Generalized Lucas' Theorem

^aMourad ABCHICHE and ^bHacène BELBACHIR USTHB/ ^aLTN Lab., ^bRECITS Lab., DG-RSDT, BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria. mabchiche@usthb.dz, hbelbachir@usthb.dz

Abstract

We generalize the well known congruence Lucas' Theorem for binomial coefficient to the bisnomial coefficients.

AMS classification. 11A07; 05A10; 11B65.

Keys words. Binomial coefficient; Lucas' Theorem; Congruence.

1 Introduction

Let p be a prime number. It is well known that, for $1 \le k \le p-1$, p divide $\binom{p}{k}$. This gives $(1+x)^p \equiv 1+x^p \pmod{p}$. Let $n=n_0+n_1p$ and $k=k_0+k_1p$ $(0 \le n_0,k_0 < p)$ and $n_1,k_1 \in \mathbb{N}$, then $(1+x)^n=(1+x^p)^{n_1}(1+x)^{n_0} \pmod{p}$. Identifying the coefficients of x^k in the two expressions, we get

$$\binom{n}{k} = \binom{n_0 + n_1 p}{k_0 + k_1 p} \equiv \binom{n_0}{k_0} \binom{n_1}{k_1} \pmod{p}.$$

More generally, let $n = n_0 + n_1 p + \cdots + n_m p^m$ and $k = k_0 + k_1 p + \cdots + k_m p^m$, $0 \le n_i, k_i and <math>n_m, k_m \in \mathbb{N}$, we get

$$\binom{n}{k} \equiv \binom{n_0}{k_0} \binom{n_1}{k_1} \cdots \binom{n_m}{k_m} \pmod{p}.$$

It is known as formula of Lucas since 1878, [3]. It expresses the remainder of division of $\binom{n}{m}$ by p. For an historical development, we refer to Granville [4].

2 Bi^snomial coefficients

The bi^snomial coefficients are a natural extension of binomial coefficients (see [2, 1] for a recent overview). Letting $s, L \in \mathbb{N}$, for an integer $k = 0, 1, \ldots, sL$, the bi^snomial coefficient $\binom{L}{k}_s$ is the k-th term of the expansion

$$(1 + x + x^2 + \dots + x^s)^L = \sum_{k>0} {L \choose k}_s x^k.$$
 (1)

with $\binom{L}{k}_1 = \binom{L}{k}$ (being the usual binomial coefficient) and $\binom{L}{k}_s = 0$ for k > sL. Using the classical binomial coefficient, one has

$$\binom{L}{k}_{s} = \sum_{j_1+j_2+\cdots+j_s=k} \binom{L}{j_1} \binom{j_1}{j_2} \cdots \binom{j_{s-1}}{j_s}.$$
 (2)

Combinatorial interpretation: $\binom{L}{k}_s$ count the number of ways of distributing "k" balls among "L" cells with at most "s" balls by cell.

3 Generalized Lucas' Theorem

We start by expressing the cyclotomic polynomial of degree s.

Theorem 1 Let p be a prime number, $n = n_0 + n_1 p$ and $k = k_0 + k_1 p$ two integers with $0 \le n_0, k_0 < p$ and $n_1, k_1 \in \mathbb{N}$. The following identity holds

$$\binom{n}{k}_s \equiv \sum_{i=0}^{s-1} \binom{n_0}{k_0 + ip}_s \binom{n_1}{k_1 - i}_s \pmod{p}. \tag{3}$$

Proof. The induction gives $(1 + x + \cdots + x^s)^p \equiv 1 + x^p + \cdots + x^{sp} \pmod{p}$. Then

$$(1+x+\cdots+x^{s})^{n} = (1+x+\cdots+x^{s})^{n_{1}p}(1+x+\cdots+x^{s})^{n_{0}}$$

$$\equiv (1+x^{p}\cdots+x^{sp})^{n_{1}}(1+x\cdots+x^{s})^{n_{0}}(\operatorname{mod} p)$$

$$\equiv \sum_{i=0}^{sn_{1}} \binom{n_{1}}{i}_{s} x^{pi} \sum_{j=0}^{sn_{0}} \binom{n_{0}}{j}_{s} x^{j} \pmod{p}$$

$$\equiv \sum_{k=0}^{sn} \sum_{pi+j=k} \binom{n_{1}}{i}_{s} \binom{n_{0}}{j}_{s} x^{k} (\operatorname{mod} p).$$

Identifying with $\sum_{k=0}^{sn} \binom{n}{k}_s x^k$, we get $\binom{n}{k}_s \equiv \sum_{pi+j=k} \binom{n_1}{i}_s \binom{n_0}{j}_s \pmod{p}$. The equality $pi+j=k_1p+k_0\ (0 \le j \le sn_0 < sp)$ gives $i=k_1, j=k_0$, or $i < k_1, j > k_0$, thus $p(k_1-i)=j-k_0$ so p divide $j-k_0$. We conclude that $(i,j) \in \{(k_1,k_0), (k_1-1,k_0+p), ..., (k_1-s+1,k_0+(s-1)p)\}$.

The following result generalizes the above one.

Theorem 2 Let p be a prime number, $n = n_0 + n_1 p + \cdots + n_m p^m$ and $k = k_0 + k_1 p + \cdots + k_m p^m$ two integers with $0 \le n_i, k_i < p$ $(0 \le i \le m-1)$ and $n_m, k_m \in \mathbb{N}$. The following identity holds

$$\binom{n}{k}_{s} \equiv \sum_{0 \le i_{0}, i_{1}, \dots, i_{m-1} \le s-1} \prod_{j=0}^{m} \binom{n_{j}}{k_{j} + i_{j}p - i_{j-1}}_{s} \pmod{p}, \quad (4)$$

with $i_{-1} = 0$ and $i_m = 0$.

Proof. The case m=1 gives the identity of Theorem 1. Assuming that the identity (4) is true for an integer m, we shall prove it for m+1. Let $n=n_0+n_1p+\cdots+n_{m+1}p^{m+1}$ and $k=k_0+k_1p+\cdots+k_{m+1}p^{m+1}$, Theorem 1 gives

$$\binom{n}{k}_{s} \equiv \sum_{i_{0}=0}^{s-1} \binom{n_{0}}{k_{0}+i_{0}p}_{s} \binom{n_{1}+n_{2}p+\cdots+n_{m+1}p^{m}}{k_{1}-i_{0}+k_{2}p+\cdots+k_{m+1}p^{m}}_{s} \pmod{p}.$$

Then

with $i_{-1} = 0$ and $i_{m+1} = 0$.

Acknowledgments. The authors thank the referee for valuable advice and comments which helped to improve the quality of this paper.

References

- H. Belbachir (2011), Determining the mode for convolution powers for discrete uniform distribution, Probab. Engrg. Inform. Sci. 25, 4, 469– 475.
- [2] H. Belbachir, S. Bouroubi, A. Khelladi (2008), Connection between bi^snomial coefficients, Fibonacci numbers, Bell polynomials and discrete uniform distribution, Annales Mathematicae et Informaticae, 35, 21-30.
- [3] E. Lucas (1878), Théorie des Fonctions Numériques Simplement Périodiques, American Journal of Mathematics 1 (3), 197-240 (part 2).
- [4] A. Granville (1997), Arithmetic Properties of Binomial Coefficients I: Binomial coefficients modulo prime powers. Canadian Mathematical Society Conference Proceedings 20, 253-275.