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Abstract: Let G be a subgraph of the complete graph K, on r 41
vertices and K41 — E(G) be the graph obtained from K.+ by deleting all
edges of G. A non-increasing sequence © = (d,d, .. ., ds) of nonnegative
integers is said to be potentially K41 — E(G)-graphic if it is realizable
by a graph on n vertices containing K1 — E{(G) as a subgraph. In this
paper, we give characterizations for 7 = (d1,da,...,ds) to be potentially
K41 — E(G)-graphic for G = 3K3, K3, P3, K1 3 and K2 U P,, which are
analogous to Erdds-Gallai characterization using a system of inequalities.
These characterizations partially answer one problem due to Lai and Hu
[10]).
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1. Introduction

The set of all sequences # = (dy,dz,...,d,) of non-negative, non-
increasing integers with d; < n—1 is denoted by NS,,. A sequence 7w € NS,
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is said to be graphic if it is the degree sequence of a simple graph G on
n vertices, and such a graph G is called a realization of w. The set of
all graphic sequences in NS, is denoted by GS,. If a sequence m con-
sists of the terms d;, ..., d; having multiplicities m,,...,m;, we may write
7= (d™,...,d;"t). Given any two graphs G and H, GU H is the disjoint
union of G and H. For V; C V(G), G[V1] is the induced subgraph of V; in
G. The following well-known result due to Erdés and Gallai [3) which gave
a characterization for 7 to be graphic.
n
Theorem 1.1 [3] Let 7 = (d,dz,...,dn) € NS,, where ) d; is even.
i=1

Then 7 is graphic if and only if

}t:di <tt-1)+ znj min{t, d;}

i=1 i=t+1

foreacht, 1 <t<n.

For a given graph G, a sequence w € NS, is said to be potentially G-
graphic if there exists a realization of m containing G as a subgraph. Rao
[12] and Kézdy and Lehel (8] independently gave a characterization for a
sequence 7 € NS,, to be potentially K, ;1-graphic. This is a generalization
of Erd6s-Gallai characterization (Theorem 1.1) for 7 to be graphic (which
corresponds to r = 0).

Theorem 1.2 [12,8] Let n > r+ 1 and © = (dy,ds,...,ds) € NSp,

n

where d,.1 > r and Y d; is even. Then 7 is potentially K. ;;-graphic if
=
and only if '

s t

Ydi+ Y dryiti

i=1 i=1 1 n

S(s+t)(s+t—1)+ 3 min{s+t,di—r+s}+ Y min{s+t,d;}
t=s+1 t=r4-t+2

(a)
forany sandt,0<s<r+land0<i<n—r—1.

Motivated by the above characterization, Lai in [10] further proposed
the following

Problem 1.1 Find a characterization for a sequence 7 € NS, to be
potentially K,.1 — E(G)-graphic, where G is a subgraph of K.

If G is a subgraph of K., with one edge, then G = K. For this case,
Lai [9] and Eschen and Niu [4] independently characterized the potentially
K4 — E(K,)-graphic sequences. M.X. Yin and J.H. Yin [17] characterized
the potentially K5 — E(K?)-graphic sequences. J.H. Yin and Li [14] gave
two sufficient conditions for a graphic sequence = to be potentially K, —
E(K,)-graphic. Recently, J.H. Yin and Wang [15] presented the following



characterization for a sequence 7 € NS, to be potentially K,,; — E(K3)-
graphic which is analogous to Erdés-Gallai characterization using a system
of inequalities.
Theorem 1.3 [15] Let » > r+ 1 and n = (d,d,,...,d) € NSy,
n
where Y d; is even. Then = is potentially K,,; — E(Kz)-graphic if and

i=1
only if 7 satisfies one of the following conditions:

(1) dry1 > r and (a) holds for any s and ¢, 0 < s < r+ 1 and
0<ts<n-r-1.
(2) -1 27,dry1 27— 1and

+r+1
Z(d —r)+ E (dz""’“l'l)"" > 4
=7 i=r4-2
S2p+r)e+alg-1)+ __%3“ min{g, d; — r} (6)
r+l1 n
+ Y min{q,di-r+1}+ Y min{p+p +q,di}
i=r+p' i=q+r+2

foranyp,p’and q,0<p<r-1,0<p' <2and0<g<n—-r—1.

If G is a subgraph of K., with two edges, then G = P; (a path of length
2) or G = 2K, (the disjoint union of 2 copies of K3). For this case, Chen
and Li [2] characterized the potentially K4 — E(P,)-graphic sequences and
M.X. Yin et al. [18] characterized the potentially K5 — E(P;)-graphic se-
quences. Hu and Lai [7] characterized the potentially K5 — E(2K?)-graphic
sequences and Liu and Lai [11] characterized the potentially K¢ — E(2K?)-
graphic sequences. Recently, Wang and J.H. Yin [13] further obtained char-
acterizations for a sequence 7 € NS, to be potentially K., — E(G)-graphic
for G = P, and 2K, which are analogous to Erd3s-Gallai characterization
using a system of inequalities.

Theorem 1.4 [13] Let n > r+1 and 7 = (dy,dy,...,dn) € NSy,
where 2 d; is even. Let d)._, > d] > d,, be the rearrangement in non-

lncreasmg orderof d,_y —r+1,d-—r+1and d.yy —r+2. Then 7
is potentially K,41 — E(P)-graphic if and only if 7 satisfies one of the
following conditions:

(1) dry1 > 7 and (a) holds for any s and ¢, 0 < s < r + 1 and
0<t<n-r-1.

(2) dr_1 27, dryy 27~ 1and (b) holds for any p, p’ and ¢, 0 < p <
r-=1,0<p'<2and0<g<n—r-1.
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(3) de—22r,de2r—-1,dry1 27 -2and

r=2+p’ gt+r+l
E(tL -+ ¥ di+ Y d
i=r-1 z_r+2
<2p+pg+alg—1)+ Z‘ mm{q, i — 1} (c)
i=p+
+ Z min{q, d’} + zn: min{p+p' + q,d;}
i=r—1+p’ i=q+r+2

forany p,p' and ¢, 0 <p<r—-2,0<p'<3and0<g<n—r—-1.
Theorem 1.5 [13] Let n > r+ 1 and 7 = (dy,dy,...,dn) € NSy,

where i d; is even. Then = is potentially K,;+; — E(2K>2)-graphic if and

only if ;lmthﬁ& one of the following conditions:

(1) dr41 2 r and (2) holds for any s and ¢, 0 < s < r+ 1 and
0<t<n-r-1.

(2) drm1 27, dry1 27— 1 and (b) holds for any p, p’ and ¢, 0 < p <
r—1,0<p' <2and0<g<n—-r—-1

(3) dr—_a>r,dry1 27 ~1and

r—3+4

E(dz—r)+ z_ (d.—r+1)+_2+d
<2p+pla+a(g-1)+ Z mm{q, di —r} (d)
i=p+
+ Y min{gdi-r+1}+ % min{p+s +a,d}
i=r—2+p’ i=q+r+2

forany p,p' and q,0<p<r-3,0<p'<4and0<g<n—-r—1.

If G is a subgraph of K, with three edges, then G is one of 3K3, K3, Ps,
K13 and K, U P;. For this case, Hu and Lai (7] characterized the poten-
tially K5 — E(G)-graphic sequences for G = K3,P3, K13 and K U P,.
Chen [1] characterized the potentially Kg — E(3K32)-graphic sequences.
M.X. Yin and J.H. Yin [16] characterized the potentially K¢ — E(K3)-
graphic sequences. The purpose of this paper is to give characteriza-
tions for a sequence ® € NS, to be potentially K, ; — E(G)-graphic for
G = 3K, K3,P3,K, 3 and Ky U P2, which are also analogous to Erdds-
Gallai characterization using a system of inequalities. That is, we establish
the following five theorems.

Theorem 1.6 Let n > r+ 1 and 7 = (d1,d2,...,dn) € NS, where

n
Y d; is even. Then 7 is potentially K4, — E(3K3)-graphic if and only if

i=1
7 satisfies one of the following conditions:
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(1) dry1 2 r and (a) holds for any s and ¢, 0 < s < r+1 and
0<t<n—-r-1.

(2) dr-127,dry1 27 —1and (b) holds for any p, p’ and ¢, 0< p <
r—1,0<p<2and0<g<n-r-1

(3) dr—3 27, dry1 27— 1 and (d) holds for any p, p’ and ¢, 0 < p <
r—-3,0<p'<4and0<g<n-r-1

(4) dr—s 27, dry1 27 —1and

Ph-r)+ 3 d-r D)+ S g

i=1 i=r—4 t=r+2
<2p+p)g+q(g-1)+ Z mm{q, -} ()
r+1 =pt n
+ Y min{g,di-r+1}+ Y min{p+p +q,di}
i=r—d+p’ i=q+r42

forany p,p’ and ¢, 0<p<r—5,0<p'<6and0<qg<n-r—1.
Theorem 1.7 Let n > r+1 and 7 = (dy,dy,...,d,) € NS,, where

Z d; is even. Then 7 is potentially K, — E(K3)-graphic if and only if 7

satlsﬁ% one of the following conditions:

(1) de41 = r and (a) holds for any s and t, 0 < s < r+ 1 and
0<t<n-r-1.

(2) dr-1 27, dry1 27 —1and (b) holds for any p, p’ and ¢, 0 < p <
r—-1,0<p<2and0<g<n-r—-1.

(8) dre22r,dr 27 —1,dr41 = r—2 and (c) holds for any p, p’ and
¢0<p<r-20<p<3and0<g<n—-r-1.

(4) dr—227,dry1 27 ~2and

r—24

Z(d,—r)+ > (d‘-r+2)+ Z ¢

i=r-1 i=r+2

<2(p+p)g+qlg-1)+ E min{q,d; —r} )]

i=p+
r+1 n
+ X min{gdi-r+2}+ 3 min{p+p +q,di}
fi=r-1+4p’ i=q+r+2

forany p,p' and ¢, 0<p<r—2,0<p'<3and0<g<n—-r-1.
Theorem 1.8 Let n > r+1 and 7 = (d,dy,...,d,) € NS,, where

2 d; is even. Let d}_, > d]_, > d] >d],, be the rearrangement in non-

t’*l

increasing order of d,_3 —r+1,dr_1 —7+1,d, —7+2 and dyy — 7+ 2.

Then 7 is potentially K,,; — E(P;3)-graphic if and only if = satisfies one of

the following conditions:
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(1) dr41 = 7 and (a) holds for any s and t, 0 < s < r+ 1 and
0<t<n—-r-—-1

(2) dr—1 27, dry1 27— 1 and (b) holds for any p, p’ and ¢, 0 <p <
r—1,0<p<2and0<g<n—-r—-1

(3) dr—g >1,dr 27 —1,dry1 27 -2 and (c) holds for any p, p’ and
§,0<p<r-20<p <3and0<g<n—-r-1

(4) dr—3 27, dry1 27— 1 and (d) holds for any p, p’ and ¢, 0 < p <
r—3,0<p'<4and0<g<n-r-1

(5) dr—z2rydry2>27—1,dry1 27 —2and

r—34p’ q+r+1
E(d. -+ X di+ 3 d
i=r—2 t"1‘+2
<2p+p)g+alg-1)+ Z mm{q, di—r} (9)
i=p+
r<41 n
+ 3 min{g,di}+ Y min{p+p’ +q,di}
i=r—2+p' i=g+r+2

forany p, p’ and q,0<p<r—-3,0<p' <4and0<g<n-r—-1
Theorem 1.9 Let n > r+ 1 and 7 = (dy,ds,...,d,) € NS,, where

n
Y. d; is even. Let d]._, > d;._, > d| > d; . be the rearrangement in non-
in<1:reasing orderof dp_g — 7+ 1,dry —r+1,d.—r+1land dpyy — 7+ 3.
Then  is potentially K, — E(K 3)-graphic if and only if 7 satisfies one
of the following conditions:

(1) dry1 = 7 and (a) holds for any s and ¢, 0 < s < 7+ 1 and
0<t<n-r-1

(2) dr—1 27, dry1 27 —1 and (b) holds for any p, p’ and q, 0 < p <
r-1,0<p'<2and0<qg<n—r—1.

(3) dr—z 2 7,dr =7 —1,dryy > 7—2 and (c) holds for any p, p' and
,0<p<r-20<p<3and0Lg<n-r-1

(4) dr_z>rdr 27— 1,dry) 27 -3 and

gtr+l
Z(d.—r)+ 2 d’ Y d
i=1 i=r—2 t—:tg
<glg-1)+2(+p)+ T mm{q, di—r} (h)
i=p+
+ T minfg,d}+ f: min{p +7' +q,di)
i=r—2+p’ i=g+r+2

forany p, p' and q,0<p<r—-3,0<p'<4and0<g<n-r—-1
Theorem 1.10 Let n > r+ 1 and 7 = (d;,dy,...,d,) € NSy, where

n
Y. d;iseven. Let dl._g >d._, > d,._; >d] > d,,, be the rearrangement

i=1
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in non-increasing order of d_3 —r+1,dr_o—r+1,dr_j —7r+1,dr —7+1
and d,4) — 7+ 2. Then 7 is potentially K, — E(K, U P;)-graphic if and
only if 7 satisfies one of the following conditions:

(1) dry1 2 7 and (a) holds for any s and £, 0 < s < r + 1 and
0<t<n-r-1.

(2) dr_127,dry1 27— 1 and (b) holds for any p, p’ and ¢, 0 <p <
r—1,0<p'<2and0<qg<n—r—1.

() dr—2>7,dr 27 —1,dry1 > r—2 and (c) holds for any p, p’ and
,0<p<r-20<p'<3and0<g<n-r-1.

(4) dr—32rt dr-l-l Zr-la'nd (d) holds foranyp)p' and Q;OSPS
r-3,0<p<4and0<qg<n—r—-1.

(5) dr-q27dr 27— 1,dpyy 27 —2and

P r—4+4p' g+r+1
S+ 3 dt S d
i=1 i=r-3 i=r+§
r—
<qlg-1)+2p+pla+ 'Zil min{q,d; —r} (3)
i=p
r+1 n
+ ) min{q,d}+ 3 min{p+p +g,di}
i=r—3+p’ i=q+r+2

foranyp,p’and q,0<p<r—4,0<p'<5and0<qg<n-r—-1.

2. The Proofs of Theorems

Each of the following known results will be useful as we proceed with
the proofs of Theorems. The proof technique of Theorem 1.6-1.11 is using
network flows (see also [8]). We shall use a simple version of a general
result of Fulkerson et al. [5]. Let H be a simple graph on the vertex set
V(H) = {v1,va,...,v,}. We say that H satisfies the odd-cycle condition,
if between any two disjoint odd cycles there is an edge.

Theorem 2.1 [5] Assume that H = (V(H), E(H)) satisfies the odd-
cycle condition, where V(H) = {v1,v2,...,v,}. There exists a subgraph
G C H such that every vertex v; has degree d;, if and only if

n
(1) 3 d; is even,

i=1

(2) for every A, B C V(H) such that AN B = §, we have
> di < {(i,v5) : viv; € E(H), v € A,v; € V(H)\ B}| + > .
v€EA vEB

Theorem 2.2 [6] If r has a realization G containing H as a subgraph,
then there exists a realization G’ of 7 containing H so that the vertices of
H have the |H| largest degrees of .
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We also need the following

Lemma 2.1 If 7 = (dy,ds,...,d,) has a realization containing H as
an induced subgraph so that the vertices of H have the largest degrees
of m, then there exists a realization G of m with the vertex set V(G)
{v1,--- ,v,.} such that dg(v;) =d; for 1 < i< n, G[{‘Ul,'vz,. . ,le(H)l}]
H and dg(v1) 2 dr(v2) > -+ 2 du(vva))-

Proof. Assume that G is a realization of = with the vertex set V(G) =
{v1,--+,vn} such that dg(v;) = d; for 1 < ¢ < nand G[{v1,v2,..., vy}l
=H. fdy(v,) 2dg(ve) 2 -+ 2 d;{(vlv(y)|), then G is a required real-
ization of w. Otherwise, there exist vertices v; and v; such that dy(v;) >
dy(v;) and dg(v;) < dg(v;). Since dg(v;) < dg(v:), we have dg(v;) —
dp(vi) > dg(v;) — dr(v;). For convenience, set A = {vjv(m)j+1, Vv (H)I+2
...,un} and B = N4(v;) N Na(v;). Clearly, |[Na(vi) \ B| — |[Na(v;) \ B| 2
d¢(vi) — dg(v;). Now form a new realization G’ of 7 as follows. Suppose
that the edges between v; and Na(v;) \ B are viuy, viua, . . ., Vit N, (vi)\BJ-
Then

G = G—{viu1,viug, . . ., Villdg(v)—de(v;) {0581, VU2, - - « , VjUdg(vi)-de(v;) }

is a new realization of 7. In G’, H is still an induced subgraph of {v;,vs,...,
vy der(vi) = de(vs), dor(v;) = de(vi) and der(v) < der(vy). If
there exist such pair v; and v; in G’ such that dy(v:) > du(vs) and
dgr(ve) < dgr(vs), then we repeat this process until no such pair remains.
m]

In order to prove Theorem 1.6-1.10, we also need more definitions
as follows. If # = (d;,dy,...,d,) has a realization G with the vertex
set V(G) = {v1,v2, --,vn} such that dg(v;) = d; for 1 < i < n and
Gl{v1,v2,-..,vr+1}] = Kr41 — E(3K>) (denoted by H) so that dy(v;) =7
forl<i<r—5anddy(v;) =r—1forr—4 <i<r+1, then 7 is said to be
potentially A, — E(3K3)-graphic. If 7 = (dy,dy,...,d,) has a realization
G with the vertex set V(G) = {v1,v2,+-,vn} such that dg(v;) = d; for
1<i< nand G[{v,v2,...,vr+1}] = Kr41—E(K3) (denoted by H) so that
dy(v;)=rfor1<i<r—2anddy(v;)=r—2forr-1<i<r+1,then
7 is said to be potentially Ar+1 — E(K3). Further, if 7 = (dy,da,...,dn)
has a realization G with the vertex set V(G) = {v1, vz, +,vn} such that
de(v;) = d; for 1 < i < n and G[{v1,v2,...,vr41}] = Kr41 — E(P3) (de-
noted by H) so that dy(v;) =r for1 <4 < r-3,dy(v;) =7 —1 for
r—2<i<r—1landdy(v;) =r—2for r <i<r+1, then 7 is said to be
potentially Ar41 — E(Ps3)-graphic. If # = (di,do,...,d,) has a realization
G with the vertex set V(G) = {v1,v2,-,vn} such that dg(v;) = d; for
1 £ 4 £ nand G[{v1,v2,...,vr41}] = Kr41 — E(K1,3) (denoted by H)
so that dy(v;) =rfor1 <i<r—-3,dy(v;) =r—1lforr—-2<i<r
and dy(vr41) = 7 — 3, then 7 is said to be potentially A,y1 — E(K1,3)-
graphic. In addition, if # = (d1,ds,...,ds) has a realization G with the
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vertex set V(G) = {v1,vo,-- ,v,.} such that dg(v;) =d;for 1 <i<n
and G[{v1,vs,...,%41}] = Kry1 — E(K2 U P,) (denoted by H) so that
dy(vi) =rfor 1 <i<r—-4,dy() =r—-1forr—3 <i < rand
dp(vr41) = 7 — 2, then 7 is said to be potentially A,p1 — E(K2 U Py)-
graphic.

The proof of Theorem 1.6. Assume that 7 is potentially K4 —
E(3K3)-graphic. If 7 is potentially K,+1 — E(2K3)-graphic, then 7 satis-
fies one of (1)—~(3) of Theorem 1.5. If 7 is not potentially K, — E(2K>)-
graphic, then by Theorem 2.2 and Lemma 2.1, 7 is potentially A,,; —
E(3K,)-graphic, we may let G be a realization of = with the vertex set
V(G) = {v1,va,...,v5} such that dg(v;) = d; for 1 < i < n and G[{v;, vz,

-y Ur41}] = Ko — E(3K3) so that the six endvertices of three removed
edges from K, are exactly those vertices with degrees d,_4, dy—3, dr—2,
dr_y, dr and dryy. For 0 S p<r—50<p <6and0 <gq <
n—r—l denote P = {y|]1 <i<p}, P ={wjr-4<i<r-5+p'},

={ulp+1<i<r-5}, RR={vr—-4+p <i<r+1},Q =
{v.|r+2 Si<g+r+1}and S = {vg+r+2 < i < n}). There
moval of the edges induced by {vi,vs,...,vr41} results in a graph G’ in
which all degrees in {v1,v2,...,v._3} are reduced by r and all degrees in
{vr-4,vr—3,Yr—2,Yp-1,Vr,Ur41} are reduced by r — 1. There are at most
(p+7')q edges between PU P’ and Q and the degree sum in the subgraph
induced by @ is at most g(g — 1). Therefore,

r=54p’ q+r+1
m = Z(d =)+ Y (di—r+1)+ Y di—-(20p+p)g+a(g—1)
i=1 i=r—4 i=r+2

is the minimum number of edges of G’ with exactly one endvertex in P U
P'U Q. On the other hand, the maximum number of edges of G’ with
exactly one endvertex in RUR'US is

r=5 r+1
M = 3 min{gdi-r}+ Y min{q,d —r+1}
:..p+l i=r—44p’

+ 3 min{p+p +q,di}.
i=q+r4-2

Graph G’ witnesses that m < M is true. Thus the necessity is proved.

We now prove the sufficiency. If 7 satisfies one of (1)~(3) of Theorem
1.6, then = is potentially K4, — E(2K3)-graphic by Theorem 1.5, which
is sufficient to show that = is potentially K,,; — E(3K2) graphic. Assume
that m satisfies (4) of Theorem 1.6. Let n’' = (di,...,dl,,,d\,,...,d}),
where d} =d; — r for15z’5r—5,d£=d,—r+1forr—45z’§r+1
and d} = d; for r + 2 < i < n. Let H be the graph obtained from K, with
the vertex set V(K,) = {v1,v2,...,v} by deleting all edges between v;
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It follows from L(p,?',q) < R(p,p', q) that L'(A, B) < R'(A, B). By Theo-
rem 2.1, H has a subgraph G with the degree sequence #’ such that every
vertex v; has degree d;. Hence 7 is potentially A,,; — E(3K>)-graphic.
Thus, the sufficiency is proved. O
The proof of Theorem 1.7 Assume that 7 is potentially K,.; —

E(K3)-graphic. If 7 is potentially K41 — E(P,)-graphic, then 7 satisfies
one of (1)~(3) of Theorem 1.4. If 7 is not potentially K., — E(P;)-graphic,
then 7 is potentially A,,; — E(K3)-graphic, we let G be a realization of
7 with the vertex set V(G) = {v1,vs,.. ,'v,,} such that dg(v;) = d; for
1 <4 < n and G[{vy,vs,...,941}] = Kry1 — E(K3) so that the three
endvertices of three removed edges from K,,; are exactly those vertices
with degrees d,_;, dr and dry3. For0 < p<r-2,0<p < 3 and
0<g<n-r—1,denote P= {51 <i<p}), P ={nr—1<i<
T—2+pl}’ R= {'Uilp"'l Si.<_7'—2}, R ={'Uil7'-1+P' <i< T-l-l},
Q={vlr+2<i<qg+r+1}and S = {y|]g+7r+2 < i < n}. The
removal of the edges induced by {vi,va,...,v,41} results in a graph G’ in
which all degrees in {v1,va,...,v,—3} are reduced by r and all degrees in
{vr-1,7r,vr4+1} are reduced by r — 2.

r—2+4p’ q+r+l

—Z(d.—r)+ Yo (di-r+2)+ ) di-(Q@p+p)e+aa-1)

i=1 t=r—1 i=r+42

is the minimum number of edges of G’ with exactly one endvertex in P U

P'UuQ and

r—=2 r+1
M = Y min{gdi-r}+ Y min{q,di-r+2}
i=p+1 i=r—14p’
n
+ Y min{p+p'+q,d;}
i=q+r+2

is the maximum number of edges of G’ with exactly one endvertex in RU
R'U S. Graph G’ witnesses that m < M is true.

We now prove the sufficiency. If r satisfies one of (1)-(3) of Theorem
1.7, then 7 is potentially K, — E(P;)-graphic by Theorem 1.4, which is
sufficient to show that « is potentia.lly Krp1— E(K 3)-gra,ph1c Assume that
1r satisfies (4) of Theorem 1.7. Let 7’ = (d,...,d},;,d},s,...,d}), where

=di-rforl1<i<r-2,d} =d.— r+2forr 1<z<r+landd’ d;
for r+2<i<n. Let Hbe the graph obtained from K, with the vertex set
V(Kn) = {v1,v2,...,9,} by deleting all edges between v; and v; for any
i,j € {1,2,...,7+1}. It is easy to see that = is potentially A,,; — E(K3)-
graphic if and only if H has a subgraph G with the degree sequence 7' such
that every vertex v; has degree d]. Observe that H satisfies the odd-cycle
condition.
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one of (1)~(3) of Theorem 1.5. If = is potentially K., — E(P;)-graphic,
then 7 satisfies one of (1)-(3) of Theorem 1.4. If 7 is not potentially
K11 — E(2K3)-graphic and 7 is not potentially K,.; — E(P;)-graphic,
then 7 is potentially A, — E(P3)-graphic, we let G be a realization of
7 with the vertex set V(G) = {v1,v3,...,v,} such that dg(v;) = d; for
1 < i< nand G[{v,vs,...,v41}] = Kry1 — E(P3) (denoted by H) so
that dy(vr—2) = dy(vr—1) =7 — 1 and dy(vr41) = dy(v,) = r — 2. The
removal of the edges induced by {vi,vs,...,vr41} results in a graph G’
in which all degrees in {v1,vs,...,v,-3} are reduced by r, both degrees
in {vr_2,vr_1} are reduced by r — 1 and both degrees in {v,,v,41} are
reduced by r — 2. Let d._, > d,_; > d; > d; ., be the rearrangement in
non-increasing order of d,_o —7+1, d,_l—r+1 dr—r+2,dr41—1r4+2. For
0<p<r-3,0<p'<4and0<g<n—r—1,denote P = {'u,|1<z<p},
P = {v|v € {v,—2,%r—1,9r,vr41} and dg'(v) € {d]_,,. d_sip}h R=
{Uz|P+1<’l<7‘ 3} R = {Ur—2)vr-lvvr)vr+1}\P Q {'Ui'7'+2<7.<
g+r+1}and S={v;|g+r+2<i<n}

r—3+p q+r+1
—Z(&—T)+ D di+ ) -2+ )g+a(g—1)
i=1 i=r—2 i=r42

is the minimum number of edges of G’ with exactly one endvertex in P U
P uQ@ and

r-3 r+1
M= Z min{q,d;—r}+ z min{q, d;}+ Z min{p+p’+q,d;}
i=p+1 f=r—2+p’ i=q+r42

is the maximum number of edges of G’ with exactly one endvertex in R U
R'US. Graph G’ witnesses that m < M is true.

We now prove the sufficiency. If 7 satisfies one of (1)-(4) of Theorem
1.8, then = is potentially K, — E(2K3)-graphic by Theorem 1.5 and 7
is potentially K, — E(P,)-graphic by Theorem 1.4, which is sufficient to
show that « is potent;ia.lly K41 — E(Ps)-graphic. Assume that 7 satisfies
(5) of Theorem 1.8. Let 7’ = (dy,. ,._,_l,d’,+2, ...,dy), where d, =d;—r
for 1<i<r-3,d._, —d,._g—r+1 di_y=dry—r+1,d. =d. -7+42,

dryy = dr+1—r+2 and d; = d; for r+2 < i < n. Let H be the graph
obtained from K, with the vertex set V(K,) = {v1,vs,...,v,} by deleting
all edges between v; and v; for any i,j € {1,2,...,r +1}. It is easy to see
that 7 is potentially A, ; — E(P3) graphic if and only if H has a subgraph
G with the degree sequence n’ such that every vertex v; has degree dj.
Observe that H satisfies the odd-cycle condition.

Let K = {vlvv’b )vr—3}a K = {vr—Z,'Ur—l,vry'Ur+1} and A B c
V(H) such that ANB=0. Let A, =ANK, A =ANK',A; = A\ (KU



K'),By=BNK,B;=BNK',B =B\ (KUK'), and set p = |[4;],p' =
|A%l,q = |Azl,b1 = |B1],b; = |Bil,b2 = |Bz|. For convenience, we denote
the left and right hand side of (g) by L(p,?’,q) and R(p,p’, q), respectively.
Let

L(AB) = Yd= ) (di-n+ X d+ 3 d;

vi€EA weEA vEA] vi€A2
R(4B) = [{(v,v;):vv; € E(H), v € Ay e VEH)\ B} + T d
wEB

= I{(vi,vj) Ty € E(H),'Ui € A,vj € V(H) \ B}l
+ Y (di-r)+ T di+ ¥ di

v €B v EB] v;€B3

Clearly, L'(A, B) < L(p,p',9) and

I{(v,-,vj) DY € E(H),‘Ui (3 A,‘Uj (S V(H) \ B}I
=2p+p)g+g(g—1)+g(r—3—p—b1)+q(4-p - b))
+@+p +g)(n—(r+1)—q—1b)
r—3-b r4+1-5] n—by
=2p+p)g+alg-1)+ ¥ ¢+ X g+ X (p+p +9).
t=p+-1 j=r—24-p’ t=g+r+2
Therefore,

R'(A, B)

{(v:,v;) : viv; € E(H),v; € A,v; € V(H)\ B}|
+ Y d-nN+ ¥ d+ X &
v €B) U;GB' vi€B2
r—-3-b r+1-b]

2p+pYg+alg-1+ X 9+ ¥ ¢
t-p+1 i=r—2+p’

+ ZI (p+p +9+ Z (di—r)
z=q+r+2 i=r—2-b;
n
+ E i+ Y d
i=r+2-b} i=n+1-by
r—3

2p+p)g+qlg-1)+ _EPZ min{q,d; — 7}

v

v

r+1 n
+ 3 min{gd}+ 3 min{p+p +g,di}
i=r—2+p’ i=q+tr+2

= R(p,p’, Q)'

It follows from L(p,p’,q) < R(p,p’,q) that L'(A, B) < R'(A, B). By Theo-
rem 2.1, H has a subgraph G with the degree sequence 7’ such that every
vertex v; has degree d,. O

The proof of Theorem 1.9 Assume that 7 is potentially K,41 —
E(K, 3)-graphic. If 7 is potentially K., — E(P;)-graphic, then w satisfies
one of (1)—(3) of Theorem 1.4. If x is not potentially K, 1 — E(P;)-graphic,
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then = is potentially A,41 — E(K},3)-graphic, we let G be a realization of
7 with the vertex set V(G) = {v1,v2,...,v,} such that dg(v;) = d; for
1 < i < nand G[{v,v2,...,%41}] = Kry1 — E(K;,3) (denoted by H)
so that dy(vr—2) = dg(v,—1) = dg(v;) =7 -1 and dy(ve41) =7 - 3.
The removal of the edges induced by {v1,vs,...,v,41} results in a graph
G’ in which all degrees in {v1,vs,...,v.—3} are reduced by r, all degrees
in {vy_2,vr_1,v,} are reduced by 7 — 1 and the degree of v, is reduced
by r—3. Let d_, > d._; > d, > d],; be the rearrangement in non-
increasing order of d,_g—7+1,d._; —r+1,d,—r+1 and d,;; —r+3. For
05p§r—3,05p’54and0San—r—l, denote P = {v,|1 <i<p},
P' = {v|v € {vr_2,9r-1,r, vr41} and dg(v) € {d]_,,. r—3+ 3L R=
{vt|p+ 1<i< T_3} R' = {'Ur—Z)vr-livrrvr+1} \Pl Q {'U,IT+2 <i<
g+r+1}and S={ylg+r+2<i<n}.

r—3+p’ g+r+1
m= Z(d -+ D di+ D di—Qp+p)g+elg-1)
i=1 i=r—-2 t=r+2

is the minimum number of edges of G’ with exactly one endvertex in P U
P'uQ@ and

r-3 r+1
M=) min{g,di-r}+ > min{q,dj}+ Z min{p+p’ +q,d;}
i=p+1 i=r—2+p’ i=q+r+2

is the maximum number of edges of G’ with exactly one endvertex in RU
R'US. Graph G’ witnesses that m < M is true.

We now prove the sufficiency. If 7 satisfies one of (1)~(3) of Theorem
1.9, then = is potentially K,;; — E(P,)-graphic by Theorem 1.4, which is
sufficient to show that « is potentially K,.,.l — E(K,3)-graphic. Assume
that 7 satisfies (4) of Theorem 1.9. Let 7’ = (d},...,d},,,d\;9,...,d}),
whered’ =di—rforl1<i<r-3,d, =4d; —r+1for'r—2<z<r,

d.iy —d,,.+1 —r+3and d = d; forr+2 < i £ n. Let H be the graph
obtained from K, with the vertex set V(K,) = {v;,v2,...,v,} by deleting
all edges between v; and v; for any 4,5 € {1,2,...,7 + 1}. It is easy to
see that 7 is potentially A,;; — E(K4,3)-graphic if and only if H has a
subgraph G with the degree sequence 7’ such that every vertex v; has
degree d;. Observe that H satisfies the odd-cycle condition.

Let K = {vlyv2a---,vr-3}7 K' = {”r—Z:vr—ltvr:vr-l-l} and 4,B C
V(H) such that ANB=0. Let Ay =ANK, A\ =AnK' A; = A\(KU
K'),By =BNK,B;=BnNK',B, =B\ (KUK'), and set p = |A;|,p' =
|A1l,q = |Az2],b1 = |By|,b) = |B |,b2 = l32| For convemence, we denote
the left and right hand side of (h) by L(p, p’,q) and R(p, 7, q), respectively.
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Let
L'(A, B) Ydi= Y (di—-r)+ Y &+ Y dy
wEA vi€EA v EA] vi€A2

R(A,B) = [{(v,v;):vv; € E(H),» € A,v; € V(H)\ B}| + ze‘,Bd;

= |{(vi,v5) : viv; € E(H),v; € A,v; € V(H)\ B}|
+ L (di-n)+ ¥ di+ ¥ di

wEB v;€B] vi€Ba
Clearly, L'(A, B) < L(p,/,q) and

[{(vi,v;) : viv; € E(H),v: € A,v; € V(H)\ B}|
=2p+p)g+glg-1)+q(r—3-p—b)+q(d-p - b)
+' +q+p)(n—(r+1)—-b2—q)
r—-3-b; r+l-— b’

=2p+p)g+ql¢-1D+ ¥ 9+ X g+ nibz (p+7 +9)-

i=p+1 i=r—2+p i=g4r+2
Therefore,

R'(A,B) {(vs,v;) : vivj € E(H),v; € A,v; € V(H)\ B}

+ L (d-n+ ¥ di+ ¥ &
weEDB wEB] v;€B2
r—3-by r+1-b]

20+p)g+gl@a-)+ X 9+ X ¢

t—p 1 i=r-2+p’

+ E (p+p +9)+ E (di —7)

i=q+r+2 i=r—2-by

v

n

r+1
+ z d: + Z d;

i=r42-b) i=n+l-by

2(p+p)g+alg-1)+ E mtn{q, d; —r}

‘l=’l

v

r41

1
+ Y min{gd}+ Y min{p+p +q,di}
i=r—2+p’ i=r424q

= R(p,7',9).

1t follows from L(p,?’, q) < R(p,?’,q) that L'(A,B) < R'(A, B). By Theo-
rem 2.1, H has a subgraph G with the degree sequence 7’ such that every
vertex v; has degree di. Hence = is potentially A,;1 — E(K) 3)-graphic. O

The proof of Theorem 1.10 Assume that 7 is potentially K11 —
E(K2 U P,)-graphic. If 7 is potentially K;,; — E(2K?)-graphic, then 7
satisfies one of (1)-(3) of Theorem 1.5. If 7 is potentially K, — E(P;)-
graphic, then 7 satisfies one of (1)—(3) of Theorem 1.4. If = is not potentially
K, 4+1—E(2K>)-graphic and = is not potentially K., 1 — E(Pz)-graphic, then
7 is potentially A,y — E(K3 U P,)-graphic, we let G be a realization of 7
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with the vertex set V(G) = {v;,v2,...,vn} such that dg(v;) = d; for 1 <
i Snand G[{v,v,...,v41}] = Kry1— E(K2UP;) (denoted by H) so that
dy(vr-3) = dg(vr_2) = dy(vr—1) =dy(v,) =r—1and dy(vr4y) =r—2.
The removal of the edges induced by {vy,vs,...,vr41} results in a graph
G’ in which all degrees in {1, vs,...,vr—4} are reduced by r, all degrees in
{vr—3,vr—2,vr_1,,} are reduced by r—1 and the degree of v,.;, is reduced
byr—2 Letd,_3>d._,>d._; >d] >d.,, be the rearrangement in
non-increasing order of d,_3 —r+1,dp_a —r+1,dr_y —r+ 1,d, =7+ 1
anddry1 —74+2 For0<p<r-40<p <5and0<qg<n-r-—
1, denote P = {u;]1 < i < p}, P’ = {v|v € {vp—3,Vr=2,Vr=1,0r,Vrs1}
and dg/(v) € {d._3,d.._,,... Or_arpth B = {vlp+1 < i <r -4}
R = {vr—!h vr—Z’vr—lavn'Ur+l} \ P,Q= {‘U,'IT +2<igq+r+ 1} and
S={ylg+r+2<i<n}

? r—4+4p’ g+r+l
m=y (di-r)+ Y di+ Y -2+ )g+4ala—1)
i=1 i=r—3 i=r42

is the minimum number of edges of G’ with exactly one endvertex in P U
P'uQ@ and

r—4 r41 n
M=) min{g,di-r}+ Y min{gd}+ Y min{p+p'+qdi}
i=p+1 i=r—3+4p’ t=q+r+2

is the maximum number of edges of G’ with exactly one endvertex in RU
R'US. Graph G’ witnesses that m < M is true.

We now prove the sufficiency. If 7 satisfies one of (1)-(4) of Theorem
1.10, then 7 is potentially K,4; — E(2K5)-graphic by Theorem 1.5 and
7 is potentially K., — E(P,)-graphic by Theorem 1.4, which is sufficient
to show that 7 is potentially K., — E(Ka U P;)-graphic. Assume that 7
satisfies (5) of Theorem 1.10. Let 7' = (d},...,d},,,d!,,,...,d,), where
d;=di—rforl<i<r—-4,d =di—r+1forr-3<ic<r,
dyy=dy1—r+2and d} =d; forr+2 < i < n. Let H be the graph
obtained from K, with the vertex set V(K,) = {v1,vs,...,vn} by deleting
all edges between v; and v; for any 4,5 € {1,2,...,7 + 1}. It is easy to
see that 7 is potentially A,4, — E(K2 U Pp)-graphic if and only if H has
a subgraph G with the degree sequence #’ such that every vertex v; has
degree d;. Observe that H satisfies the odd-cycle condition.

LetK = {0131’21 sy 'Ur—4}’ K' = {vr—3a vr—2svr—1,vr1vr+l} and A,B C
V(H) such that ANB = 0. Let A, = ANK,A = AnK', A, =
A\(KUK'),B; = BNK,B| = BNK',B;, = B\ (KU K’), and set
p = |Ail,p’ = |All,q = |A2l,br = |Bi1|,b] = |Bjl,b; = |By|. For con-
venience, we denote the left and right hand side of (i) by L(p,p’,q) and
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R(p,7', q), respectively. Let
L'AB) = Yd= Y (d-n+ ¥ d+ ) d;

wEA vi€A, vEA] vi€A
R(AB) = |{(vsyv;): viv; € E(H),v: € A,v; € V(H)\ B} + ¥ d
wEB

[{(vs,v;) : viv; € E(H),v; € A,v; € V(H)\ B}|
PR -n+ T d+ Y d

v E€By v€B] v EB2

Clearly, L'(A, B) < L(p,p’,q) and

[{(v,v;) : viv; € E(H),v € A,v; € V(H)\ B}|
=2p+p)g+a(g-1) +q(r—4—p—b1)+q(5-p' - b))
+@' +g+p)n—(r+1)—b2—9) \
r—4-b; r+1-b)

n—by
=2p+p)g+al@a-1+ X ¢+ X g+ X (p+p'+9).
i=p+1 i=r=34p’ i=q4r+42

Therefore,
R(A,B) = |{(w,v;):viv; € E(H),v; € A,v; e V(H)\ B}|
+ X [di-n+ ¥ di+ X d
weBy U‘EB' v E€B;
r—4-by 7‘+1—b1
> 2p+p)g+alg-)+ ¥ 9+ X ¢
z—;::+14 i=r—3+p’
r—
+ E P+ +9)+ 3 (di—7)
:~q+'r+2 i=r-3-b
4 n
I T
i=r+2-b] i=n+1-by
> 2p+p)g+alg—-1)+ Z) mm{q, d; — 7}
i=p+
41 n
+ Y min{qd}+ Y min{p+p +q,di}
t=r—-3+p’ i=r+2+q
= R(p,7,9)-

1t follows from L(p,p’,q) < R(p,?’, q) that L'(A, B) < R'(A, B). By Theo-
rem 2.1, H has a subgraph G with the degree sequence 7’ such that every
vertex v; has degree dj. D
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