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Abstract

Let G be a graph with a vertex set V(G), dg(u,v) and ég(v)
denote the topological distance between vertices © and v in G and
the degree of the vertex v in G, respectively. The Schultz polyno-

mial of G is defined as H¥*(G) = Y (dc(u) + dg(v))zdctv)
{v,0}CV(G)

and the modified Schultz polynomial of G is defined as H*(G) =
Y. dc(u)dc(v)ze™ ). In this paper, we obtain explicit an-

{uw}CV(G)

alytical expressions for expected values of Schultz polynomial and

modified Schultz polynomial of a random benzenoid chain with n

hexagons. Further expected values of some related topological in-

dices are obtained.

Keywords: Schultz polynomial, modified Schultz polynomial, ran-
dom benzenoid chain, expected value, generating function.

1 Introduction

Let G be a graph with a vertex set V(G) and let dg(u,v) denote the topo-
logical distance (or distance for short) between vertices % and v in G, i.e.,
the length of a shortest path connecting u and v in G, d¢(u) denote the
degree of vertex u in G, respectively. The subscript is omitted when there
is no risk of confusion.

In 2005, I. Gutman introduced [3] two polynomials in variable z in G,
called the Schultz polynomial H* (G, x) and the modified Schultz polynomial
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B
Fig. 1: The three types of local arrangements in benzenoid chains By 1.

H*(G, z), which are analogs for the Hosoya polynomial H(G, z) introduced
by Hosoya [2]. The definitions are as follows:

HYG,z)= D (bc(u)+dg(v))zde™?,

{=v}CV(G)

H'G,z)= Y. dc(u)a(v)zict,
{u0}CV(G)

HGz)= )  zi,
{uv}CV(G)

Here, u and v do not necessarily distinct. For some recently results about
this field, we refer the readers to the Refs. [3, 5, 7, 8, 10].

Let B, denote a benzenoid chain with n + 1 hexagons (n > 0). There
are obviously unique benzenoid chains B,4+; when n = 0,1. More gen-
erally, a benzenoid chain B, can be regarded as a benzenoid chain B,
to which a new terminal hexagon with vertices {un,y1, Y2, ¥3,y4,vn} is ad-
joined. However, when n > 2, the terminal hexagon can be attached in
three ways, resulting in the local arrangements Bl , ;, Bn+1' B3, ,, accord-
ing to the related position of the terminal hexagon shown in Fig. 1.

A random benzenoid chain, R, with n + 1 hexagons, is a benzenoid
chain obtained by stepwise additions of terminal hexagons. As the initial
steps, Ry = Bj,R; = Bs, and for each step k (2 < k¥ < n) a random
selection is made from one of the three possible constructions:

By — B} k+10 with probability p,,

B;. — B} ke with probability p; or

By — B}, ,, with probability ¢ = 1 - p; — pa.

We assume the probabilities p; and p, are constants, invariant to the step
parameter k. That is, the process described is a Markov chain of order zero
with a state space consisting of three states.

In the present paper, we calculate the expected value of the Schultz
polynomial and modified Schultz polynomial of a random benzenoid chain
R, with n hexagons and give explicit analytical expressions by using the



combinatorial tool: generating function. Further, the expected values of
some related topological indices are obtained.

2 Expected values of Schultz polynomials and
modified Schultz polynomials

Let G be a connected graph with a vertex set V(G). For the simplicity, we
define a notation as follows: for a vertex u € V(G),

HG(u;ﬂ!) = Z zd(u,u)’
veV(G)
i.e., the contribution of the vertex u to the Hosoya polynomial H(G,z) of
G. If we consider the effect of degree, we can define the other notation:
Hi(uiz)= Y d(v)ad®,
veV(G)

Hence, alternative formulae of H+(G,z) and H*(G,z) are expressed in
terms of HS(u; z) as

HY(G,z)= Y Hiwz)+ Y &), (1)
ueV(G) veV(G)

H‘(G,x):% Y swHEm) 5 Y 8w, @)
ueV(G) ueV(G)

2.1 Recursion relations

As described in the previous section, a benzenoid chain B, is obtained by
attaching to a benzenoid chain By, a terminal hexagon consisting of vertices
Un, Y1,Y2,Y3, Y4, Un (see Fig. 1). Now, we will give some basic lemmas:

Lemma 2.1.

Hp,, (y1;z) =zHp, (un;z) +2° + 2% + 2+ 1, (3a)
Hp, . (y2z) = :L'ZHB“(un;.’L') +zi 420+ 1, (3b)
Hp,, (ys;x) = 2?Hp (vn;z) + 22 + 2T + 1, (3c)
Hp,, (ys;z) = zHp, (vn;z) + 2 + 22 + 2 + 1. (3d)

Proof. We only give the proofs of Egs. (3a) and (3b). From the definition,

Hp,,(yiz)= ) zl®)= Y~ gdmwtl 08 1 02 50
wEV (Bny1) weV(By)
=z Z ) 4 o3 4 22 42+ 1 =zHp (un;z) + 22 + 22 + 2+ 1;
weV(Ba)
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Hp(yzz)= 3 ziaw) = 3 gdlmurt2 524954
we€V(Bnt1) weV(Bn)

=z? E z?tnw) 1 22 4 92 + 1 = 22Hp (un;z) + 22+ 22 + 1.
weV(Ba)

We can prove Egs. (3c) and (3d) in analogous ways. O
Similarly, we have

Lemma 2.2.

H},, (v1;z) =zH} (un;z)+22° +32% + 32+ 2, (4a)
Hj‘gn“(yz;x) = 2Hgﬂ(u,‘;:::) +z3 4322 + 4z + 2, . (4b)
Hf;n“(ya;x) = 2H§“ (vnjz) + 23+ 322 + 42 + 2, (4c)
H} , (ya;7) = zHY (un;z) + 22° + 32% + 32 + 2, (4d)

Lemma 2.3.

H*(Bny1,2) = H (Bn,7) + (z + 22)(HY, (un; ) + HY, (vn; 7))+

(222 + 2z + 1)(Hp, (un; ) + Hp, (Un; 7)) + 62° + 122% + 14z + 18. (5)

H*(Bn41,3) = H*(Bn,z) + (2% + 25 + 1)(H}_ (un;z) + Hp, (vn; 7))
+ 82% + 1622 + 17z + 22. (6)

Proof. From the definition, applying Egs. (3) and (4), we have

H¥Bryp,2) = Y (bun(0) 405, = 3
{w,z}CV(Bn+1) {w,z}CV(Bn)

(6B (W) + 05, ()28 + > (8B (w)+
{w}CV(Bn4+1),{2} C{y1,¥2,¥3.94}
53n+1 (z))zd(w,z) = ( Z (63" (‘w) + 53" (z))xd(""z)
{,2)CV(Ba)\{tn,vn}
+ > (08, (w)+3p, () + 1)z +
{W)(_;V(B,.)\{uu,v..},{z}g{u,.,v“} {w.z}g{u,.,v,.}
(05, (w) +6p.(2) + 2)96"(“'”)) +( > 08041 (W)
{w}CV(Bns1){z}C{v1.v2,¥3,44}

gd?) 4 > 2:::"('"")) = ( > (Gs.(w)
{w}CV(Bat1),{z}C{¥1,¥3,¥3,%a} {w,2}CV(By)
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+65,(2))z%?) + (Hp, (un; ) + Hp, (va; ) — 2(z + 1)) + 2(z + 2))

4 4
+ (X H,.,, (wi2) — 22 + 227 + 32)) +2( 3 Hi, . (4 7) — (2°

i=1 i=1

4 4
+20% 4 3))) = H*(Bay2) + Y HE,, 0i2) + 2 Hp,,, (us2)
i=1 i

i=1
+ Hp, (un;z) + Hp, (vn;z) — 47° — 822 — 122 4+ 2
= H*(Bp,z) + (z + 2®)(H}, (un; z) + HE (vn;2)) + (22 + 2z + 1)
(Hs, (un;z) + Hp, (vn;x)) + 62% + 1222 + 147 + 18.

Similarly, we can prove Eq. (6). a

In fact, the equations discussed above associated with a specific ben-
zenoid chain are valid for a random benzenoid chain, i.e., Egs. (3)-(6) still
hold when we simultaneously replece By, for R, and B, for R,.

In what following we consider contributions of u,41 and vn4) to
H*(Bpy1,z) and H*(Bp41, ) according to the positions of ©,, 11 and v,41.
There are three cases to consider:

Case 1. Bpyy — Bl ,,. In this case, uy+1 = ¥ and vn4; = 2. Conse-
quently, Hp,,,, (un41;7) = Ha,,,(y1;%) and Hp,,, (vn41;7) = Hp,,, (¥2; ),
ng(u,.“;x) = Hgn“(yl;z) and Hf;n“(vn.,.l;x) = Hg,‘“(yg;z) which
are given by Eqgs. (3a) and (3b), Eqgs. (4a) and (4b), respectively.

Case 2. Bny1 — BZ,,. In this case, ny1 = y3 and vny) = y4. Conse-
quently, Hp,,,, (un+1;2) = Hp,,,(y3;z) and Hp,_,, (vn41;2) = Hp,,,(y4;7),
H}’B"“(u,,“;x) = Hfgn“ (y3; ) and Hgn“(v,..,.l;:v) = Hgn+l(y4;x), which
are given by Egs. (3c) and (3d), Eqs. (4c) and (4d), respectively.

Case 3. Bpy1 — B3 ;. In this case, tnt) = yp and v,4; = y3. Conse-
quently, Hp,,,, (un+1; ) = Hp,,,(y2; ) and Hp,_,, (vn41;2) = Hp,,, (v3;2),
Hg““(u,..,.l;x) = Hg"_“(yg;x) and Hg"“(vm.l;x) = Hgn“(y;;;:z:), which
are given by Egs. (3b) and (3c), Eqs. (4b) and (4c), respectively.

For a random benzenoid chain Rny1, H*(Ro41,2), H*(Rpy1,2),
Hp,y\(un41;%), HRppy (Un41;2), HY ,, (Un4152) and HY | (vn11;7) are
random variables and we denote their expected values by H,f, ,(z), Hy, (),
Un41(z), Voga(z), US,1(z) and V8, (z), respectively, i.e.,

HY,\(z) = E(H*(Rn1,2)), Hpyy (z) = E(H*(Rp41,2)),
Unt1(z) = E(HR, ., (4n4+1; %)), Vay1(z) = E(Hp, ,, (Vn41; T)),
Urf+1(3) = E(Hg,,+1(un+l;z)) and V:f+1 (=) = E(Hfz,.“(vnﬂ;x))-

Since the above three cases occur in random benzenoid chains with prob-
abilities p;, po and g = 1 — p; — po, respectively, by the definition of the
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expected value we immediately obtain

Un+1(z) = p1HR,.,,(v1; 7) + p2HR, 1 (3 2) + ¢HR,,, (v2;2),  (7a)
Vat1(z) = prHR,,, (v2; 7) + p2HR,,, (4; ) + 9HR,,, (v3;2),  (7b)
Uini(@) =p1Hp , (;2) + p2H} |, (ysi2) + gH} |, (y3;5)  (7c)
Vi3a(z) =piHY, , (v2;2) + p2HY , (vai ) + qHB ,, (y3;z),  (7d)
Substituting the corresponding analogues associated with random benzenoid
chains R,, and R,4; to Egs. (3) and (4) for Eq. (7), we get
Uns1(2) = (112 + q2°) HR, (i ) + P25 HR, (vn; ) + (2° — 2)p1 + (2 + 1)%,
Vas1(z) = (923 + g2°) HR, (vn; ©) + P15 HR, (un; @) + (2° — 2)p2 + (2 + 1)%,
Ui 11(z) = (m1z+922) H,, (tn; 2) + p2z’ Hpp, (Va3 ) +(1 + p1)2° +32° +(4 — p1)z+2,
V(@) =(paz+qz2)HE, (vn;T) + P12’ HY (un; )+ (1 + p2)2® +32% + (4 — p2)z+2.
By applying the expectation operator to the above equatlons, and noting

that E(Un41(z)) = Un41(2), E(Vat1(2)) = Vasa(z), Uly,(2)
= E(H},,,(4ns1;2)) and Vi, (2) = E(H},.,,(vny1;2)). We obtain

Un+1(2) = (12 + g2°)Un(z) + p22°Va(2) + (z° — 2)p1 + (z + 1)%, (9a)
Vas1(z) = (P23 + qz2) V(@) + 212°Un(z) + (2° — 2)p2 + (z + 1)?, (9b)
Uis1(z) = (m1z + q2°)U(x) + p2a®Via (z) + (1 + p1)2° + 32 + (4 —p1)z + 2,
(9¢c)
V,f_,_l(z) = (p2z + qzz)V,f(m) + pu:zU,f(a:) +(1+ pz):z:3 +322 + (4—p2)z+2.
(9d)

A recursion relation for the expected value of the Schultz polynomials and
modified Schultz polynomials of a random benzenoid chain can be obtained
from Eqgs. (5) and (6) by using Ry in place of By (k = n,n + 1) and by
using the expectation operator:

Hipi(z) = Hy(z) + (22 + 22 + 1)(Ui(z) + Vi (2)) + 82° + 162° + 17z + 22;
H} i (2) = HY () + (2 + 2)(Ud(z) + Vi (2)) + (22 + 22 + 1) (Un(z)
+ Va(2)) + 62° + 122 + 14z + 18. (10)

In order to make the calculation more convenient, we assume that the

system of recursion equations (9)-(10) holds for n > 0, and set boundary
conditions as:

H (z) =2z +4,Hj(z) =z,Up(z) =z + 1,
Vo(z) =z +1,U8(z) =z + 1, V(z) =z + 1. (11)



3 Solution for recursion equations

To solve the recursion equations (9)-( iO), we use the method of the gener-

ating function [6]. We will use the fact that ) t" = (1-¢)"}, 0<t< 1,
n20

and define the following generating functions in variable t, 0 <t< 1
U) = ZZ Un(z)t™, V(1) = Z Va(@)th, U%(t) = X Ul(z)en, VA(t) =

n20
> V"(z)t" H*(t) = Z H‘(a:)t" and H+(t) = 3 H}(z)t".
n20 n20
From Egs. (9)-(11), we get relations of their generating functions as
follows:
—z)py + t(z + 1)2
1-1¢
_ 2
"’)’l’zftt(" O a4, (12b)

t((1+p1)z® + 322 + (4 — p1)z + 2)

+z+1, (12a)

U(t) = t(piz + qz2)U (L) + paz’tV(¢t) + Ha®

V(t) = t(paz + ¢2®)V (2) + ma®tU(t) + t(a’

Us(t) = t(prz + qz)U(t) + p2a®tVi(8) +

1-1¢
+z+1, v (12¢)
3 2 _
VEE) = pa + =WV () + piaiv? () + bR ¥ 32 4 (Ao pa)at D)

+z+1, (12d)
HY(t) = tH*(t) + (z + 22t (U (t) + Vo (t)) + (1 + 2z + 222)t[UR) + V(O)|+
t(6z° + 1222 + 14z + 18)

— + 2244, (12¢)
3 2
H*(8) = tH* (t) + (1 + 22 + 22)e(U%(2) + V3 () + 285+ ""f_*; 172 +22)
+z. (12f)

As Egs. (12a) and (12b) form a system of two linear equations of vari-
ables U(t) and V'(t), a straightforward calculation yields:

) = + G Bt e
e e )
e mmg(;r l)svt) 2:13)(?(: :21)) * (p(zlz 2—4:;:)1()1(“:4;)1)
+ m(m(1 —p 3221 —3(:;; - (1 —l:c2t 1 -twt)' (13b)
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As Eqgs. (12c) and (12d) comprise a system of two linear equations in
two variables U4(t) and V¢(t), a straight forward calculation results in

Uity = 2L (22°+422 +3z+1)  (1-p1)(22°+22+1)  2pmz° + (2p1 + 1)a
- (z—1)(1—=xt) (z - 1)(1 — z2t) (1-z)(1-t)
(o1 +2z+2  p2or — p2)2(z° +27) (227 + 20+ 1) (122 — 2%)
* (ll—w)(l = -0 —qt) : =25 (149)
Vi) = p2(22° +42 +3z+1)  (1—p2)(22° +22+1) + 2p22° + (2p2 + 1)z°
)= (z-1)(1—xt) (z—1)(1 - z2t) 1-z)(1-1)
(p2+2)z+2 , Prlpz — p1)P(® +2%)(22° + 22+ 1) (1=hm; - 2)
* (12— H1-9 " -0 —qb) . =5, (14b)

Substituting Eqgs. (13) and (14) for Eq. (12e) and rearranging, we can
once more easily get:

2z +4  t(6z° + 1222 4 14z 4 18) | t(1 — q)2z(z + 1)?(2z% + 2z + 1)

H'0)=T=3 =D =D =9 =)
+ 2t(1 + z)(1 + 4z + (5 — g)=° + (3 — 2g)=° + 2(1 — g)z*)] + 20° + 422 + 32+ 1
- 021 —-2) C3 )
2zt(1 + q) (p1 — p2)?83(z + 1)2(4° + 4z* + 22°) (=2 — =7) 15
A=< A-020=q) - (15)

Substituting Eqs. (13) and (14) for Eq. (12f) and rearranging, we can
easily get:

#(8z° + 1622 + 17z 4 22) L= q)(42° + 12z* + 162° + 122% + 5z + 1)

H ()= a=t2 CE D)
z . t(4(1 — q)z® + (12 — 8¢)z* + (20 — 8¢)z® + (22 — 4¢)z® + (13— q)z + 4)
it T=02(1—2)
H1+q)(22% + 2z +1)2  (p1 —p2)’8%(2” +2°)(1 + 20+ 22°)* (=2 — 125)
e DI-D( =22t =01 —q0) .
(16)
Applying Newton’s generalized binomial theorem
+o00 .
1-t)7 = “fj_l)t" 17
a-o7=3 ("7 a7

to Eq. (15), and rearranging it, we get

H*(t) = 2z + 4 + 12(2 + 2z + 22% + =°)t + (44 + 50z + 64z° + 527° + 24z

(1 — q)(z + 1)%(4z> + 42% 4 2z)(z" — 1)
(z-1)?

+00
+82°)2 + > (2 +4+ +(1+q)

n=3



(4z® + 82° + 622 + 22)(z* — 1 1), @0- q)z° + (4 — 8g)z* + (10 — 6¢)z’)n

@—1)%(z +1) (1-x)
n—-3 n-3-1
2((8 q):; _—|—z3z+10)n (P1 = p2)2(x + 1)2(42® + 4o +29:3)qu( z
=0 k=0
(n~1—k—2)(z** — "))t~ (18)

Applying Eq. (17) to Eq. (16) and rearranging it, we get

H*(t) =z + 12(2 + 2z + 22 + z°)t + (50 + 57z + 7222 + 562° + 24z* + 82°)t>+

Jio(z + (1= 9)(42® +122% + 162° + 122 + 5z + 1)(a" — 1)

= (z—1)?
(4(1 — q)z° + (4 — 8g)z* + (12 — 8¢)2® + (21 — 49)z® + (8 — q)z + 26)n
l-=z
L+ 1+ 9)@a® + 22+ )™ - 1) 2=

(@ 1)2(z +1) = (=) )1 4 224 207 Z%"'

n—3-1

(> (n=1-k—-2)(=* —zF)))~. (19)

k=0

4 Results and Discussion

First, we give two main theorems of this paper. From Eq. (18), we have
the following first main theorem.

Theorem 4.1. Let H} (z) be the expected value of the Schultz polynomial
of a random benzenoid chain with n hezagons. Then

H(z) =122+ 2z + 2% + = %); Hf (z) = 44 + 50z + 6422 + 522° + 24z* 4 82°;
and when n > 3,
1 - g)(z + 1)%(4=® + 42® + 2z)(z" — 1)
(z-1)
(1 + q)(4a* + 82> + 62% 4 2z)(z® — 1)
(z—-1)2(z+1)
(4(1 — q)z° + (4 — 8g)z* + (10 — 69)z° + 2(8 — q)z® + 6z + 20)n

H:,‘(x)=2a:+4+(

(1 z) ( nm —P2)2
n— -3-1
(z + 1) (4z® + 42* + 22°) Zaq‘ Za (n—1—k-2)(z* — z¥). (20)
=0 k=0
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When ¢ = 1 (in this case p; = p2 = 0), a random benzenoid chain is
definitely a linear benzenoid chain, i.e., & benzenoid chain without no turns.
So from Theorem 4.1 we have

Corollary 4.2. [7, 8, 10] Let G be a benzenoid chain with n hezagons. If
G has no turns, then the Schultz polynomial of G is

2(2 - 5z — 4z — 3% + 2z!*2" 4 427+ 4 4742
(z-1)2
2n(10 - 7z + 42? — 52° — 4z* 4 2°)
+ ) .
(z-1)
If p =1 or po = 1, a random benzenoid chain with n hexagons is
definitely a helicene with n hexagons, then we get

Corollary 4.3. [7, 8, 10] Let G be o helicene with n hezagons. Then the
Schultz polynomial of G is

H*G,z) =

H*(G,7)= 2(2—5z—6z% —82° —7z5 + 2:c::-_:n’l‘)(:: + 522 4 11z 4 132* + 82°))
_18(z* +2°) +4x"+6 + 2n(10 — 7z + 5z — 32° — 224 + 225 — 2% — 227 — 22°)
(z-1) (z-1)? )
Secondly, from Schultz polynomial, we can easily get Schultz index
W+(G) of a molecular graph G and it was introduced by Dobrynin and
Kochetova [1] and Gutman [4], is equal to the first derivative of the Schultz
polynomial in z = 1:

WH(G) = %H“‘(G, z)

(21)

z=1

And Klavzar and Gutman introduced modified Schultz index W*(G)
in literature [9], it is equal to the first derivative of the modified Schultz
polynomial in x = 1:

W*(G) = ;:-B-H'(G,x) (22)

z=1
By Eqgs. (20) and (21), we get its Schultz index,
Corollary 4.4. Let W,} the ezpected value of the Schultz indez of a random

benzenoid chain with n hexagons. Then
20g(n® —3n% +2n)  20(p; — p2)°
3 3

W =24 18n 4 68n2 4 2003 +

n-3

> k(k + 1)(k +2)g" 2.
k=0



If ¢ = 1, we can get the upper bound on W}, i.e., %(80113 + 144n2 +
94n+6), which is also the Schultz index of the linear benzenoid chains (i.e.,
linear polyacences); if p; = 1 or ps = 1, hence ¢ = 0, it is a helicene, whose
Schultz index is 1(40n3 + 324n? — 166n + 126).

From Eq. (19), we have the following second main theorem.

Theorem 4.5. Let H, the expected value of the modified Schultz polynomial
of a random benzenoid chain with n hexagons. Then

Hi(z) = 12(2 + 2z + 22% + 2°); H3 () = 50 4 57z + 722° + 562° + 24z* +82°;
and when n > 3,

(1 — g)(42® + 122% 4 162° 4+ 122% 4 55+ 1)(z" — 1)

Hy@) =3+ i

+ (4(1 — q)x® + (4 — 8q)z* + (12 — 8g)z® + (21 — 4g)z% + (8 — g)x + 26)n
l-=z

+ QRACERI IV ET D) - pua® 4271 4 25 4+ 227

n—-3 n-3-1

Zq' Z (n—=1—k—2)(% - z*). (23)

1=0 k=0

When g = 1 (in this case p; = p2 = 0), a random benzenoid chain is
definitely a linear benzenoid chain, i.e., a benzenoid chain without no turns.
So from Theorem 4.5 we have

Corollary 4.6. [7, 8, 10] Let G be a benzenoid chain with n hezagons. If
G has no turns, then modified Schultz polynomial of G is

2n(2 + 6z + 922 + 62 + 2z4)
z-—1

H*(G,z) =z + n(22 + 17z + 162 + 82°) —
2(1 + 2z + 2z%)%(z?" — 1)
(z-1)2(1+x)

If p» = 1or p, =1, a random benzenoid chain with n hexagons is
definitely a helicene with n hexagons, then we get

Corollary 4.7. (7, 8, 10] Let G be a helicene with n hezagons. Then the
modified Schultz polynomial of G is

+

. =" (4% +162° +28z° 4 28x° 4+ 172% 4+ 62+ 1) + 42° — 122 — 202° ~ 2324
H (G1z)= (:D— 1)2
_ 212% +192%+ 7z +2+n(d2® + 427 +40° — 42° + 524 4 82° — 1322 + 18z — 26)
(z-1)? '

By Eqgs. (22) and (23), we get its modified Schultz index,
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Corollary 4.8. Let W,; the ezpected value of the modified Schultz indez of
a random benzenoid chain with n hezagons. Then
25¢(n® — 3n? + 2n) _ 25(ps —- p2)?

3 3

W2 =1+ 12n+ 70n® + 25n° +

n-3

D k(k+1)(k+2)g" .
k=0
If ¢ = 1, we can get the upper bound }(100n3 + 135n% + 86n + 3) on
W, which is also the modified Schultz index of the linear benzenoid chain;
if p =1 or p; = 1, hence ¢ = 0, it is a helicene, we can get its modified
Schultz index: §(50n® + 360n? — 239n + 153).
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