FINITE 2-GEODESIC TRANSITIVE GRAPHS OF
VALENCY 3p

WEI JIN

ABSTRACT. For a non-complete graph I, a vertex triple
(u,v,w) with v adjacent to both v and w is called a 2-
geodesic if v # w and u,w are not adjacent. Then I is
said to be 2-geodesic transitive if its automorphism group
is transitive on both arcs and 2-geodesics. In this paper,
we classify the family of connected 2-geodesic transitive
graphs of valency 3p where p is an odd prime.

1. INTRODUCTION

In this paper, all graphs are finite, connected, simple and
undirected. For a graph I', we use V(I") and Aut(T") to denote
its verter set and the automorphism group, respectively. In a
non-complete graph I, a vertex triple (u, v, w) with v adjacent
to both u and w is called a 2-arc if u # w, and a 2-geodesic
if in addition u, w are not adjacent. An arc is an ordered pair
of adjacent vertices. The graph I is said to be 2-arc transitive
or 2-geodesic transitive if its automorphism group Aut(I') is
transitive on arcs, and also transitive on 2-arcs or 2-geodesics,
respectively. Clearly, every 2-geodesic is a 2-arc, but some 2-
arcs may not be 2-geodesics. If I' has girth 3 (length of the
shortest cycle is 3), then the 2-arcs contained in 3-cycles are not
2-geodesics. The graph in Figure 1 is the complete multipartite
graph Ky which is 2-geodesic transitive but not 2-arc transitive
with valency 9. Thus the family of non-complete 2-arc transitive
graphs is properly contained in the family of 2-geodesic transi-
tive graphs.
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FIGURE 1. Ky

The first remarkable result about 2-arc transitive graphs comes
from Tutte [18, 19], and this family of graphs has been stud-
ied extensively, see [1, 8, 10, 12, 15, 21]. The local structure
of the family of 2-geodesic transitive graphs was determined
in [4]. In [5], Devillers, Li, Praeger and the author classified
2-geodesic transitive graphs of valency 4. Later, in [7], they
completely determined the family of prime valency 2-geodesic
transitive graphs. They proved that either such a graph is 2-
arc transitive or the valency p satisfies p = 1 (mod 4), and for
each such prime there is a unique graph with this property: it
is a non-bipartite antipodal double cover of the complete graph
Kp+1 with automorphism group PSL(2,p) X Zg and diameter
3. In [9], the author classified the family of 2-geodesic transitive
graphs of valency twice a prime, and completely determined such
graphs which are locally primitive. In this paper, we continue
the classification process, and we classify the family of 2-geodesic
transitive graphs of valency 3p where p is an odd prime.

A subgraph X of [ is an induced subgraph if two vertices
of X are adjacent in X if and only if they are adjacent in T
When U C V(I'), we denote by [U] the subgraph of I' induced
by U. The action of G on a set € is said to be primitive if G
has no non-trivial G-invariant partitions. There is a remark-
able classification of finite primitive permutation groups mainly
due to M. O’Nan and L. Scott, called the O’Nan-Scott Theorem
for primitive permutation groups. They independently gave a
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TABLE 1. locally primitive graphs

[T (u)] X
H(2,3) HA
K3 X K3 AS

line graph of Petersen graph, T'(6), T'(6) AS
line graph of Heawood graph, T'(7), T(7) AS
Lo(19)%,(=Perkel graph), L»(19)2 and L,(19)F [ AS

o] | oo ol

classification of finite primitive groups, and divided them into 8
distinct types, see [11, 17]. A graph I'is said to be arc transitive,
if its automorphism group is transitive on the arc set.

Our main result classifies 2-geodesic transitive graphs of girth
3 with valency 3p where p is an odd prime, particularly those
which are not 2-arc transitive.

Theorem 1.1. Let T’ be a 2-geodesic transitive graph of valency
3p where p is an odd prime. Let u € V(') and A = Aut(T).
Then one of the following statements holds.

(1) [T(u)] is connected and is A-arc transitive. If A, is prim-
itive on I'(u) of type X, then p, [['(uv)] and X lie in Table 1; if A,
is imprimitive on I'(u), then ' 2 K(pi1)m) where (m,n) = (3,p)
or (p, 3).

(2) [T(u)] is a connected diameter 2 graph and is not A,-arc
transitive, and there exist such graphs for each p.

(3) [[(u)] is disconnected and [I'(u)] = mK, where (m,n) =
(3,p) or (p,3). Further, I' is the point graph of a partial linear
space of order (m,n + 1) with girth at least 8, and there exist
such graphs for each p.

(4) T has girth at least 4 and is 2-arc transitive.

Remark 1.2. (1) Note that all graphs in Theorem 1.1 (1)-(3)
have girth 3. There is no conjunction between any two of (1),
(2) and (3).

(2)Proposition 2.6 provides infinitely many examples for The-
orem 1.1 (2); and Example 2.7 provides infinitely many examples
for Theorem 1.1 (3).
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(3) Graphs in Theorem 1.1 (4) have been studied extensively,
see [1, 8, 10, 12, 15, 21].

2. PROOF OF THEOREM 1.1

Lemma 2.1. ([2, p.5] or [3]) Let T be a connected graph that is
locally complete multipartite. Then X is either triangle-free or
complete multipartite. In particular, if [S(v)] = Km—1pp, then
¥ = Kmpp), where v € V(E) and m,b are integers, m > 2,b > 2.

In a connected graph I, the smallest integer n such that there
is a path of length n from u to v is called the distance from u to
v and is denoted by dr(u,v). The diameter of I is the maximum
of dr(u,v) over all u,v € V(I'). A graph I is said to be locally
2-geodesic transitive if, for each vertex u and for ¢ = 1,2, the
stabilizer A, is transitive on i-geodesics starting from u, where
A = Aut(T"). In particular, a 2-geodesic transitive graph is both
locally 2-geodesic transitive and vertex transitive.

Lemma 2.2. Let ' be a non-complete locally 2-geodesic transi-
tive graph of girth 3. Let A = Aut(T') and v € V(T'). Suppose
that " is locally connected and [I'(u)] is A,-arc transitive. Then
either I is locally primitive or I" = K(m+1)m) for some m,n > 2.

Proof. Since I is non-complete, locally 2-geodesic transitive and
locally connected of girth 3, it follows from [4, Theorem 1.1] that
[['(u)] has diameter 2.

Let v € T'(u). Suppose that A, is not primitive on I'(u)
and A is a nontrivial block containing v. Since [['(u)] is A,-
arc transitive, it follows that each nontrivial block contains no
edges of [['(u)], and hence there exists ¥ € A such that v,v’
are not adjacent, as A has at least 2 vertices. Then (v,u,?')
is a 2-geodesic. Since I is locally 2-geodesic transitive, A,, is
transitive on I'(u) N I'z(v), and hence I'(u) NTy(v) C A. Since
Ay is also transitive on I'(u) NT(v), (T(w)NT(@)NA = 0.
Thus A = {v} U (['(u) N T3(v)). Since any two vertices of A
are not adjacent, it follows that [I(u)] is an antipodal graph of
diameter 2. Suppose |['(u)| = s and |A| = n. Then s = mn for
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some m > 2. Further, A, has m nontrivial blocks in I'(u). Thus
[T'()] & Kmpmj. Finally, by Lemma 2.1, ' 2 K(mny1)[n)- a

Lemma 2.3. Let Q be a set of size 3p where 3 < p is a prime.
Let G < Sym(R2). If G is primitive on S, then the action type
is HA or AS. Further, if 3 < p, then the action type is AS.

Proof. Suppose that G is primitive on 2. If p = 3, then the
primitive action type is HA or AS. Assume that p # 3. Then
3p is not a power of a number. Thus G is not primitive type of
HA, HS, HC, SD, CD, PA or TW, and so G is primitive of type
AS (or see [16]). O

A graph I is said to be distance transitive if Aut(T") is tran-
sitive on the ordered pairs of vertices at any given distance.

Lemma 2.4. Let T be a 2-geodesic transitive graph of girth 3
with 3p vertices where 3 < p. Let u be a vertex. Suppose that
[['(w)] is connected, A,-arc transitive and A, is primitive on
I'(u) of type X. Then p, [['(u)] and X are in Table 1.

Proof. Since T is 2-geodesic transitive and [I'(u)] is connected,
it follows from [4, Theorem 1.1] that [I"(u)] has diameter 2 and
also A, is transitive on nonadjacent vertex pairs of [['(u)]. Since
[C(u)] is Ay-arc transitive, it follows that [I'(u)] is distance tran-
sitive.

Suppose that A, is primitive on I'(u) of type X. Then by
Lemma 2.3, if p = 3, then X is HA or AS; if p > 3, then X is
AS.

First, assume that p = 3. Then [['(u)] has 9 vertices. Since
I' is non-complete, [['(u)] is non-complete, and so [['(u)] has
valency r € {2,...,7}. If [['(w)] has valency 2, then by [5,
Corollary 1.4], T is either the Octahedron or the Icosahedron,
and neither has valency 9, a contradiction. Hence [['(u)] has
valency r € {3,...,7}. Since [['(u)] is distance transitive of
diameter 2, we inspect candidates in [2, p.221-223], and H(2, 3),
J(6,3) are the only two such graphs. In particular, if [['(u)] is
H(2,3), then X is HA; if [['(u)] is J(6, 3), then X is AS.

Second, assume that p > 3. Note that arc transitive graphs
of order 3p were classified by Wang and Xu [20], whenever p >
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3 is a prime. Since [['(u)] is connected, A,-arc transitive and
A, is primitive on I'(u), it follows from [20, Theorem 2] that
[['(u)] is one of the following graphs: Ty, Tv, T¢, TS, L3(2)3,
L3(2)3), L3(2)3;, L2(19)%;, L2(19)F and Ly(19)3. Since [T'(u)]
is distance transitive, [I'(u)] lies in [2, p.221-225], and we inspect
the candidates, p and I" are in Table 1. O

Let Q = {1,2,...,n} where n > 3, and let 1 < & < [2] where
(3] is the integer part of 3. Then the Johnson graph J(n,k) is
the graph whose vertex set is the set of all k-subsets of 2, and
two vertices u and v are adjacent if and only if junv| = k—1. In
particular, J(n,2) is called a triangular graph, denoted by T'(n).
The Cartesian product I')OI'; of two graphs I} and I'; is the
graph with vertex set V(I'1) x V(I'z), and two vertices (v, vg)
and (u;,us) are adjacent if and only if v; = u; and vy, ug are
adjacent in I'y or v = uy and vy, u; are adjacent in I';.

Lemma 2.5. Let I' = J(n,k) where 2 < k < (3] and n >
4. Then for each vertez v, [I'(v)] & K,_,OKy is connected of
diameter 2.

Proof. Let w = {1,...,k}. Then I'(u) = {u\ {i} U{ j}i €
{1,...,k},j € {k+1,...,n}}. For two vertices v; = (u\ {i;})U
{j1} and vo = (u\ {i2}) U {2} of ['(u), v;,v, are adjacent if
and only if either ¢; = i3 and j1,jo € {k+1,...,n}, or j1 = 7o
and 41,43 € {1,...,k}. Thus the map taking (u\ {i}) U {5}
to (4,7) defines an isomorphism from [I'(u)] to [A]O[A"] where
A = {(W\{1)U{}] € (k+1,...,n}}, A’ = {(@\{})U{n}]i €
{1,...,k}}, and [A] & K,—, [A'] & K. Since I' is vertex
transitive, it follows that [['(v)] & K,_xOKj is connected of
diameter 2 for every vertex v. O

A transitive permutation group G is said to be quasiprimi-
tive, if every nontrivial normal subgroup of G is transitive. In
particular, every primitive permutation group is quasiprimitive,
but the converse is not true. For knowledge of quasiprimitive
permutation groups, see [13] and [14].
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Now we show that Johnson graphs are 2-geodesic transitive
but not 2-arc transitive, and for each vertex u, [I'(u)] is con-
nected, and is not A,-arc transitive.

Proposition 2.6. Let I' = J(n, k).

(1) Assume that 2 < k < 5 and 5 < n. Then Aut(T') acts
primitively of type AS on V(I'), and for each vertez u, [[(u)] =
Kn_xOKy is vertex transitive but not arc transitive.

(2) Assume thatk = % > 3. ThenT is an antipodal graph with
fibres of size 2, Aut(I") is not quasiprimitive on V(I'), and for
each vertez u, [['(u)] = KiOKy is arc transitive. In particular,
G € {An, Sp} acts quasiprimitively but not primitively on V(T').

Proof. (1) Since n # 2k, it follows that A := Aut(') & S,.
Hence for each vertex u, A, = Sk X S,— is a maximal subgroup
of A. Since A is transitive on V(I') and n > 5, it follows that A
is primitive of type AS on V(T').

By Lemma 2.5, for each vertex u, [['(u)] & K,_xOKj. Since
n — k # k, it follows that [['(u)] is vertex transitive but not arc
transitive.

(2) For u € V(I'), let @ = {1,...,n} \ u, the complement of
win {1,...,n}. Thus dr(u,%) = k and in fact ['x(u) = {@},
by (J*). Thus ' is antipodal with fibres of size 2 forming an
imprimitivity system for A := Aut(T') in V/(T).

Now A = S, X Z, and Z; is not transitive on V(I'). Hence
A is not quasiprimitive on V(I'). However, as n > 6, A, is a
simple group, and so each subgroup G € {An,S.} of A acts
quasiprimitively but not primitively on V(T').

Finally, by Lemma 2.5, [['(u)] = K,OKj, and A, = Sp1 S
acts arc transitively on it. a
Example 2.7. Let I' = H(d, n) where (d,n) = (3, p+1) or (p, 4).
Then T is locally isomorphic to dK,_;, and by [6, Proposition
2.2), T is 2-geodesic transitive.

Proof of Theorem 1.1. Let I" be a 2-geodesic transitive graph
of valency 3p where p is an odd prime. If I" has girth at least
4, then each 2-arc is a 2-geodesic, and so 2-arc transitive, (4)
holds. In the following, we assume that I" has girth 3.
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Let w € V(T') and A = Aut(T’). Since I is 2-geodesic transi-
tive, it follows from [4, Theorem 1.1] that, either

(a) [[(w)] is connected of diameter 2, and the induced action of
A, on I'(u) is transitive on vertices and on pairs of non-adjacent
vertices; or

(b) [I'(u)] & mK, for some integers m > 2,n > 2.

First, assume that [['(u)] is connected and is also A,-arc tran-
sitive. Then by Lemmas 2.2 and 2.4, (1) holds. Second, as-
sume that [['(u)] is connected but not A,-arc transitive. By [6,
Proposition 2.1], the graph J(n, k) is 2-geodesic transitive, where
2 < k < [2] and n > 4. Further, it follows from Proposition 2.6
that Johnson graphs provide infinitely many such examples, and
(2) holds. Finally, assume that [['(u)] & mK, for some integers
m > 2,n > 2. Then (m,n) = (3,p) or (p,3), and by [4, The-
orem 1.2}, [['(w)] is the point graph of a partial linear space of
order (m,n + 1) with girth at least 8. By Example 2.7, there
exist such graphs for each p. a
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