1. uv is incident with a 3-face.

Suppose that each neighbor of v except u and the 8-neighbor is a 4^+ -vertex, i.e., $n_3(v) = 0$. If $f_3(v) = 6$, then $ch'(v) \ge ch(v) - 1 - (\frac{3}{2} + 5 \times \frac{5}{4} + \frac{1}{3}) = \frac{11}{12} > 0$ by R2 and R4. Otherwise, $ch'(v) \ge ch(v) - 1 - (\frac{3}{2} + (f_3(v) - 1) \times \frac{5}{4} + (8 - f_3(v)) \times \frac{3}{4}) = \frac{11 - 2f_3(v)}{4} > 0$ by R2 and R3.

Let $n_3(v) \ge 1$. Suppose $f_3(v) = 6$. Then v is incident with two 5^+ -faces and is adjacent to at most three 3-vertices, that is, $n_3(v) \le 3$ by Lemma 2. If $n_3(v) = 3$, then v is incident with a 3-face incident with all 6^+ -vertices, and it follows that $ch'(v) \ge ch(v) - 1 - (4 \times \frac{3}{2} + \frac{5}{4} + 1 + \frac{1}{3}) = \frac{5}{12} > 0$ by R2, R3 and R4. Otherwise, $ch'(v) \ge ch(v) - 1 - (3 \times \frac{3}{2} + 3 \times \frac{5}{4} + 2 \times \frac{1}{3}) = \frac{1}{12} > 0$ by R2 and R4.

Suppose $f_3(v)=5$. If $f_4(v)=3$, then $ch'(v)\geq ch(v)-1-(\frac{3}{2}+4\times\frac{5}{4}+\frac{3}{4}+2\times\frac{1}{2})=\frac{3}{4}>0$ by R2 and R3. If $f_4(v)=2$, then $n_3(v)\leq 3$. Assume $n_3(v)=3$, then $ch'(v)\geq ch(v)-1-(4\times\frac{3}{2}+\frac{5}{4}+1+\frac{1}{2})=\frac{1}{4}>0$ by R2 and R3. Assume $n_3(v)=2$, then $ch'(v)\geq ch(v)-1-max\{3\times\frac{3}{2}+2\times\frac{5}{4}+1+\frac{3}{4}+\frac{1}{4},3\times\frac{3}{2}+2\times\frac{5}{4}+\frac{3}{4}+\frac{1}{3}+\frac{1}{3},3\times\frac{3}{2}+2\times\frac{5}{4}+1+\frac{1}{2}\}=0$ by R2, R3 and R4. Otherwise, $ch'(v)\geq ch(v)-1-(2\times\frac{3}{2}+3\times\frac{5}{4}+2\times\frac{3}{4}+\frac{1}{3})=\frac{5}{12}>0$ by R2, R3 and R4. If $f_4(v)=1$, then $n_3(v)\leq 3$. Assume $n_3(v)=3$, then $ch'(v)\geq ch(v)-1-(4\times\frac{3}{2}+\frac{5}{4}+\frac{3}{4}+2\times\frac{1}{3})=\frac{1}{3}>0$ by R2, R3 and R4. Assume $n_3(v)=2$, then $ch'(v)\geq ch(v)-1-max\{3\times\frac{3}{2}+2\times\frac{5}{4}+\frac{3}{4}+\frac{1}{3}+\frac{1}{4},3\times\frac{3}{2}+2\times\frac{5}{4}+\frac{3}{4}+2\times\frac{1}{3}\}=\frac{7}{12}>0$ by R2, R3 and R4. Assume $n_3(v)=1$, then $ch'(v)\geq ch(v)-1-(2\times\frac{3}{2}+3\times\frac{5}{4}+\frac{3}{4}+2\times\frac{1}{3})=\frac{5}{6}>0$ by R2, R3 and R4. If $f_4(v)=0$, then $ch'(v)\geq ch(v)-1-(5\times\frac{3}{2}+3\times\frac{1}{3})=\frac{1}{2}>0$ by R2 and R4. If $f_4(v)=0$, then $ch'(v)\geq ch(v)-1-(5\times\frac{3}{2}+3\times\frac{1}{3})=\frac{1}{2}>0$ by R2 and R4.

Suppose $f_3(v)=4$. If $f_4(v)=3$, then $n_3(v)\leq 3$. Assume $n_3(v)=3$, then $ch'(v)\geq ch(v)-1-max\{4\times\frac{3}{2}+1+2\times\frac{2}{3}+\frac{1}{3},4\times\frac{3}{2}+1+2\times\frac{2}{3}+\frac{1}{4},4\times\frac{3}{2}+3\times\frac{2}{3}+\frac{1}{3},3\times\frac{3}{2}+\frac{5}{4}+1+\frac{3}{4}+\frac{2}{3}+\frac{1}{3},3\times\frac{3}{2}+\frac{5}{4}+2\times\frac{3}{4}+\frac{2}{3}+\frac{1}{3}\}=\frac{1}{3}>0$ by R2, R3 and R4. Assume $n_3(v)=2$, then $ch'(v)\geq ch(v)-1-max\{3\times\frac{3}{2}+\frac{5}{4}+1+\frac{3}{4}+\frac{2}{3}+\frac{1}{4},3\times\frac{3}{2}+\frac{5}{4}+2\times\frac{2}{3}+\frac{3}{4}+\frac{1}{4},2\times\frac{3}{2}+2\times\frac{5}{4}+2\times\frac{3}{4}+1+\frac{1}{4},2\times\frac{3}{2}+2\times\frac{5}{4}+3\times\frac{3}{4}+\frac{1}{3}\}=\frac{7}{12}>0$ by R2, R3 and R4. Assume $n_3(v)=1$, then

 $ch'(v) \ge ch(v) - 1 - (2 \times \frac{3}{2} + 2 \times \frac{5}{4} + 4 \times \frac{3}{4}) = \frac{1}{2} > 0$ by R2 and R3. If $f_4(v) \le 2$, then $ch'(v) \ge ch(v) - 1 - (4 \times \frac{3}{2} + f_4(v) \times 1 + (8 - 4 - f_4(v)) \times \frac{1}{3}) = \frac{5 - 2f_4(v)}{3} > 0$ by R2, R3 and R4.

Suppose $f_3(v)=3$. If $f_4(v)=5$, then $n_3(v)\leq 4$. Assume $n_3(v)=4$, then $ch'(v)\geq ch(v)-1-max\{3\times\frac{3}{2}+2\times1+2\times\frac{2}{3}+\frac{3}{4},3\times\frac{3}{2}+2\times1+3\times\frac{2}{3}\}=\frac{5}{12}>0$ by R2 and R3. Assume $n_3(v)=3$, then $ch'(v)\geq ch(v)-1-max\{3\times\frac{3}{2}+1+2\times\frac{3}{4}+2\times\frac{2}{3},3\times\frac{3}{2}+2\times\frac{3}{4}+3\times\frac{2}{3},2\times\frac{3}{2}+\frac{5}{4}+1+3\times\frac{3}{4}+\frac{2}{3}\}=\frac{2}{3}>0$ by R2 and R3. Assume $n_3(v)\leq 2$, then $ch'(v)\geq ch(v)-1-(3\times\frac{3}{2}+1+4\times\frac{3}{4})=\frac{1}{2}>0$ by R2 and R3. If $f_4(v)\leq 4$, then it follows that $ch'(v)\geq ch(v)-1-(3\times\frac{3}{2}+f_4(v)\times1+(8-3-f_4(v))\times\frac{1}{3})=\frac{17-4f_4(v)}{6}>0$ by R2, R3 and R4.

Suppose $f_3(v) \le 2$, then $ch'(v) \ge ch(v) - 1 - (f_3(v) \times \frac{3}{2} + (8 - f_3(v)) \times 1) = \frac{2 - f_3(v)}{2} \ge 0$ by R2 and R3.

Subcase 2.2. Two faces incident with uv are 4^+ -faces.

Note that $f_3(v) \leq 4$ by Lemmas 2 and 3. Suppose $f_3(v) = 4$. If $f_4(v) = 4$, then $ch'(v) \geq ch(v) - 1 - max\{\frac{3}{2} + 3 \times \frac{5}{4} + 3 \times \frac{3}{4} + \frac{1}{2}, 4 \times \frac{5}{4} + 1 + 2 \times \frac{3}{4} + \frac{1}{2}\} > 0$ by R2 and R3. If $f_4(v) = 3$, then $ch'(v) \geq ch(v) - 1 - max\{2 \times \frac{3}{2} + 2 \times \frac{5}{4} + 3 \times 1 + \frac{1}{4}, 2 \times \frac{3}{2} + 2 \times \frac{5}{4} + 2 \times 1 + \frac{3}{4} + \frac{1}{3}, 2 \times \frac{3}{2} + 2 \times \frac{5}{4} + 2 \times 1 + \frac{1}{2} + \frac{1}{3}, 2 \times \frac{3}{2} + 2 \times \frac{5}{4} + 1 + 2 \times \frac{3}{4} + \frac{1}{3}\} = \frac{1}{4} > 0$ by R2, R3 and R4. If $f_4(v) \leq 2$, then $ch'(v) \geq ch(v) - 1 - (4 \times \frac{3}{2} + f_4(v) \times 1 + (8 - 4 - f_4(v)) \times \frac{1}{3}) = \frac{5 - 2f_4(v)}{3} > 0$ by R2, R3 and R4.

Suppose $f_3(v)=3$. If $f_4(v)=5$, then $ch'(v)\geq ch(v)-1-max\{3\times\frac{3}{2}+3\times1+2\times\frac{2}{3},3\times\frac{3}{2}+2\times1+3\times\frac{2}{3},2\times\frac{3}{2}+\frac{5}{4}+3\times1+\frac{3}{4}+\frac{1}{2},2\times\frac{3}{2}+\frac{5}{4}+3\times1+2\times\frac{3}{4},2\times\frac{3}{2}+\frac{5}{4}+3\times1+\frac{3}{4}+\frac{2}{3}\}=\frac{1}{6}>0$ by R2 and R3. If $f_4(v)\leq 4$, then $ch'(v)\geq ch(v)-1-(3\times\frac{3}{2}+f_4(v)\times1+(8-3-f_4(v))\times\frac{1}{3})=\frac{17-4f_4(v)}{6}>0$ by R2, R3 and R4.

Suppose $f_3(v) \le 2$. Then $ch'(v) \ge ch(v) - 1 - (f_3(v) \times \frac{3}{2} + (8 - f_3(v)) \times 1) = \frac{2 - f_3(v)}{2} \ge 0$ by R2 and R3.

Case 3. v is adjacent to two 2-vertices.

Then $f_3(v) \leq 4$ and if u is a neighbor of v such that uv is incident with a 3-face, then $d(u) \geq 4$ by Lemma 2(3).

Suppose $f_3(v)=4$. If $f_4(v)=4$, then $ch'(v)\geq ch(v)-2-(4\times\frac{5}{4}+4\times\frac{3}{4})=0$ by R2 and R3. If $f_4(v)=3$, then $ch'(v)\geq ch(v)-2-max\{4\times\frac{5}{4}+1+2\times\frac{3}{4}+\frac{1}{4},4\times\frac{5}{4}+1+\frac{3}{4}+\frac{1}{2}+\frac{1}{3}\}=\frac{1}{4}>0$ by R2, R3 and R4. If $f_4(v)\leq 2$, then $ch'(v)\geq ch(v)-2-(4\times\frac{5}{4}+f_4(v)\times1+(8-4-f_4(v))\times\frac{1}{3})=\frac{5-2f_4(v)}{3}>0$ by R2, R3 and R4.

Suppose $f_3(v)=3$. If $f_4(v)=5$, then $ch'(v)\geq ch(v)-2-max\{3\times\frac{5}{4}+2\times1+2\times\frac{3}{4}+\frac{1}{2},3\times\frac{5}{4}+1+3\times\frac{3}{4}+\frac{1}{3},3\times\frac{5}{4}+4\times\frac{3}{4}+\frac{2}{3},3\times\frac{5}{4}+1+2\times\frac{3}{4}+\frac{2}{3}+\frac{1}{2},3\times\frac{5}{4}+1+2\times\frac{3}{4}+2\times\frac{2}{3}\}=\frac{1}{4}>0$ by R2, R3 and R4. If $f_4(v)=4$, then $ch'(v)\geq ch(v)-2-max\{3\times\frac{5}{4}+1+3\times\frac{3}{4}+\frac{1}{3},3\times\frac{5}{4}+1+2\times\frac{3}{4}+\frac{1}{2}+\frac{1}{4}\}=\frac{2}{3}>0$ by R2, R3 and R4. If $f_4(v)\leq 3$, then $ch'(v)\geq ch(v)-2-(3\times\frac{5}{4}+f_4(v)\times1+(8-3-f_4(v))\times\frac{1}{3})=\frac{31-8f_4(v)}{12}>0$ by R2, R3 and R4.

Suppose $f_3(v)=2$. If $f_4(v)=6$, then $ch'(v)\geq ch(v)-2-max\{2\times\frac{5}{4}+4\times1+2\times\frac{3}{4},2\times\frac{5}{4}+3\times1+2\times\frac{3}{4}+\frac{2}{3},2\times\frac{5}{4}+2\times1+4\times\frac{3}{4},2\times\frac{5}{4}+1+4\times\frac{3}{4}+\frac{2}{3},2\times\frac{5}{4}+1+2\times\frac{3}{4}+3\times\frac{2}{3}\}=0$ by R2 and R3. If $f_4(v)\leq 5$, then $ch'(v)\geq ch(v)-2-(2\times\frac{5}{4}+f_4(v)\times1+(8-2-f_4(v))\times\frac{1}{3})=\frac{21-4f_4(v)}{6}>0$ by R2, R3 and R4.

Suppose $f_3(v) = 1$. If $f_4(v) = 7$, then $ch'(v) \ge ch(v) - 2 - max\{\frac{5}{4} + 5 \times 1 + 2 \times \frac{3}{4}, \frac{5}{4} + 3 \times 1 + 4 \times \frac{3}{4}, \frac{5}{4} + 2 \times 1 + 4 \times \frac{3}{4} + \frac{2}{3}, \frac{5}{4} + 1 + 6 \times \frac{3}{4}\} = \frac{1}{4} > 0$ by R2 and R3. If $f_4(v) \le 6$, then $ch'(v) \ge ch(v) - 2 - (\frac{5}{4} + f_4(v) \times 1 + (8 - 1 - f_4(v)) \times \frac{1}{3}) = \frac{53 - 8f_4(v)}{12} > 0$ by R2, R3 and R4.

Suppose $f_3(v) = 0$. Then $ch'(v) \ge ch(v) - 2 - 8 \times 1 = 0$ by R3. Hence we complete the proof of (*), that is, Theorem 1 is true.

References

- [1] J. Akiyama, G. Exoo, F. Harary, Covering and packing in graphs III: cyclic and acyclic invariants, Math. Slovaca, 30 (1980), 405-417.
- [2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, MacMillan, London, 1976.
- [3] H.Y. Chen and J.M. Qi, The linear arboricity of planar graphs with maximum degree at least 5, Info. Proce. Lett. 112 (2012), 767-771.
- [4] H.Y. Chen, X. Tan, J.L. Wu and G.J. Li, The linear arboricity of planar graphs without 5-, 6-cycles with chords, Graphs Combin., 29 (2013), 373-385.
- [5] M. Cygan, J.F. Hou, L. Kowalik, B. Lužar and J.L. Wu, A planar linear arboricity conjecture, J. Graph Theory, 69 (2012), 403-425.
- [6] H. Enomoto, B. Péroche, The linear arboricity of some regular graphs, J. Graph Theory, 8 (1984), 309–324.

- [7] F. Guldan, The linear arboricity of 10-regular graphs, Math. Slovaca, 36 (1986), 225-228.
- [8] F. Guldan, Some results on linear arboricity, J. Graph Theory, 10 (1986), 505-509.
- [9] F. Harary, Covering and packing in graphs I. Ann. New York Acad. Sci., 175 (1970), 198-205.
- [10] B. Péroche, Complexity of the linear arboricity of a graph, RAIRO Rech. Oper., 16 (1982), 125-129.
- [11] X. Tan, H.Y. Chen and J.L. Wu, The linear arboricity of planar graphs with maximum degree at least five, Bull. Malays. Math. Sci. Soc., 34 (2011), 541-552.
- [12] X. Tan, H.Y. Chen and J.L. Wu, The linear arboricity of planar graphs without 5-cycles and 6-cycles, Ars Combinatoria, 97A (2010), 367-375.
- [13] H.J. Wang, B. Liu and J.L. Wu, The linear arboricity of planar graphs without chordal short cycles, Utilitas Math., 87 (2012), 255-263.
- [14] J.L. Wu, On the linear arboricity of planar graphs. J. Graph Theory, 31 (1999), 129-134.
- [15] J.L. Wu, The linear arboricity of series-parallel graohs, Graphs Combin., 16 (2000), 367–372.
- [16] J.L. Wu, J.F. Hou and G.Z. Liu, The linear of planar graphs with no short cycles, Theoretical Comput. Sci., 381 (2007), 230-233.
- [17] J.L. Wu, G.Z. Liu and Y.L. Wu, The linear arboricity of composition graphs, J. Sys. Sci. Comput., 15 (2002), 372–375.
- [18] J.L. Wu and Y.W. Wu, The linear arboricity of planar graphs of maximum degree seven is four. J. Graph Theory, 58 (2008), 210-220.
- [19] J.L. Wu, J.F. Hou and X.Y. Sun, A note on the linear arboricity of planar graphs without 4-cycles, ISORA'09, Lecture Notes in Operations Research, 10 (2009), 174-178.