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Abstract: A construction of authentication codes with arbitration from
singular symplectic geometry over finite fields is given and the parameters
of the codes are computed. Assuming that the encoding rules of the
transmitter and the receiver are chosen according to a uniform probability
distribution, the probabilities of success for different types of deceptions
are also computed.
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§1.Introduction

To solve the distrust problem of the transmitter and the receiver in the
communications system, G. J. Simmons introduced a model of authentica-
tion codes with arbitration (see [1]), which we may write simply (A2-code),
defined as follows:

Let S, E7, ER, and M be four non-empty finite sets, f : S x Ep — M
and g : M x Eg — SU{reject} be two maps. The six tuple (S, Et, Er, M,
f,9) is called an authentication code with arbitration (A2-code), if

(i) The maps f and g are surjective;

(ii) For any m € M and er € Er, if there is an s € S, satisfying
f(s,er) = m, then such an s is uniquely determined by the given m and
er;

(iii) p(er,er) # 0 and f(s,er) = m implies g(m,er) = s , otherwise
g(m, er) ={reject}.

S,E7,Eg, and M are called the set of source states, the set of trans-
mitter’s encoding rules, the set of receiver’s decoding rules and the set of
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messages, respectively. f and g are called the encoding map and decoding
map, respectively. The cardinals |S|, |Er|,|Er| and |M| are called the size
parameters of the code.

In an authentication system that permits arbitration, this model in-
cludes four attendance: the transmitter, the receiver, the opponent and
the arbiter, and includes five attacks:

(1) The opponent’s impersonation attack: the largest probability of an
opponent’s successful impersonation attack is Pr , then

{I{en € Epler C m}]}
|ER|

P; = max
meM

(2)The opponent’s substitution attack: the largest probability of an
opponent’s successful substitution attack is Ps , then

max |{er € Epler C mander C m'}|
€

Ps = max
ST meM H{er € Erler C m}]|

(3)The transmitter’s impersonation attack: the largest probability of a
transmitter’s successful impersonation attack is Pr ,then
E
PT = max mcan’tbengggcodedbyef I{eR € RIeR < mandp(eR,eT) ?é O}I

er€Er I{eR € ERIP(eR1 eT) # O}I

(4) The receiver’s impersonation attack: the largest probability of a
receiver’s successful impersonation attack is Pg, , then

max |[{er € Erler C mandp(er,er) # 0}
Pp, = max { =M
er€Er {er € Er|p(er,er) # 0}|

(5) The receiver’s substitution attack: the largest probability of a re-
ceiver’s successful substitution attack is Pg, , then

max |{er € Erler C m,m’ andp(er, er) # 0}
m'eM

Pp, = max
B = peEpmem Her € Erler C mandp(er, er) # 0}

In the 1990s, Wan Zhexian, Feng Rongquan etc. constructed authen-
tication codes without arbitration from geometry space of classical groups
over finite fields and special matrixes over finite fields (see [2]-[6]). From
the late 90s, Ma Wenping, Li Ruihu etc. constructed A2 -code from geom-
etry space of classical groups over finite fields (see [7]-[10]). In the present
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paper, a new A2 -code will be constructed from singular pseudo-symplectic
geometry over finite fields, and the parameters and the probabilities of
successful attacks of the codes are also computed.

§2.Fundamental Knowledge

Assume that F; be a finite field with ¢ elements of characteristic p, ¢ =

)
p* , pis a prime. Let K| = ( K o® ), where K = ( _?(u) IO )

The set of all (2v +1) x (2v + {) nonsingular matrices T over Fj satisfying
TK,T* = K; forms a group, called the singular symplectic group of degree
2v +1 and index v over F, , denoted by Spay4i1,.(Fy).

Let F}zw—l) be the (2v + l)-dimensional row vector space over F, we
have an action of Spa,.1,,(F,) on Fq(2”+l) defined as follows:

F2*) x Spoyy1,0(Fy) = FH)
(122 -+ Topgt), T) = (1, Ty, Togt)T.

The vector space Fq(z"'“) together with this action of Spa, 41, (Fy) is
called the singular symplectic space over F; . An m-dimensional subspace

P of F®*Y s said to be of type(m, s), if PK; P is cogredient to M(m, s),

where
0 I()
M(m,s)=[ -I® 0
O(m—Zs)

and P! denotes the transpose of P. Let e;(1 < ¢ < 2v + ) be the row -
vector in Fézu“) whose i-th coordinate is 1 and all other coordinates
are 0. Denote by E the /-dimensional subspace -of F.,(2"+') generated by
€241, €2042," ' * » €2p41. An m-dimensional subspace P of Fq(zu“) is called
a subspace of type(m, s, k), if
(i) PK, P! is cogredient to M(m,s) , and
(ii) dim(PN E) = k.

From reference [11], we know all subspaces of type(m,s, k) in F,,(2"+')
form an orbit of subspaces under the action of Sps, 41, (Fg).

Let P be a subspace of Fq(z"“) , and define the dual subspace of P
denoted by P+:

Pt = {z|z € F®*,zKy' = 0,¥y € P}.

§3.The Construction of A%-code
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Suppose that n = 2v +1, v 2 4,1 < s <r <t < v, Let U be a fixed
subspace of type (r+1,0,1) in the (2v 4-1)- dimensional singular symplectic
space Fq(z"“) ,and UNE =< ey,41 >, then UL is a subspace of type
(2v—7+k,t —1,l,). Let the set of source states S = {s|s is a subspace of
type (2t—r+k,t—r,k) and 1 < k <!, U C s C UL}; the set of transmitter’s
encoding rules Ep = {er|er is a subspace of type (2r + 1,7,1) and U C
er}; the set of receiver’s decoding rules Eg = {er|er is an m-dimensional
subspace of Fq(2u+l) and U + eg is a supspace of type (r + s+ 1,s8,1)}; the
set messages M = {m|m is a subspace of type (2t + k,t,k) and U C m}.

Define the encoding map :

f:SxEr— M,
(s,er) — m=s+er
and the decoding map :
g9: M x Eg — SU {reject}
s if e C m,where s=mnU*
(m,eg) — { reject, if er¢m

Assuming that the transmitters encoding rules and the receivers decoding
rules are chosen according to a uniform probability distribution, we can

assume that
U=(I<')ooo oo)
0 0 0 0 1 0 )’
r ver r y—r 1 l-1
then
M o0 0 o 0
UL 0 I o0 0 0
I 0 0 I¥" o
0 0o 0o o IV
T v~r r v—r {

First we prove this construction is an A2-code.

Lemma 1 (i) For anys € S and er € Er , then s +er = m € M (ii)
For any m € M, and er € Er, s = m N UL is the unique source state
contained in m, such that m = s + ep.

Proof. (i) For any s € S, er € Er, then let

Im 0 0 0 0 0 0 >
s= 0 Ry, O R4 0 0 Ry 2(t—r)
= 0 0 0 0 1 0 0 1
0 0 0 0 0 J&-D 0 k=1
r v—r T v—r 1 k—1 -k
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0 k

and
0 0 0 r
sKist=1] 0 —R4RS + Ry R} 0 2(t—r)
r 2(t—r) k

Since s is a subspace of type (2t—r, t—7, k), rank(—RqR5+ R, R}) = 2(t—7),
rank(sKst) = 2(t - r).

I o0 o 00 0 0 r
er = 0 R, 0 R, 0 Ry R,]|-~
0 0 0 0 1 0 0 1

r v—r r v—r 1 k-1 -k

and
0 Im 0
eTK,ea- = ( -1 —R"!Rg + R’zRf 0 )
0 0 0
r r 1

0 Im 0
~ | -1 0 0
0 0 0

where ~ denotes the two matrices are cogredient. Hence

m o0 0 0 0 0 0 r
0 R2 0 R4 0 0 R7 2(t-r)
m=s+er= 0 R, 0 R4 O 0 R, ro,
0 0 o0 0 1 0 0 1
0 0 0 0 0 JG-D 0 k-1
r v—-r r v—r 1 k-1 -k
then m is (2t + k)-dimensional subspace.Also because
0 0 I 0
mKmt = 0 —R4RS + RyR} —R4RY+ RRf O
~I")  _R\Rs+R,R;  -RiR}+ R,RY O
0 0 0 0
r 2(t—r) r k
0 0 m o
0 —R4RS + RoR} 0 0
R [ (L) 0 o o0 |°
0 0 0 0
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where rank(— R4 R5+ Ry RS )=2(t—r), then rank(mKym*) = 2t and dim(mn
E) = k. Therefore m is a subspace of type (2t + k, ¢, k), i.e. m € M.

(ii) If m € M, m is a subspace of type (2t + k, ¢, k), which contains U.
Then V € m , such that

e [ 0 100
(V)a(y)={ - o o]
0 0 0

r r 1
U
Let m = 14 , such that
P
0o In 0 0 0
U U\t -1 0 0 0 0
V |K| V]| = 0 0 0 It o
P P 0 0 It o 0
0 0 0 0 0
r r t—r t—r k
Write s = g ) . Obviously, then U LU, P L U, slU,ie. U C

s C UL, s is a subspace of type (2t — r + k,t —,k), hence s € S. Also
because any v € V and v # 0, there always v ¢ s, i.e. VNU+ = {0}, then
mnUL = ( }({' =s. Let eT=( IU, ) , then er is a transmitter’s

encoding rule, i.e. ey € E7 , such that m = s + er . Suppose s’ is another
source state contained in m. Since U € s’ c UL, then &’ c mNUL = s.
And dims’' =dim s , then s’ = 5, i.e. s = mNUL is the unique source
state contained in m.

From this lemma we know this construction is an A2-code.

In the following we compute the parameters of this code and the prob-
abilities of success for different types of attacks.

Lemma 2 The number of the source states is

IS} = 2U=RIN(2(t — r),t —;2(v = 7))N(k - 1,1 — 1)

Proof. Since U C s ¢ U+, s has the form as follows

Im 0 0 0 0 0 0
0 R2 0 R4 0 0 R7 2(t—r)
0 0 0 0 1 0 0 ’
0 0 o 0 0 I%-1) 0
r v—r r v—r 1 k-1 -k
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where (R; R4) is a subspace of type (2(t — r),t — r)) in the 2(v — 7r)-
dimensional symplectic space and Ry is arbitary. Hence

IS = 2RI N(2(t — 7),t —r;2(v — #))N(k — 1,1 —1).

Where N(m,s;2v) denotes the subspace’s number of type (m,s) in the
2v-dimensional symplectic space, and N(k,!) denotes the number of the
k-dimensional subspaces in an {-dimensional vector space.

Lemma 3 The number of the transmitter’s encoding rules is

|Exp| = N(r+1,0,1;2r +1,7,1;20)N(2r + 1,7,1; 2v)
- N(r+1,0,1;2)

Proof. Since any transmitter’s encoding rule is a subspace of type
(2r + 1,7,1) which contains U,

|Er| = N'(r +1,0,1;2r +1,7r,1;2v + l,v)

_ N(r+1,0,1;2r+1,7,1;20)N(2r + 1,7,1; 2v)
- N(r+1,0,1;2v)

Lemma 4 The number of the receiver’s decoding rules is

IERl = qs(2v—r+l)N(s, 1.)

Proof. ep is an s-dimensional subspace of F.,(Z"'H) , and for any eg €
ER,U 4+ eg is a subspace of type (r + s+1,s,1). Write eg be

(Rt R, Rs Ry Ry) s ,
l

r v—-r r v—r

where R3 is an s-dimensional subspace of a r- dimensional subspace, and
Ry, Ry, R4, Ry are arbitary. Hence |Eg| = ¢*@V—"+)N(s, 7).

Lemma 5 For any m € M, write the number of ez and eg contained
in m be a, b , respectively, then a = g"(2t~2rtk=1) p = gs(2t—+k) N (3 7).

Proof. Let m be a message, i.e. m is a subspace of type(2t + k, ¢, k)
and U C m, m has the form as follows:

Im o0 o 0 0 0 0 0
0 It o 0 0 0 0 O
m= 0 o o IMm ¢ 0 0 0
0 0 o0 0 It-7 9 0 0
0 0 0 0 0 0 I® o
r t—r v—-t r t—r v—-t k -k
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Since er is a subspace of type (2r 4+ 1,7, 1)which contains U, and e C m,

then

I o o 0 0 0 0 0 O

er = 0 R, 0 I™ Ry, 0 0 Rg O ,

0 0 O 0 0 0 1 0 0
1

r  t-r vet r t—r v—t k-1 -k

where Rj, Rs, Rg are arbitary. Therefore the number of er contained in m
is

a= q2r(t—r)+r(k—l) = qr(2t—2r+k-l)_

Since er is an s-dimensional subspace and U + eg is a subspace of type
(r+s+1,s1), and egr C m, then

eR=(R1 'Rz 0 R4 R5 0 R7 O)s )

r t—r v—-t r t-r v-t k I-k

where R4 is an s-dimensional subspace of a r-dimensional subspace, and
R,, Ry, R, Ry are arbitary. Hence the number of eg contained in m is

b= qs[2(£—r)+r+k]N(s, 7.) = qs(2t—r+k) N(s, ,',).
Lemma 6 The number of the messages is

I I _ IS ”ET|
T g Irtk-1)”

Proof. For any m € M, it contains a unique source state s € S and

a = ¢"®*~2r+k=1) encoding rules er € Er, such that m = s + er. Hence

S|Er S||E
BT

Theorem 1 The parameters of the A%-code are:
|S| = gZEU-RIN(2(t — r),t - r;2(v — r))N(k - 1,1 — 1).

T
IM| = r(2i—2r+k—1)

|Er| = N(r+1,0,1;2r+1,7,1;20)N(2r + 1,7,1;2v)
T = N(r+1,0,1;2v) )
|ER| — q’(z"""“)N(s,r).

Lemma 7 (i) For any er € Er, the number of ep contained in er is
¢ = g"tVsN(s,r).(ii) For any er € Er , the number of er which contains
episd= q(2u—2r+l-—1)(r—s).



Proof. (i) For any er € ET, since er is a subspace of type (2r+1,7,1)
which contains U, assume that

I 0 0 0 0 O
er = o 0IMm o0 o o0].

0O 0 0 0 1 0
1

r v-r r v—r -1
Since eg is an s-dimensional subspace of F.,(z""'l) and eg Cep,U+episa
subspace of type (r + s + 1, s,1). Suppose that
eR=(R1 0 R3 0 R5 0)3 ,
r ver r v—r 1 -1

where R3 is an s-dimensional subspace of a r-dimensional subspace, and
Ry, Ry are arbitary. Then the number of erp contained in er is ¢ =
q(r+ 1)’N(s, 7).

(ii) For any eg € Eg , suppose that

er=(0 0 I® 0 0 0 0), .

r v—r 8 r v—r 1 (-1
If er D eg , then let
I o0 o 0 0 0 0 r
en| 0 O I 0 o0 o0 o0 s
T=]1 o R, 0 IC-9 Ry 0 Ry | r-s °
0 0 0 0 0 1 0 1
r ver s r—s v—r 1 -1

where Ry, Rg, Ry are arbitary. Then the number of ey which contains eg
isd= q(2u—2r+l—1)(r—s).

Lemma 8 For any m € M and any eg C M , the number of ez which
contains eg in m is q(r—*)(3t-2r+k-1)
Proof. Write m be the form as in lemma 5. For any eg C m , let
eR=(R1 Ry 0 R4 Rg 0 R; Rg O)s ,
r t—-r v—t r t—r v—t 1 k-1 I-k
where Ry is an s-dimensional subspace of a r-dimensional subspace. If
er C m and er D eR ,then

Im g o o0 0 0 0 0 0\ +~

. 0 R, 0 R, Rs 0 0 Rg 0|

T 0 R, 0 R, RRYk 0 0 R, 0| r-s’
0 0 0 0 0 0 1 0 0/ 1
r t—r y—t r t—r v-t 1 k-1 I-k
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where ( g}’ ) is a r-dimensional subspace, and R}, Rf, R are ar-
4
bitary. Then the number of er which contains eg in m is
q2(r—s)(t-—r)+(r—a)(k-l) = q(r—a)(2t—2r+lc—l)'

Lemma 9 Suppose m; and my are two distinct messages which contain
a transmitter’s encoding rule e in common, s; and s, are the source states
which contained in m; and m,, respectively. Let sp = s;N sy ,dim sp = ky,
thenr+1 < k1 €2t —7r+k—1, and also (i) The number of eg contained
in my Nmy is g¢¥**N(s,r). (ii) For any ep C m; N my, the number of ez
which contains eg in m; Nmy is g("=)k1-r=1),

Proof. For m; = s; + e}, ma = s3 + e,m1 # my, therefore s; # s2.
Also because s; D U,sp DU ,thenr+1 < k; <2t—r+k—1. Let s
be complemented subspace of sg in s; , then s; = s + s.( = 1,2) . Since
m; = 8; + e = So + 8] + e, it is easy to know m; N'my = 59 + €f.

(i) From the definition of message, suppose that m; and my have the
form as follows: ’

™ 00 0 0\ -
0 A2 0 0 0 t—r
m = 0 0 I L] 0 0 r
0 0 0 Ay O t—r
0 0 0 0 As/ «
r v—r r v—r 1
I 0 0 0 0\ -
0 By 0 0 o0 t—r
my={ 0 0 IM o0 0 r
0 0 0 Bq 0 t—r
0 0 0 o0 Bs/) &
r v—-r r v—r
then
I 0 o 0 0 r
0 C, O 0 0 | t-r
m)yNmg = 0 0 I 0 0 r. (%)
0 0 0 C4 0 t—~r
0 0 0 0 Cs k

r v—-r T v—r 1

From above, m; N my = so + €7, then dim(m; N'my) = k; + r .Hence

0 C, 0 0 0
dim 0 0 0 C4 0 =k1—7‘.

0 0 O 0 Gs
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If er C m; N'my, then from the definition of eg,

eR=(R1 R2 Rs R4 Rs)s ,
r v-r r v—r I

where Rj3 is an s-dimensional subspace of a r-dimensional subspace, and
Ry, Ry, Ry, Ry are arbitary. Hence the number of eg in m; Nmy is

¢t N(s,7) = ¢ N(s, 7).

(ii) Let the represent matrix of m;Nmg be as(x).Then for e C miNma,

let
eR=(R1 R2 R3 R4 R5)s ,

r ver v wv-r
where Rz is an s-dimensional subspace of a r-dimensional subspace. If
er D er and er C my Nmg, then

I o0 o 0 o
0 R, R3 Ry 0 s
0O R, R, R, 0 R, | rs
0 0 0 0 1
r 1

v—r T V-r

er =
-1
Ry . . . ' Dt ot :
where R, ) r-dimensional subspace, and Rj, R}, Rg are arbitary.
Hence the number of e which contains eg in m; Nmy is q("")("l“""l).
Theorem 2. In this A2 -code, if er and eg are chosen according to

a uniform probability distribution, then the maximum probability of all
kinds of successful attacks are:

1 1 qr—a -1
P = e P =t
1 1
Pro = q(r—a)(zu—2t+z—k) . Pp, = q_':;

Proof. (i) Suppose that the opponents use the message m to cheat
the receiver, the receiver’s impersonation attack is successful if and only if
the message m contains the receiver’s decoding rules.Since the number of

(2t—r+k)sN(s 1’) 1
tained i isb, Pr= 2L = .
€r contal nmiso, Iy q(2u~r+l)sN(s, ,’.) q(2u—2t+l—k)s

(ii) Suppose that the opponents intercept the transmitter's message m;
and then transmit mg to receiver. Only if the source state s; which con-
tained in the message m; is different to the source state sy contained in
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the message mg, the opponent’s substitution attack is successful. Since
er C er C my, the opponent’s best tactics is to choose e/, C m; , such
that my = s3 + e, and dim s; N sy =k , k; is as large as possible. Then

klsN(s T) 1

Ps = 4 2"/ where when k; =2t —r + k— 1, Ps = L is max-
. B q(2t—r+E)sN(s,r) where when £, r+ S Eg 1S max:
mum.

(iii) Suppose that the transmitter send a message m and m 2% er. If
and only if m D eg, the transmitter’s impersonation attack is successful.
Since eg C er, the transmitter should select m such that the number of
er contained in m is as much as possible, and m 2 er. It is easy to know
the number of ep is ¢("**N(s,7 — 1) at most. Since the number of eg
q(r-H)sNiS, r— 1) _ q:—s -1

q(r+l)sN(s, r) T ¢ -1

(iv) Suppose that the receiver claimed that it has received the message
m in the case of receiving no message. If m D er, the receiver’s imper-
sonation attack is successful. Since eg C ep, the receiver should choose
m such that m D eg . Since the number of ez which contains eg in m is

(r—s)(2t—2r+k~1) r—s)(2t~2r+k=1)
r—s —2r - B
q y Pr, = P e I D[ s B

contained in ey is ¢, Pr =

(v) Suppose that the receiver after having received the message m1, but
claimed to have received another message ms . Only if the source state s;
contained in m; must be different to the source state s, contained in mg,
then the receiver’s substitution’s attack is successful. Since er C ex C m;
, the receiver’s best tactics is to choose e} to meet eg C e} C m;, such

that my = 55+ €7, and dim(s; Ns2) = ky , k; is as large as possible. Hence
(r—s)(ky—r—1)
Pr = ey, where when ky = 2t =+ k~1, Pp, = Ly is

maximum.
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