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Abstract

The linear arboricity la(G) of a graph G is the minimum number
of linear forests which partition the edges of G. In this paper, it is
proved that if G is a planar graph with maximum degree A > 7 and
every 7-cycle of G contains at most two chords, then la(G) = [ﬂzﬂ] .
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1 Introduction

Throughout this paper, we only consider finite, simple and undirected
graphs. For a real number z, [z] is the least integer not less than « and
|z] is the largest integer not larger than z. Let G be a graph with vertex
set V(G) and edge set E(G), we use A(G) and ¢(G) to denote the maxi-
mum (vertex) degree and the minimum (vertex) degree, respectively. All
undefined terminologies and notations follow that of Bondy and Murty [2].

A linear forest of a graph G in which each component is a path. A map ¢
from E(G) to {1,2,--- ,t} is called a t-linear coloring if (V(G),p ! (a))isa
linear forest for 1 < & < t. The linear arboricity la(G) of a graph G defined
by Harary [9] is the minimum number ¢ such that G has a ¢-linear coloring,
Akiyama, Exoo and Harary [1] conjectured that la(G) = | 5@2&] for every
regular graph G. It is obvious that la(G) > [é-g.f-l] for any graph G and
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la(G) > [91%)4'—1] for any regular graph G. So the conjecture is equivalent
to the following Linear Arboricity Conjecture (for short LAC):

Conjecture 1.1. (LAC) For any simple graph G,

A(G).I < 1a(G) < rA(G)+1

1. (1)

Although Péroche [10] showed that LAC is an NP-hard problem. In
fact, the linear arboricity has been determined for many classes of graphs
and some corresponding results can be found in (1, 6, 7, 8, 15, 17). Many
results are also obtained for planar graphs, see [3, 4, 11, 13, 16]. Up to
now, LAC has already been proved to be true for all planar graphs, see
[14, 18]. But determining the planar graphs with linear arboricity [A@l]
(or [ﬁﬂi—]) are still an open problem.

In the following, we only consider the planar graph G with maximum
degree A > 7. Wu [16] et al. proved that if G does not contain 4-, 5-cycles,
then la(G) = [9129]. Chen [4] and Wang [13] et al. improved this result
and got that if G does not contain chordal i-cycles for some i € {4,5,6,7},
then la(G) = [—Aizgl] Here, we generalize this result and get the following
result.

Theorem 1. Let G be a planar graph with mazimum degree A > 7. If
every 7-cycle of G contains at most two chords, then la(G) = [529]

We first introduce some more notations and definitions. Let G be a
planar graph with face set F(G). For a vertex v of G, the degree d(v) is the
number of edges incident with v, and for a face f of G, the degree d(f) is
the length of the boundary walk of f. Let uv € E(G) and d(u) = k, then
we call vertex u is a k-neighbor of v. A k-vertez, k= -vertex or a kt-vertex
is a vertex of degree k, at most k or at leat k, respectively. Similarly, we can
define a k-face, k™ -face and a k*-face. A k-face with consecutive vertices
V1,2, -+ , U along its boundary in some direction (such as the clockwise
order) is often said to be a (d(v1),d(va),--- ,d(vk))-face. Two cycles are
said to be adjacent if they share at least one edge and two cycles are said
to be intersecting if they share at least one vertex.

For a t-linear coloring ¢ and a vertex v of G, we denote by C:;,(v) the
set of colors appears i times at v, where i = 0,1, 2. Then

ICo@)| +Co(v)] +ICo(v)] = t.



Let z be a vertex of G, denote ¢(z) = (¢(zy1), p(zy1), - - , p(zyx)), where
vertices y1,¥2,* * , Yk are distinct neighbors of z. For any two vertices u and
v, let Cy(u,v) = CZ(u)UCE(v)U(CL()NCL(v)), i-e., Cp(u,v) is the set of
colors that appear two times at u and v. A monochromatic path is a path
of whose edges receive the same color. For two different edges e; and e of
G, they are said to be in the same color component, denoted by e; + eg if
there is a monochromatic path of G connecting them. Furthermore, if two
ends of e; are known, i.e., e; = z;yi(¢ = 1,2), then z,y; & z2y2 denotes
more accurately that there is a monochromatic path from z; to yo passing
through the edges z;y; and T332 in G (i.e., y; and z, are internal vertices
in the path). Otherwise, we use 11 «» Zay2 (or e; «» ez) to denote that
such monochromatic path passing through them does not exist. Note that
T1y1 € T2y2 and x,y; < Yoz, are different. (u,i) < (v,i) denote that u
and v have a monochromatic path of color i between them. The number
of d-vertices adjacent to a vertex v is denoted by ny(v) and the number of
d-faces incident with a vertex v is denoted by f4(v).

2 Proof of Theorem 1

In [5], it is proved that la(G) = [éiic_’l] holds for an arbitrary planar graph
G with maximum degree A > 9. It suffices to prove the following result.

(*) Let G be a planar graph such that A(G) < 8 and every 7-cycle of G
contains at most two chords. Then G has a 4-lineer coloring.

Let G = (V, E, F) be a minimal counterexample to (*) in terms of the
number of edges. We first show some known properties.

Lemma 1. [13] let uv € E(G) and ¢ be a 4-linear coloring of G — uv.
Then the following results hold.

(1) ol v)] = 4;

(2) If there is a color i such that i € C(u)NCL(v), then (u,i) & (v,3);

(3) dg(u) +de(v) > 10;

(4).If uv is incident with a 3-cycle vvwu and d(u) + d(v) = 10, then
d(w) = 8; :

(5) If d(u) = 7, d(v) = 3 and uv is incident with a 3-cycle, then all
neighbors of u except v are 4 -vertices.

By Lemma 1, we obtain that
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(@) 5(6) 2 2.
(b) Any two 4~ -vertices of G are not adjacent.
(c) Any 3-face is incident with three 5%-vertices, or at least two 6+-

vertices.

(d) Any 7~-vertex has no neighbors of degree 2.

Note that in all figures of the paper, vertices marked e have no edges of
G incident with them other than those shown and pair of vertices marked
o can be connected to each other.

Lemma 2. [4, 11, 13] G has no configurations depicted in Fig. 1.

Proof. The proofs of (1), (3) and (6) can be found in [13], the proof of (2) -
can be found in [11] and the proofs of (4), (5) and (7) can be found in [4],
respectively. 0

() 2) 3) Q) ©) (6) M

Fig. 1. Reducible configurations of Lemma 2.
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Fig. 2. Special configurations of G depicted in Lemma 3(a).

It is easy to obtain the following lemma, so we omit its proof here.

Lemma 3. If a planar graph G with 7-cycles contains at most two chords
and §(G) > 2, then we have

(a) G has no configurations depicted in Fig. 2, where all the vertices
showing in Fig. 2 are different.

(b) Every 6% -vertex v is incident with at most [iﬂsﬂj 3-faces.



By the Euler’s formula |V| —| E| + |F| = 2, we have
Y (2d(v) - 6)+ Y _(d(f)—6) = -12<0. (2)

veV feF
We first define ch to be the initial charge. Let ch(v) = 2d(v) —6 for each
v € V(G) and ch(f) = d(f) — 6 for each f € F(G). Then we will reassign
a new charge denoted by ch/(z) to each z € V(G) U F(G) by means of the
discharging rules. Since our rules only move charges around, and do not
affect the sum, we have

Yo eb@= )  ch(z)=-12 (3)

z€V(G)UF(G) z€V(G)UF(G)

Now, let us apply the following rules to redistribute the weight that
leads a new charge ch'(z).

R1 Each 8-vertex sends 1 to each of its adjacent 2-vertices.
R2 Let f be a 3-face uvw such that d(u) < d(v) < d(w).

R2.1 If d(u) < 3, then f receives 3 from each of v and w.

R2.2 If d(u) = 4, then f receives § from u and ¥ from each of its
incident 6%-vertices.

R2.3 Suppose d(u) = d(v) = 5. If some of u and v is incident with five
3-faces, say the vertex is u, then f reoelves g 4 from u, from v, and 1 from
w. Otherwise, f receives I § from u, g I from v , and 5 from w.

R2.4 If d(u) = 5,d(v) > 6 and d(w) > 6, then f receives 3 from u, §
from v and from w.

R2.5 If d(u) > 6, then f receives 1 from each of its incident vertices.
R3 Let f be a 4-face.

R3.1If f is incident with two 3~-vertices, then each 7*-vertex incident
with f sends 1 to f.

R3.2If f is incident with a 3~ -vertex and a 4-vertex (or 5-vertex), then
each incident 7*-vertex of f sends 3, and the 4-vertex (or 5-vertex) sends
3 to f.

R3.3 If f is incident with a 3~-vertex and three 6%-vertices, then each
incident 6+-vertex of f sends to f.

R3.4 If f is incident with four 4+-vertices, then f receives —;— from each
of its incident 4*-vertices.

R4 Let f be a 5-face. If f is incident with two 3~-vertices, then f receives
% from each of its incident 7*-vertices. Otherwise, f receives % from each
of its incident 4*-vertices. -



In the following, we will show that ch’(z) > 0 for each z € V(G)UF(G),
a contradiction to (3), this completes the proof.

Let f € F(G). Clearly, ch'(f) = ch(f) = d(f) — 6 > 0 if d(f) > 6. If
d(f) =5, then f is incident with at most two 3~-vertices by Lemma 1 and
then we can obtain that ch’(f) = ch(f) + min{3 x %,4 x %,5 x $} =0by
R4. If d(f) = 4, the ch'(f) > ch(f)+min{2x 1,2x 3+ 1,3x 2,4x 1} =0
by R3. Suppose that d(f) = 3. Then f is not a (3, 7, 7)-face, (4, 6, 6)-face,
(4,6, 7)-face, (5,5, 5)-face, (5,5, 6)-face and (5, 5, 7)-face by Lemma. 1. Thus
ch'(f) 2 ch(f)+min{2x $,2x 3+ 3,8 +8+1,2x 2 +5,3x1}=0by
R2.

Let v € V(G). If d(v) = 2, then ch’(v) > ch(v) +2 x 1 = 0 by RI1.
If d(v) = 3, then ch/(v) = ch(v) = 0. If d(v) = 4, then ch/(v) > ch(v) —
4 x £ =0 by R2, R3 and R4. Suppose that d(v) = 5. If f3(v) = 5, then
ch'(v) 2 ch(v) -5 x § =0 by R2. Otherwise, ch'(v) > ch(v) — (fs(v) x L +
(5-fa(v))x3) = 2=2£20) > 9 by R2 and R3. Suppose that d(v) = 6. Then
each neighbor of v is a 4*-vertex and f3(v) < 4 by Lemma 1 and Lemma
3(b). If f3(v) =4, then ch’(v) > ch(v)—max{4x §+2x 1, 4x5+1+1} =0
by R2, R3 and R4. Otherwise, ch’(v) > ch(v)—(fa(v)x §+(6—fa(v))x %) =
=760 0 by R2 and R3.

Suppose that d(v) = 7. Then each neighbor of v is a 3*-vertex and
fa(v) £ 5 by Lemma 1 and Lemma 3(b). We use f3(v) to denote the
number of 3-faces incident with v, each of which is incident with a 3-vertex.
Then f3(v) € 2 by Lemma 1. Suppose that f3(v) =0, that is to say, each
3-face incident with v is only incident with 4*-vertices. If f3(v) = 5, Then
ch'(v) > ch(v) —=5%x 2 -2x 4 =32 > 0 by R2 and R3. Otherwise,
ch’(v) > ch(v) — (fa(v) x & + (7 — fa(v)) x 1) = &=L > 0 by R2 and
R3. Suppose that f3(v) = 1. Then v is adjacent to only one 3-vertex, and
it follows that ch'(v) > ch(v) — (§ + (f3(v) — 1) x 3 + (7 — f3(v)) x 3) =
#ﬂ > 0 by R2 and R3. Suppose that f3(v) = 2. If f3(v) < 4, then
ch'(v) > ch(v) = (2 x § + (f3(v) —2) x § + (7~ fa(v)) x §) = 22600 5 ¢
by R2 and R3. Otherwise, v is incident with a face f such that d(f) > 4
and f is incident with at least four 4*-vertices, or d(f) = 3 and all vertices
incident with f are 6%-vertices. So ch/(v) > ch(v) — (2 x § + max{3 x 3 +
2+21,2x5+1+2x2})=0byR2and R3.

Let v be a 8-vertex. Then v is adjacent to at most two 2-vertices by
Lemma 1 and f3(v) < 6 by Lemma 3(b).

Case 1. v is not adjacent to any 2-vertex.



Suppose f3(v) < 4. Then ch'(v) 2 ch(v) — (f3(v) x § + (8 — f3(v)) x
1) = 4—'%’—@ > 0 by R2 and R3. Suppose f3(v) = 5. If f4(v) = 3, then
ch'(v) > ch(v)—maz{5x §+1+2+3,5x3+3x2} =4 > 0byR2and R3.
If f4(v) < 2, then ch’(v) > ch(v) — (5% §+ fa(v) X 1+(8—5— fa(v)) x $) =
9—_46;'_4m > 0 by R2, R3 and R4. Suppose f3(v) = 6, then fs(v) <2 and it
follows that ch’(v) > ch(v) — (6 x 3 +2x ) = 1 > 0 by R2 and R4.
Case 2. v is adjacent to exactly one 2-vertex, say u.

Subcase 2.1. uv is incident with a 3-face.

Suppose that each neighbor of v except u and the 8-neighbor is a 4*-
vertex, i.e., n3(v) = 0. If fa(v) = 6, then ch'(v) > ch(v)-1—(3+5x5+3) =
1 > 0 by R2 and R4. Otherwise, ch/(v) > ch(v) — 1 — (3 + (fa(v) —1) x
£+ (8~ fa(v)) x 3) = 1=250) 5 0 by R2 and R3.

Let n3(v) > 1. Suppose f3(v) = 6. Then v is incident with two 5+-faces
and is adjacent to at most three 3-vertices, that is, n3(v) < 3 by Lemma 2.
If nz(v) = 3, then v is incident with a 3-face incident with all 6+-vertices,
and it follows that ch’(v) > ch(v)~1-(4x3+3+1+4) =5 > 0byR2,
R3 and R4. Otherwise, ch’(v) > ch(v)-1-(3x§+3x5+2x3)=4>0
by R2 and R4.

Suppose fa3(v) =5. If fa(v) =3, then ch'(v) > ch(v) -1 - (3 +4x 3+
2 +2x1)=2>0by R2 and R3. If f4(v) = 2, then n3(v) < 3. Assume
ng(v) =3, then ch’(v) > ch(v)—-1—(4x3+3+1+3) = 1 > 0by R2and R3.
Assume n3(v) = 2, then ch’(v) 2 ch(v)—1—maz{3x g+2x%+1+%+%,3x
S tax3+3+2+41,3x3+2x84+3+5+5,3x3+2x5+1+3} =0by R2,R3
and R4. Otherwise, ch/(v) > ch(v)—1-(2x3+3x3+2x34+)=5>0
by R2, R3 and R4. If fy(v) = 1, then n3(v) < 3. Assume ng(v) = 3, then
ch'(v) > ch(v) —1-(4x 3+ 5+3+2x1)=1>0byR2 R3and R4.
Assume ng(v) = 2, then ch’(v) > ch(v) —1-maz{3x 3 +2x 5 +3+1 +
$3x3+2x5+3+2x1} =% > 0byR2, R3 and R4. Assume n3(v) =1,
thench’(v)?_ch(v)—l—(2x%+3x%+%+2x% =$>0byR2,R3
and R4. If f4(v) = 0, then ch/(v) 2 ch(v) —1—-(5x 3 +3x 3)=1>0by
R2 and R4.

Suppose f3(v) = 4. If f4(v) = 3, then n3(v) < 3. Assume n3(v) = 3,
then ch'(v) > ch(v)—1—-maz{dx 3 +1+2x2+1,4x3+1+2x3+1,4x
3+3x2+3.3x3+5+1+3+2+4,3x3+5+2x3+2+14}=1>0by
R2, R3 and R4. Assume n3(v) =2, then ch'(v) > ch(v) —1—-maz{3x 3 +
S+1+3+2+43x3+58+2xE+3+52xd+2xS+2x3+14+4,2x
3+2x5+3x %+-§} = i > 0 by R2, R3 and R4. Assume n3(v) = 1, then



ch'(v) > ch(v)~1—-(2x3+2x3+4x3) = 1 > 0by R2and R3. If f4(v) < 2,
then ch'(v) > ch(v)—1—(4x 3+ fa(v) x 1+(8—4— fy(v))x }) = 2=2el) 5. ¢
by R2, R3 and R4.

Suppose fa(v) = 3. If f4(v) = 5, then nz(v) < 4. Assume n3z(v) = 4,
then ch’(v) > ch(v)—1-maz{3x 3+2x1+2x%+3,3x3+2x1+3x 2} =
£ > 0 by R2and R3. Assume n3(v) = 3, then ch’(v) > ch(v)—1-maz{3x
$+1+2x3+2x2,3x3+2x3+3x2,2x34+5+143x3+2%}=2>0
by R2 and R3. Assume n3(v) < 2, then ch’(v) > ch(v) —1—-(3 x 3 +
1+4x3) =1 >0by R2 and R3. If f4(v) < 4, then it follows that
ch'(v) > ch(v) —1— (3% 3 + fy(v) x 1+ (8 —3— fa(v)) x §) = =40 5 ¢
by R2, R3 and R4.

Suppose f3(v) < 2, then ch/(v) > ch(v)—1—(f3(v)x 2 +(8—f3(v))x1) =
2-50) > 0 by R2 and R3.

Subcase 2.2. Two faces incident with uv are 4+-faces.

Note that f3(v) < 4 by Lemmas 2 and 3. Suppose f3(v) = 4. If fy(v) =
4, then ch'(v) > ch(v)—1-maz{3+3x 5 +3x3+1,4x 8 +1+2x3+1} >0
by R2 and R3. If f4(v) = 3, then ch/(v) > ch(v)—1-maz{2x $ +2x & +
3x1+4,2x3+2x534+2x1+3+4,2x3+2x 8 +2x14+543,2x
34+2x3+1+2x2 44} =1>0byR2 R3and R4. If f4(v) <2, then
ch'(v) > ch(v) —1— (4% 3 + f4(v) x 1+ (8~ 4~ fu(v)) x }) = =2l 5 o
by R2, R3 and R4.

Suppose f3(v) = 3. If f4(v) = 5, then ch’(v) > ch(v) - 1-maz{3x 3 +
3x1+2x2,3x3+2x1+3x2,2x3+3+3x1+3+1,2x§+543x1+
2x3,2x34+5+3x1+3+2}=1>0byR2andR3. If f4(v) < 4, then
ch’(v) > ch(v) —1—(3x 3 + fa(v) x 1+ (83— fa(v)) x }) = LT=44() 5 ¢
by R2, R3 and R4.

Suppose f3(v) < 2. Then ch(v) > ch(v) - 1—(f3(v) X 3 + (8 — f3(v)) x
1) = 240 > 0 by R2 and R3.

Case 3. v is adjacent to two 2-vertices.

Then f3(v) < 4 and if u is a neighbor of v such that uv is incident with
a 3-face, then d(u) > 4 by Lemma 2(3).

Suppose f3(v) = 4. If f4(v) = 4, then ch'(v) > ch(v) —2— (4x $ +4 x
2) = 0 by R2 and R3. If f4(v) = 3, then ch’(v) > ch(v) -2 —maz{4 x 5 +
1+2x3+1,4x3+1+3+3+4} =% >0by R2, R3and R4. If f4(v) < 2,
then ch/(v) > ch(v)—2—(4x §+ fa(v) X 1+(8—4— fa(v))x 1) = 2=20) 5 ¢
by R2, R3 and RA4.
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Suppose f3(v) = 3. If f4(v) = 5, then ch/(v) > ch(v) — 2 — maz{3 x
E+2x1+2x3+43x5+143x3+4,3x8+4x3+23x5+
1+42x3+2+13x3+142x3+2x2}=1>0byR2 R3and R4.
If f4(v) = 4, then ch'(v) > ch(v) —2-maz{3x §+1+3x 3 + 1,3 x
$+1+2x2+1+41}=2>0byR2 R3and R4. If fy(v) < 3, then
ch’(v) > ch(v) —2—(3x S+ fa(v) x 1+ (8—3— fy(v)) x }) = 2Bl 5 ¢
by R2, R3 and R4.

Suppose f3(v) = 2. If f4(v) = 6, then ch’(v) > ch(v)—2—-maz{2x 3 +
dx1+2x32x5+3x1+2x3+2,2x3+2x1+4x3,2x3+1+
4x3+2,2x5+1+2x 3 +3x %} =0byR2and R3. If f4(v) <5, then
ch!(v) > ch(v) —2—(2X 3+ f4(v) x 1+ (8 -2~ fa(v)) x §) = =4 5 ¢
by R2, R3 and R4.

Suppose fa(v) = 1. If f4(v) = 7, then ch'(v) > ch(v) —2—maz{5 +5x
1+2x 3, 2+3x1+4x 3, 842x1+4x3+2,8+1+6x 3} = 1 > ObyR2and
R3. If fa(v) < 6, then ch’(v) > ch(v)—2—(5+F4(v)x1+(8—1—fa(v))x3) =
88-8/4() > 0 by R2, R3 and Rd.

Suppose f3(v) = 0. Then ch/(v) > ch(v) —2—-8 x 1 =0 by R3.

Hence we complete the proof of (*), that is, Theorem 1 is true.
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