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Abstract. For a graph G, let D(G) be the set of all strong orientations of
G. Orientation number of G, denoted by d(G), is defined as min{d(D)|D €
D(G)}, where d(D) denotes the diameter of the digraph D. In this paper, we
prove that d{Psx K5) = 4 and d{CsxK3) = 6, where x is the tensor product
of graphs.

1 Introduction

Let G be a simple undirected graph with vertex set V(G) and edge
set E(G). For v € V(G), the eccentricity, denoted by eg(v), of v is
defined as eg(v) = max {dg(v,z)|z € V(G)}, where dg(v,z) denotes
the distance from v to = in G. The diameter of G, denoted by d(G), is
defined as d(G) = max{ec(v)|v € V(G)}.

Let D be a digraph with vertex set V(D) and arc set A(D) which
has neither loops nor multiple arcs (that is, arcs with same tail and
same head). For v € V(D), the notions ep(v) and d(D) are defined
as in the undirected graph. For z,y € V(D), we write z — y or
y « z if (z,y) € A(D). Forsets X,Y C V(D), X — Y denotes
{(z,y) € A(D) : € X and y € Y}. For distinct vertices vy, vs,...,vk,
vy — vz = ... — v represents the directed path in D with arcs
v — Vg, V2 — U3, ..., Up—1 —> Uk. For subsets V;,V5,...,Vi of V, we
write Vi = Vo — ... = Vi for the set of all directed paths of length
k —1 whose ith vertexisin V;, 1 <i < k.

For graphs G and H, the tensor product, G x H, of G and H is the
graph with vertex set V(G)xV(H) and E(GxH) = {(u,v)(z,y) : uz €
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E(G) and vy € E(H)}. For z € V(G), the H-layer H, is the subset
{(z,y) : y € V(H)} of vertices of G x H, and similarly, for y € V(H),
the G-layer G, of G x H is {(z,y) : = € V(G)}.

An orientation of a graph G is a digraph D obtained from G by
assigning a direction to each of its edges. By abuse of notation, by D we
mean an orientation of G and also the digraph arising out of the orientation
of G.

A vertex v is reachable from a vertex u of a digraph D if there is
a directed path in D from u to v. An orientation D of G is sirong
if any pair of vertices in D are mutually reachable in D. Robbins’
celebrated one-way street theorem [5] states that a connected graph G has
a strong orientation if and only if G is 2-edge-connected. For a 2-edge-
connected graph G, let D(G) denote the set of all strong orientations
of G. The orientation number of G, denoted by d(G), is defined as
min{d(D)|D € D(G)}. In [2], d(G) — d(G) is defined as p(G). Any
orientation D in D(G) with d(D) = d(G) is called an optimal orientation
of G. For results on orientations of graphs, see a survey by Koh and Tay
[2).

Let P,, C, and K, denote the path, cycle and complete graph of
order n, respectively. Notations and terminology not defined here can be
seen in [1].

Except for few pairs (r,s), we have evaluated p(GxH) for combinations
of graphs including K, x K,, P x K, and C; x K, see [3] and [4]. We
have proved, in [4], that p(P3 x K5) < 1 and p(Cg x K3) < 2. In this
paper, we prove p(Ps x K5) = 1 and p(Cg x K3) = 2.

2 Proof

First we show that p(P; x K5) = 1, a particular case left out in [4].
Theorem 2.1. p(P; x K5) = 1.

Proof. Let V(P3) = {0,1,2}, E(Ps) = {{0,1}, {1,2}} and V(Kj5) =
{0,1,2,3,4}. As d(PsxKs) = 3 and d(PyxKs) < 4, see [4], to complete
the proof, it is enough to show that J(Ps x Ks) # 3. If possible assume
that there is an orientation D of P3 x Kg so that d(D) = 3.
Claim. For i € {0,2} and j € {0,1,2,3,4}, d}((i,5)) = 2 =
d5((i,5))-

By the nature of the graph P; x K, it is enough to verify this claim for
the vertex (0,0). If d}((0,0)) = 1, then, by symmetry, we assume that
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N#((0,0)) = {(1,1)}. Now dp((0,0),(2,1)) > 3, a contradiction. Hence
:rjf((o, 0)) # 1. Similarly, d5((0,0)) # 1 (can be obtained by considering
the converse digraph of D) and therefore d}((0,0)) = 2 = d;((0,0)).

By symmetry, we assume that N7((0,0)) = {(1,1),(1,2)} and
Np((0,0) = {(1,3),(1,4)}. As d(D) = 3, dp((0,0),(0,5) =
2, for every j € {1,2,3,4} and dp((0,0),(2,5)) = 2, for every
j € {0,1,2,3,4}. Consequently, (1,1) — {(0,2),(2,2)}, (1,2) —
{(0,1),(2,1)} and either (1,1) = (2,0) or (1,2) — (2,0); by symmetry,
we assume that (1,1) — (2,0). Again, since dp((0,j),(0,0)) = 2,
for every j € {1,2,3,4} and dp((2,5),(0,0)) = 2, for every j €
{0,1,2,3,4}, we have (0,4) — (1,3), (0,3) = (1,4), (2,4) — (1,3)
and (2,3) = (1,4). As dp((2,0)) = 2, we have to consider three cases:
(1,2) =» (2,0), (1,3) = (2,0) and (1,4) — (2,0). But the cases
(1,3) = (2,0) and (1,4) — (2,0) are similar.

Case 1. (1,2) — (2,0).

As (2,00 « {(1,1),(1,2)}, (200 - {(1,3),(1,4)}. Now
dp((2,0),(0,4)) # 2, a contradiction.

Case 2. (1,3) — (2,0).

As (2,0) « {(1,1),(L,3)}, (2,00 - {(1,2),(1,4)}. Since
dp((2,0),(0,5)) =2, j € {2,4}, (1,2) = (0,4) and (1,4) = (0,2).
As dB((O’ 2)) = 2, (Os 2) - {(1:0):(173)}' Since dp((o,l),(2,0)) = 2,
(0,1) = (1,3). Now dp((0,1),(0,4)) = 2 implies that (0,1) — (1,0) —
(0,4). Finally, dp((0,4),(0,1)) # 2, a contradiction. ]

Next, we shall show that p(Cs x K3) = 2, again a particular case left
out in [4].

Theorem 2.2. p(Cs x K3) = 2.

Proof. Let V(K3) = {0,1,2}, V(Cs) = {0,1,2,3,4,5,6,7} and
E(Cs) = {{i,(¢ +1)(mod 8)} : i € V(Cs)}. As d(Cs x K3) = 4 and
J(Cg x K3) < 6, see [4], to complete the proof, it is enough to show that
d(Cs x K3) ¢ {4,5}. If possible assume that there is an orientation D
of Cg x K3 so that d(D) < 5. Note that Cs x K3 is a bipartite graph
with bipartition X = {0,2,4,6}x{0,1,2} and Y = {1,3,5,7} x{0,1,2}.
Hence) for T,% € X and YL¥y2 € l,a dD(($1:x2))a dD(('ylay2)) € {21 4}
and dD((xlvyl)) € {1:3a 5}'

Claim 1. For (3,) € V(Cs x Ka), db((i,7)) = 2 = dp((i,4)).

It is not difficult to see that Cs x K3 is vertex-transitive; hence it
is enough to verify Claim 1 for the vertex (0,0). Suppose d}((0,0)) =
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1 and, by symmetry, we assume that (1,1) is the unique out-
neighbour of (0,0). Now dp((0,0),(6,7)) = 4, for every j € V(Ks).
dp((0,0),(6,0)) = 4 implies that (1,1) = (0,2) = (7,1) — (6,0).
dp((0,0),(6,1)) = 4 implies that (0,2) — (7,0) — (6,1).

If (7,1) = (6,2), then dp((5,0),(7,1)) > 6, a contradiction. Hence,
(6,2) — (7,1). dp((0,0),(6,2)) = 4 implies that (7,0) — (6,2).

Suppose (1,0) — (0,2). Then dp((0,2),(2,1)) = 4 implies that
(7,0) = (0,1), and hence dp((5,0),(7,0)) > 6, again a contradiction.
Thus we conclude that (0,2) — (1,0).

dD((GsO)’(0v2)) =4 implies that (6,0) = (7,2)- dD((G,l),(O,Z))
= 4 implies that (6,1) — (7,2). dp((7,2),(5,1)) = 4 implies that
(1,2) = (0,1) = (7,0) and (6,2) — (51). dp((7,2),(5,2)) =
4 implies that (6,1) — (5,2). dp((7,0),(1,0)) = 4 implies that
0,1) = (1,0). dp((7,0),(1,2)) = 4 implies that (0,1) — (1,2). Now
dp((2,1),(0,1)) > 6, a contradiction. This completes the proof of Claim
1.

Claim 2. There exists a vertex (%,j) such that two out-neighbours of
(3,7) are in the same Kj3-layer.

Suppose all vertices have their two out-neighbours in different Kj-layers.
By Claim 1, there exist exactly two paths (0,0) — (1,%1) — (2,42) =
(3yi3) = (4:7:4) and (0,0) - (71j1) - (6aj2) - (5’j3) - (41j4)
of length 4 from the vertex (0,0) to vertices in {(4,0),(4,1),(4,2)},
where 11, 12, 43, 14, J1, J2, j3’ j4 € {0, 112}' Ifk e {0, L, 2}\{i41j4}s then
dp((0,0), (4,k)) = 6, a contradiction.

Claim 3. Let (3,5) € V(Cs x Ka).

() If G,5) = {G+L5)GE+1,j} for 0 < j < 3" < 2 and
§ 3" # 4, then (i+1,5) — (4,3") = (-1,j) — (47) end
(E+1,5") = (,5") = G-1,5") = (G])-

(i) If (i,7) = {( - 1,5),(¢ - 14"} for 0 < §
i §" # j, then (i —1,7") = (,5") = (@ +1,
(i—lsj") = (17.1’) - (1’+13.7”) - (i?j)

As Cs x K3 is vertex-transitive, it is enough to verify Claim 3 for
the vertex (0,0). Suppose that (0,0) — {(1,1),(1,2)}. By Claim 1,
{(7,1),(7,2)} = (0,0). dp((0,0),(6,0)) = 4 implies that at least one
of (1,1) = (0,2) or (1,2) — (0,1) must be true. Suppose exactly
one of them is true. We may assume that (1,1) — (0,2) and (0,1) —
(1,2). dp((0,0),(6,0)) = 4 implies that (0,2) = (7,1) — (6,0).
dp((0,0),(6,1)) = 4 implies that (0,2) — (7,0) = (6,1). By Claim
1, (0,2) « (1,0) and (7,1) « (6,2). @p((0,0),(6,2)) = 4 implies

< j” < 2 and
i) = (i,j) and
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that (7,0) — (6,2). By Claim 1, (7,0) « (0,1). Again by Claim 1,
(0,1) «+ {(1,0),(7,2)}. Now dp((7,0),(1,0)) > 6, a contradiction.

Thus, (1,1) — (0,2) and (1,2) — (0,1). By considering the converse
digraph, we have also that (0,1) — (7,2) and (0,2) — (7,1). An
analogous argument will complete the proof of Claim 3.

By Claim 2, as Cs x K3 is vertex-transitive, we may assume that
(0,0) = {(1,1),(1,2)}. By Claim 3, (1,1) - (0,2) — (7,1) - (0,0)
and (1,2) = (0,1) — (7,2) — (0,0). dp((0,0),(6,0)) = 4 implies that
either (7,1) — (6,0) or (7,2) — (6,0). But these two cases are similar,
so we may assume that (7,1) — (6,0). By Claim 1, (6,2) — (7,1).
dD((Ovo)a (6’2)) = 4 implies that (7’0) - (6: 2) dD((Oi 0))(61 1)) =4
implies that either (7,0) — (6,1) or (7,2) — (6,1). By Claim 3, if
(7,0) = (6,1), then (6,1) — (7,2) = (0,1). But (0,1) — (7,2)
earlier, a contradiction. Thus, (7,2) — (6,1) — (7,0). By Claim 1,
(6,0) = (7,2).

Let a K3-layer be called an X-layer if each vertex in the Ka-layer has its
two out-neighbours in different K3-layers, and called a Y-layer otherwise.
For i = 0,1,...,7, call the Kjs-layer containing the vertex (i,1) as the
i-th Kj-layer.

By Claim 1, the 6-th Kjs-layer is an X-layer. By Claim 1, either
(0,1) = (7,0) - (0,2) or (0,2) — (7,0) = (0,1). In either case,
exactly one of (0,1) or (0,2) will have its two in-neighbours in the 1-st
Kj-layer. By symmetry, since the 7-th and 6-th Kj-layers are X-layers,
the 1-st and 2-nd Kj-layers are also X-layers. Thus, if the i-th K3-layer
is a Y-layer, then the (i + j)-th Ks-layers for j = 2,1,—1,—2, will be
X-layers. Hence at most one of the 3-rd, 4-th and 5-th Kjs-layers can be
a Y-layer.

Suppose the 4-th Kjs-layer is a Y-layer. There exists a vertex (4,7)
such that its out-neighbours are in different Kj3-layers. Then at least one of
the vertices in the 0-th K3-layer cannot be reached by (4,3) in less than
5 steps. Suppose the 3-rd Kj-layer (the argument is similar for the 5-th
Kj-layer) is a Y-layer. Let (4,j) be the vertex such that its out-neighbour
in the 3-rd Kj-layer has its out-neighbours in different Kj3-layers. Then
at least one of the vertices in the 0-th K3-layer cannot be reached by (4, 7)
in less than 5 steps.

Thus, d(Cs x K3) > 6 and the theorem is proved. ]
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