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Abstract

A transverse Steiner quadruple system or TSQS is a triple (X, H, B) where
X is a v-element set of points, H = {Hy, Ha,...,H,} is a partition of X into
holes and B is a collection of transverse 4-element subsets with respect to H
called blocks such that every transverse 3-element subset is in exactly one block.
In this article, transverse Steiner quadruple systems with ¢ holes of size g and
1 hole of size u are studied. Constructions based on the use of s-fans are given,
including a construction for quadrupling the number of holes of size g. New
results on systems with 6 and 11 holes are obtained, and constructions for
TSQS(z"(2z)") and TSQS(4™2) are provided.

1 Introduction

Given a partition H = {Hy, Hs, ..., H,} of aset X, asubset T C X is transverse
with respect to H if TN H;} =0or 1 for eachi = 1,2,...,r. A transverse t-
design with parameters t-(v, k, A) is a triple (X, H, B) where X is a v-element
set of points, # = {H1,Hs,...,H,} is a partition of X into holes and B is a
collection of transverse k-element subsets with respect to # called blocks such
that every transverse t-element subset is in exactly A blocks. The transverse
t-(v, k, A) designs of type 1" are the (ordinary) t-designs. A transverse t-(v, k, \)
design with A = 1, is a transverse Steiner system. A transverse Steiner triple
system or transverse STS(v) is a transverse 2-(v, 3, 1) design. The focus in this
article is on transverse 3-(v,4,1) designs, which are refered to as transverse
Steiner quadruple systems or TSQS(v). Let h; = |H;| be the size of the hole
H; € H. The type of a transverse t-design is the multi-set {h;,h2,...,h.} of
hole sizes. It is custom to write s}183%...84™ = hjha---h, for the type of
a transverse {-design with u; holes of size si, i = 1,2,...,m. If all the holes
have the same size h, then the transverse t-design is said to be uniform. Such
a design would have type k" for some u. A 3-(12,4, 1) design transverse to the
holes # = {{0,1},{2, 3}, {4, 5}, {6, 7}, {a, b, ¢, d}} is displayed in Figure 1. This
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'is an example of a TSQS of type 24! with holes {0,1}, {2,3}, {4,5}, {67},
{a, b,¢c,d}.

{3,5,7,a} {3,5,6,b} {3,4,7,d} {3,4,6,c} {2,5,7,¢} {2,5,6,d}
{2,4,7,b} {2,4,6,a} {1,5,7,b} {1,5,6,c} {1,4,7,a} {L.4,6.d}
{1,3,7,¢} {1,3,6,a} {1,3,5,d} {1,3,4,b} {1,2,7,d} {1,2,6,b}
{1,2,5,a} {1,2,4,c} {0,5,7,d} {0,5,6,a} {0,4,7,c} {0, 4,6, b}
{0,3,7,b} {0,3,6,d} {0,3,5,c} {0,3,4,a} {0,2,7,a} {0,2,6,c}
{0,2,5,b} {0,2,4,d}

Figure 1: A TSQS of type 244!

If (X,H,B) is a transverse t-(v,k,\) design, and z € H € H, then
(X', H',B) is a transverse (t — 1)-(v — |H|,k — 1, \) design, where:

X' X\ {H},
H #\ {H} and
B = {B\{z}:zeBeB}.

The design (X', H', B') is called the derived design of (X, H, B) with respect to
z.

A transverse 2-(v, k, 1) design is also called a group divisible design (GDD).
Let K and G be sets of positive integers and let A be a positive integer. A
group divisible design of index A and order v ((K, A)-GDD) is a triple (V, G, B),
where V is a finite set of cardinality v, G is a partition of V into parts (groups)
whose sizes lie in G, and B is a family of subsets (blocks) of V which satisfy the
properties:

1. If B € B, then |B| € K.

2. Every pair of distinct elements of V occurs in exactly A blocks or one
group, but not both.

3. 16| > 1.

If K = {k}, then the (K,\)-GDD is a (k,A)-GDD. If A = 1, the GDD is
denoted by K-GDD. Furthermore, a ({k},1)-GDD is a k-GDD. Necessary
and sufficient conditions for the existence of a 3-GDD of type t* were proved
by Hanani in 1975.

Theorem 1.1 (Hanani, 1975 {9]) Let u and t be positive integers. There erists
a 3-GDD of type t* if and only if u > 3 and the conditions in the following
table are satisfied.

t U
1,5 (mod 6) | 1,3 (mod 6)
2,4 (mod 6) | 0,1 (mod 3)
3 (mod 6) 1 (mod 2)
0 (mod 6) | no constraint




The uniform case for TSQS has been studied extensively. It is easy to construct
a TSQS of type w*. Simply take as the holes H; = {(z,i) : z € Zu} for
i=1,2,3,4 and blocks B = {(z,1), (2,2),(z,3),(2,4) : 71 + 22 + T3 + 24 = 0}.
Verifying that this indeed is a transverse SQS of type w! is straightforward.
The following theorem is a generalization of this and was proved by Mills in
1980.

Theorem 1.2 (Mills, 1990 [20]) For v > 4, u # 5 a TSQS of type h* exists if
and only if hu is even and h(u — 1)(u — 2) = O(mod 3).

With regards to the case u = 5, in 2003 Lauinger, et. al. [18] showed there
exists a T'SQS of type k5 for all h =0, 4,6, or 8 (mod 12). This result has been
recently improved by L. Ji [12], who showed in [13] that there exists a TSQS of
type h® if h is even and h # 10 or 26(mod 48).

The necessary and sufficient conditions for the existence of a 3-GDD of type
g'u’ were established by Colbourn, Hoffman and Rees in 1992.

Theorem 1.3 (Colbourn, Hoffman, Rees, 1992 [7]) Let g,t, and u be nonnega-
tive integers. There exists a 3-GDD of the type g*u! if and only if the following
conditions are satisfied:

1. ifg>0,thent >3, ort=2andu=g,ort=1aendu=0, ort=0;
. u<g(t—1) orgt=0;
g(t — 1)+ v = O(mod 2) or gt = 0;
. gt =0(mod 2) or u=0;
. 1g%(t — 1) + gtu = O(mod 3).
In this article the focus is on TSQS(g*u?). The necessary conditions for the
existence of a TSQS of type g'u' were given in [16].

Theorem 1.4 (Keranen, Kreher, 2007 [16]) If a TSQS(g*u') ezists where
t>4, then0<u<g(t—2), (3)g° + (3)9°x =0 (mod 4), and

LI SR P X

1. if g=0 (mod 6), then u is even;
2 ifg=1or5 (mod6), thent=1 or 3 (mod 6) and
a.) ift=1 (mod 6), then u is odd;
b.) if g=1 (mod 6) and t =3 (mod 6), then u =1 (mod 6);
c.) ifg=5 (mod 6) and t =3 (mod 6), then « =5 (mod 6);
3. ifg=2 or4 (mod6), then t =0 or 1 (mod 3) and
a.) ift =0 (mod 3), then u =g (mod 6);
b.) ift =1 (mod 3), then u is even;
4. if g=3 (mod 6), thent =1 (mod 2) and u i3 odd.
One way to obtain T'SQS with t holes of size g and 1 hole of size » is to
begin with a large set of transverse Steiner triple systems of type g* and then

adjoin new point to each of the triples in each system. Lauinger, Kreher, Rees,
and Stinson were able to obtain the following result using this idea.
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Theorem 1.5 (Lauinger, et. al., 2005 [18] There ezists a TSQS(m*((s —
2)m)!) if and only if s(s — 1)m? = 0 (mod 6), (s — 1)m = 0 (mod 2), and
(m,s) # (1,7).

Following are some more useful results on small 7SQS which can be found
in [18].

Theorem 1.6 (Lauinger, et. al.,2003 [18]) If there exists a TSQS of type
{h1,h2,...,hi}, then there exists a TSQS of type {why, wha,...,whi} for all
w21,

Theorem 1.7 (Lauinger, et. al.,2003 [18]) If mn is even and there exists a
TSQS of type (mn) (s + t)* and a TSQS of type m™s't! then there ezists a
TSQS of type m™s't.

Theorem 1.8 There ezists TSQSs of types 2°41, 274, 2144, and 3°9'.

2 New Results on T'SQS(g'u?)

2.1 Six Holes

Keranen and Kreher established a number of results on T'SQS with 5 holes.
In this section, similar methods are used to provide a result on TSQS with 6
holes.

Theorem 2.1 (Keranen, Kreher, 2007 [16], [17]) If g =0 (mod 4), then there
exists a TSQS(g*u') if and only if u is even and 0 < u < 2g, except possibly
when g*u! is one of the following ezceptions:

8%u!, u=2,6,10,14,

12%), u = 2,4, 8,10, 14, 16, 20, 22,

24%!, u=2,10 (mod 12), 2 < u < 48,

40%u!, u=2 (mod 4), 2 < u < 80,

(4n)*u', n = 2,10 (mod 12), n > 10 and u =2 (mod 4), 10 < u < 8n,
(4n)*u!, n =6 (mod 12), n > 6 and u = 2,10 (mod 12), 10 < u < 8n.

Theorem 2.2 (Keranen, Kreher, 2007 [16]) If g = 2(mod 4), g # 6, u is doubly
even, and 0 < u < 2g, there erists a TSQS(g*u').

IR

)

An orthogonal array of size N, with k constraints (or of degree k), s levels
(or of order s), and strength t, denoted OAA(N, K, 3,t), is a k x N array with
entries from a set of s > 2 symbols, having the property that in every ¢t x N
sub-matrix, every t x 1 column vector appears the same number A = ;’-"; times.
The parameter ) is the indez of the orthogonal array. An OAA(N, k, s,t) is also
denoted by OA(t, k, s); in this notation, if ¢ is omitted it is understood to be
2, and if ) is omitted it is understood to be 1. The following theorem, related
to orthogonal arrays was proved by Bush in 1952 [5].
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Theorem 2.3 (Bush, 1952 [5]) If s is a prime power and t < s, then an
OAi(t,s +1,s) exists. Moreover, if s > 4 is a power of 2, an OA;1(3,5 + 2,3)
exists.

A uniform transverse t-(kh, k, A) design of type h* is equivalent to an orthog-
onal array of order h, strength ¢, index A and degree k. The following theorem
gives the main construction that Keranen and Kreher used to obtain a number
of results on TSQS with five holes (see [16]).

Theorem 2.4 (Keranen, Kreher, 2007 [16]) If there erists an OA(3,k +
1,n) and a TSQS(w*ul) for all i = 1,2,---,n, then there ezists a
TSQS((wn) (T}, w)').

Ji and Yin have recently found new orthogonal arrays of strength 3 and
degree 6.

Theorem 2.5 (Ji, Yin, [14]) Let v be a positive integer which satisfies
gcd(v,4) # 2 and ged(v, 18) # 3. Then there is an OA(3,6,v).

These OAs can be used as ingredients for constructing TSQS with 6 holes.
It is known that there exist TSQS(3%) by Theorem 1.2 and T'SQS(3%9') by
Theorem 1.8. Therefore, applying Theorem 2.4 with k =5, w = 3, and w; €
{3,9} yields the following result.

Theorem 2.8 There exists a TSQS((3v)° (T, wi)') for ui € {3,9} for allv
such that ged(v,4) # 2 and ged(v,18) # 3.

2.2 ¢-FSQS
In a Steiner quadruple system (X, B), if the block set B can be partitioned
into disjoint subsets By, --- , B, and A such that each (X, B;) is a 2-(v,4,1) for
1 < i < s, then the SQS is called an s-fan denoted by s-FSQS(v). In a 1-
FSQS(v), the 2-(v, 4, 1) is also called a spanning block design. A TSQS of type
r™ is called a transverse s-FSQS of type ™ if its block set B can be partitioned
into disjoint subsets By,---, B, and A such that each B; is the block set of
a transverse 2-(v,4,1) of type r™ for 1 < i < s. Ji and Zhu established the
following in [15].

Lemma 2.7 (Ji, Zhu, 2003 [15])) Forv > 4 and v # 6, 10, there exists a 1-FSQS
of type v,

Lemma 2.8 (Ji, Zhu, 2003 [15]) There exists a transverse 1 — FSQS of type
410,

These additional results on s-fans can be found in [13], [1], and [23].
Theorem 2.9 (Ji, [13]) A 1 — FSQS(v) ezists if and only ifv =12k +4 is a
posttive integer.

Theorem 2.10 (Baker, 1976 (1] and Teirlinck, 1994 [23]) There is a (¥52) —
FSQS(v) whenv=4", orv=2(¢" +1) for alln > 1 and q € {7,31}.

The following useful lemmas are based on the use of g-FSQS.



Lemma 2.11 If there ezists a g — FSQS(n) and a TSQS(z*ul), for alli =
1,2,---,g, then there ezists a TSQS(z" (L7, ui)?).

Proof. A g— FSQS(v) is equivalent to a SQS(V, B) that contains g disjoint 2 —
(v,4,1) designs, D1,Dz,---,D,. Write u = 37, ui. Let X ={1,2,3,--- ,z}
and U = {1,2,---,u}. Partition U into subsets Uy, Us, -- - , U, where |U;| = u;.
For each block B = {a, b, c,d} € D, construct a TSQS(z*u}) on (B x X)UU;
with holes {a} x X, {b} x X, {c} x X, {d} x X, Ui. A TSQS(z*) exists for all
z (see Section 1), so for each block B = {a, b, ¢,d} & D;, construct a TSQS(z*)
on (B x X) with holes {a} x X, {b} x X, {c} x X, {d} x X. This makes a
TSQS(z"u') on (V x X)UU. (]

Lemma 2.12 If there exists a transverse 1 — FSQS of type v" and there ezists
a TSQS(z*u?), then there exists a TSQS((vz)"ul).

Proof. A transverse 1 — FSQS of type (v)" is equivalent to a TSQS(v"™) that
contains a transverse 2 —(vn, 4, 1) design of type v™. Let W = {1,2,.-. ,z} and
U ={1,2,---,u}. For each block B = {a,b,c,d} in the 2-design, construct a
TSQS(z*u') on (Bx W)UU with holes {a} x W, {b} xW, {c} xW, {d} xW, U.
A TSQS(z*) exists for all z (see Section 1), so for each block B = {a, b, ¢, d} not
in the 2-design, construct a TSQS(z*) on B x W with holes {a} x W, {b} x W,
{c} x W, {d} x W. o

Because there exists a transverse 1 — FSQS of type 4'° by Theorem 2.8, and
there exists a TSQS(z*u') whenever the conditions in Theorems 2.1 and 2.2
are satisfied, Lemma 2.12 can be applied with v = 4 and n = 10 to obtain the
following.

Theorem 2.13 There erists a TSQS((4z)'%u') whenever £ = 0 (mod 4), u is
even and 0 < u < 2z, except possibly when (z,u) is one of the following:

1. z=8 andu € {2,6,10,14}

2. £ =12 and u € {2,4,8,10,14,16,20,22}

3 =24 and u=2,10 (mod 12), 2 <u <48

4. =40 andu=2 (mod 4),2<u <80

5. 2=4n,n=2,10 (mod 12), n > 10 andu=2 (mod 4), 10 < u < 8n

6. z=4n, n=6 (mod 12), n > 6 and u = 2,10 (mod 12), 10 L u < 8n.
Purthermore, there exists ¢ TSQS((4z)'%u') whenever z = 2mod 4), z #6, u
is doubly even, and 0 < u < 2z.

Consider any pair of holes H; and H> that have the same even cardinality
m. Let F; = {F},, Fy;,--- , Fi,,_, } be a one-factorization of the complete graph
G; on H;, i = 1,2. Pair the one-factors of F; and F to construct blocks.
That is for i # j take as blocks {a, b, ¢,d} where {a,b} € F;, and {c,d} € F;,,
k =1,2,...,m — 1. These blocks will cover triples consisting of two points
from H; and one point from H> or one point from H; and two points from
H,. This construction is referred to as the doubling one-factorization or DOF

construction. Following is a construction for quadrupling the number of holes
of size g which is based on a variation of this.



Theorem 2.14 If there exists TSQSs of type g*u!, g*, and (tg)*u' where t is
even, then there exists a TSQS(g%u').

Proof. Let Hy, H>, Hs, H, and X be disjoint sets with |H;| = tg for i = 1,2, 3,4,
and |X| = u. Construct a TSQS((tg)*u") where the His and X are the holes.
For each i = 1, 2, 3, 4, partition H; into ¢ subsets H;,, H;,,..., H;, where |Hyy| =
g for j = 1,2,...,t. Construct a TSQS(g'u') on each H; U X with holes
Hy,Hy;,--+ ,Hi,,X. Now apply the DOF construction to each pair of holes,
H; and H; as follows. Construct the complete graph G; and G; on H; and
H; with the points H;,, Hi,,...,H;, and Hj; ,Hj,,..., Hi, respectively. Let
Fi={R,,R,,...,F,_,} be a one-factorization of G; for | = i and [ = j. Pair
the one-factors of F; and F; to obtain blocks

{H:, Hi,, Hj,, Hj, : {H;iy, Hi,} € Fi, and {Hj,, Hj;} € F;}.
On each such block, construct a TSQS(g*). (m]

There exists a TSQS((4m)*) by Theorem 1.2. Also, by Theorem 2.1, there
exists & TSQS((4m)*2') for m > 4, and there exists a TSQS((4 - 4m)*2!) for
m > 1. So apply Theorem 2.14 with ¢ = 4m, t = 4 and v = 2 to obtain a
T'SQS((4m)'®2!). This theorem can be applied again with ¢ = 16 and u = 2 to
get & TSQS((4m)®42!). Thus recursively applying this theorem and noting the
existence of a TSQS(4*2') from Theorem 1.8 yields the following result.

Corollary 2.15 There ezists a TSQS((4m)**2") for allm,k > 1, m #2o0r3.

2.3 TSQS(z"(2z)!)

In this section, necessary and sufficient conditions for the existence of a
TSQS(2"4') are established. As a consequence, results on T'SQS of type
(2n)"u' are obtained. The technique is also extended to obtain some T'SQSs of
type z"(2z)!. This first result uses a g — FSQS to obtain TSQS with v holes
of size 2 and one long hole.

Theorem 2.168 There ezists a TSQS(2°u') for every 0 < u < 2(v — 2) such
that u = 0 (mod 4) when v =4", orv=2(q"+1) foralln > 1 and q € {7,31}.

Proof. For these v, there exists a (l;—2-) — FSQS(v) by Theorem 2.10. So apply
Lemma 2.11 with g = (v - 2)/2, £ = 2, and u; = {0,4}. O

Theorem 2.17 There exists a TSQS(2"4') if and only if n= 1 (mod 3).

Proof. Suppose there exists a TSQS(2"4"). Derive with respect to a point, z,
in the hole of size 4 to get a transverse 2 — (2n, 3,1) design of type 2", (i.e. a
{3} — GDD of type 2"). By Theorem 1.1, this implies that n = 0 or 1 (mod 3).
Now derive with respect to a point, y, in & hole of size 2 to get a transverse
2 - (2n+2,3, 1) design of type 2"~'4!, (i.e. a {3} — GDD of type 2"~'4'). By
Theorem 1.3, this implies that 1(2)%(n — 1)(n — 2) + 2(n — 1)4 = 0 (mod 3).
This simplifies to 2(n — 1)(r +2) =0 (mod 3),s0 n =1 (mod 3).
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If r =1 or r = 2 then there exists a TSQS(2%4!) and a TSQS(274') by
Theorem 1.8. There exists a TSQS(6"*!), for all r > 0, r # 2, by Theorem 1.2.
As previously stated, a TSQS(2%4') exists. So apply Theorem 1.7 with m = 2,
n=3,s8s=2andt=4.

o

The following result is obtained as a consequence of Theorem 2.17.

Corollary 2.18 There ezists a TSQS((2n)"u') for all even u such that 0 <
u < 4n whenever n = 1 (mod 3), n # 4, is a prime power.

Proof. If n =1 (mod 3) is a prime power, n # 4, then there exists an OA(3,n+
1,n) by Theorem 2.3. By Theorem 2.17, there exists a TSQS(2"4). It is known
by Theorem 1.2 that a TSQS(2") exists and a TSQS(2™*!) exists. Therefore,
apply Theorem 2.4 with w = 2 and u; € {0,2,4}, where u =37, u;. ()

The necessary conditions for the existence of a TSQS of type z"(2z)' are
as follows.

Theorem 2.19 If a TSQS(x"(2z)!) exists wheren > 4 and 0 < (2z) < z(n —
2), then z is even, and if z =2 or 4 (mod 6) then n =1 (mod 3).

Proof. If a TSQS(z"(2z)') exists, then by Theorem 1.4, because 2z is even z
must also be even. If z = 0 (mod 6), there are no other conditions. However, if
z=2or 4 (mod 6), then n =0 or 1 (mod 3). If n =0 (mod 3), then (2z) ==
(mod 6). But z = 2 or 4 (mod 6), so this case will never happen. Therefore,
n=1 (mod 3). o

Theorem 2.20 For all even = and n > 0, there exists a TSQS(z*"+(2z)").

Proof. There exists TSQSs of types 24! and 274! by Theorem 1.8. So applying
Theorem 1.6 with w = Z to each gives T'SQSs of type z*(2z)" and z"(2z)".

It is given in Theorem 1.2 that a TSQS((3z)"*?) exists for alln > 3, n # 4.
But 3z = 0 or 6 (mod 12) for all z = 2 or 4 (mod 6), so a (3z)° also exists.
(See the discussion following Theorem 1.2.) So for any n > 3, apply Theorem
17withm=2,n=3,t=2z,s=z,andr=n.

The above theorem establishes sufficient conditions for the existence of a
TSQS(z"(2x)') when z = 2 or 4 (mod 6). When z = 0 (mod 6), open cases
are when n =0,2 (mod 3).

2.4 TSQS(4"2')
Theorem 2.21 If there exists a TSQS(4™2') then n =1 (mod 3).

Proof. Suppose there exists a TSQS(4™2!). Derive with respect to a point, z,
in the hole of size 2 to obtain a transverse 2 — (4n, 3, 1) design of type 47, (i.e. a
{3} - GDD of type 4™). By Theorem 1.1, this implies that n = 0 or 1 (mod 3).
Now derive with respect to a point, y, in a hole of size 4 to get a transverse
2 — (4n —2,3,1) design of type 4”121, (i.e. a {3} — GDD of type 4*~'2!). By
Theorem 1.3, this implies that 1(4)*(n — 1)(n — 2) + 4(n — 1)2 = 0 (mod 3).
This simplifies to 8(n — 1)(n — 1) =0 (mod 3), son =1 (med 3). a
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The next result gives a method for finding the more general TSQS(4"u!),
thus it can be applied to u = 2.

Theorem 2.22 There ezists a TSQS(4"u') for every even 0 < u < v—2 when
v=4" orv=2(¢" +1) for alln > 1 and q € {7,31}.

Proof. For these v, there exists a (3;—2) — FSQS(v) by Theorem 2.10. So apply
Lemma 2.11 with v = (v - 2)/2, z = 4, and u; € {0,2}. a

Theorem 2.23 There exists a TSQS(4™2') when n = 12k + 4 is a positive
integer.

Proof. Theorem 2.9 says that when n = 12k+4 is a positive integer there exists
a 1 — FSQS(n). Therefore, apply Lemma 2.11 with g = 1, z = 4, and u; = 2.
(]

The following design was constructed by using the backtracking algorithm
found in [18].
Theorem 2.24 There ezists a TSQS(472").
Proof. Develop the following 26 baseblocks:

{0,2,8,24), {0,2,9,20}, {0,2,10,23}, {1,2,6,28},
{1,2,7,21}, {1,2,9,22}, {1,2,11,23}, {(2,6,10,18)},
{2,6,11,16}, {2,6,12,17}, {2,6,13,20}, {2,6,15,23},
{2,6,19,22}, {2,6,21,24}, {2,6,25,27}, {2,7,10,15},
{2,7,13,19}, {2,7,14,20}, {2,7,16,18}, {2,7,17,23},
{2,8,10,19}, {2,8,16,22}, {2,8,21,27}, {2,9,12,25},
{2,9,14,23} :

with the automorphisms in the group generated by
(2,6,10, 14,18, 22, 26)(3,7, 11, 15, 19, 23, 27)(4, 8, 12, 16, 20, 24, 28)
(5,9,13,17,21, 25,29)

and
(2,3,4,5)(6,7,8,9)(10, 11, 12, 13)(14, 15, 16, 17)(18, 19, 20, 21)
(22,23, 24, 25)(26, 27, 28, 29).

The holes are: {0,1}, {2,3,4,5}, {6,7,8,9}, {10,11,12,13}, {14,15,16,17},
{18,19,20,21}, {22, 23, 24,25}, {26,27, 28, 29}. O

Theorem 2.25 If there ezists a TSQS(4™2'),
TSQS(44~32Y), for alln > 5, n £ 7,11.

Proof. There exists a transverse 1 — FSQS of type (n — 1)* for all n > 5,
n # 7,11, by Lemma 2.7. This is equivalent to a 7SQS((n — 1)*) that contains
a transverse 2 — (v,4,1) design of type (n — 1)%. Let W = {1,2,3,4} and
U ={1,2,3,4,5,6}. For each block B = {a,b,¢,d} in the 2-design, construct a
TSQS(4%6") on (B x W) UU with holes {a} x W, {8} x W, {c} x W, {d} x W,
U. This makes a TSQS((4(n — 1))*6'). Now apply Theorem 1.7 with m = 4,
n=n-1l,r=8=4,andt =2, O

then there exists a

Remark: The next Theorem is similar to Theorem 2.25, however it gives some
new designs. For example, we can make a TSQS(4?22!) with this theorem
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(k =3 and n = 7), but we could not have used Theorem 2.25 to make it. (Set
4n — 3 = 22 and try to solve for n.)

Theorem 2.26 If there ezists TSQSs of types 4°+'2! and (4k)™6", then there
ezists ¢ TSQS(47F+121),

Proof. Apply Theorem 1.7 withm =4, n=k,r=n,s=4,and t =2. O

The open cases for TSQS(4"2')s are whenever n # 4 (mod 12) and Theo-
rems 2.22, 2.25, or 2.26 cannot be applied. A list of some small n regarding the
open cases for TSQS(4"2')s is

n = 10, 19, 31, 34, 37, 43, 46, 55, 58, 70, 73.
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