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Abstract

In[H. Ngo, D. Du, New constructions of non-adaptive and error-tolerance
pooling designs, Discrete Math. 243 (2002) 167-170], by using subspaces
in a vector space Ngo and Du constructed a family of well-known pooling
designs. In this paper, we construct a family of pooling designs by using
bilinear forms on subspaces in a vector space, and show that our design and
Ngo-Du’s design have the same error-tolerance capability but our design is
more economical than Ngo-Du's design under some conditions.
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1 Introduction

The basic problem of group testing is to identify the set of defective items in a
large population of items. A group test is applicable to an arbitrary subset of items
with two possible outcomes: a negative outcome indicates that all items in the
subset are negative, and a positive outcome indicates otherwise. A pooling design
is a specification of all tests such that they can be performed simultaneously with
the goal being to identify all positive items with a small number of tests [1). A
pooling design is usually represented by a binary matrix with columns indexed
with items and rows indexed with pools. A cell (i, j) contains a 1-entry if and
only if the ith pool contains the jth item. By treating a column as a set of row
indices intersecting the column with a 1-entry, we can talk about the union of
several columns. A binary matrix is s°-disjunct if every column has at least e + 1
1-entries not contained in the union of any other s columns [8]. An s°-disjunct
matrix is also called s-disjunct. An s°-disjunct matrix is called fully s°-disjunct
if it is neither (s + 1)*-disjunct nor s**!-disjunct. An s*-disjunct matrix is |e/2)-
error-correcting (3, 6, 7].

Let I} be the n-dimensional vector space over the finite field F, and [‘:’L7

denote the set of all k-dimensional subspaces of IF;. Then the size of the set [Izl]q
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is [:]q = [T% 1@ — 1)/ T1%,(¢' - 1). Ngo and Du [9] constructed a family of
pooling designs by means of the containment relation of subspaces in Fg.

Definition 1.1 ([9]) For positive integers d,k,n with d < k < n, let M,(d, k,n) be
the binary matrix with rows indexed with [‘Z’]q and columns indexed with [l:]]q
such that M (A, B) = 1 if and only if A C B.

D’yachkov et al. [2] studied the error-tolerance capability of M,(d, k, n) and
obtained the following result.

Theorem 1.1 ([2]) Ifk—d >2and 1 < s < g(¢*"' - 1)/(g*? - 1), then M,(d,k,n)
is s¢-disjunct, where

I L0 ) I | 2]
e=g" [d_l]q (s- )¢ [d_l]q . 0))

In particular, if s < min{g + 1,9(¢*™" = 1)/(¢*? — 1)}, then My(d,k,n) is fully
s¢-disjunct.

In this paper, we construct a family of pooling designs by using bilinear forms
on subspaces in a vector space, and show that our design and Ngo-Du’s design

have the same error-tolerance capability but our design is more economical than
Ngo-Du’s design under some conditions.

2 Construction

Now we construct a family of pooling designs by means of the containment rela-
tion of bilinear forms on subspaces in a vector space.

Let B,(k, m) denote the set of all k-pairs (C, f) where C is a k-dimensional
subspace of Fy and f is a bilinear form on C. That is, f is a bilinear map from
Cx CtoF,. For (C, f) € By(k,m) and (D, g) € By(d, m), the pair (D, g) is called
ad-pair of (C, ) if D € C and flp = g, where flp is the restriction of f on D. If
(D, g) is a d-pair of (C, f), we also say that (C, f) contains (D, g).

Definition 2.1 For positive integers d,k,m with d < k < m, let B,(d,k,m) be
the binary matrix with rows indexed with B,(d, m) and columns indexed with
B,(k, m) such that B,((D, g), (C, f)) = 1 if and only if (D, g) is a d-pair of (C, f).

In order to study the matrix B,(d, k, m), we first introduce an useful lemma.
Lemma 2.1 Let d, k, m be positive integers withd < k < m. Then

(i) The size of the set By(k,m) is g% [',"']q.

(ii) For a given k-pair (C, f) € B,(k,m), let (C, D be the set of all d-pairs
contained in (C, f). Then the size of the set (C, )@ is [:‘,]q. Moreover, the

Junction [j]q about x is strictly increasing for x > d.
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(iii) For a given d-pair (D,g) € B,(d,m), the number of k-pairs of By (k,m)
m-d

containing (D, g) is ¢**~*'[n-4 ;
Proof. (i) There are [’,:']q many k-dimensional subspaces of IF;; and there are 7

bilinear forms on each k-dimensional subspace, so (i) holds.
(ii) There are [";] many d-dimensional subspaces of C and the restriction of f

on each d-dimensional subspace is unique, so (ii) holds.
(iii) There are [”"“']q many k-dimensional subspaces of 7 containing D and

k=d
there are ¢"~%" bilinear forms on each k-dimensional subspace such that their
restrictions on D are all g, so (iii) holds. O

Now we introduce main results of this paper.

Theorem 2.2 Letk—d > 2and 1 < s < q(g*™ - 1)/(¢*~4 - 1). Then B,(d, k,m) is
s*-disjunct, where e as in (1). In particular, if s < min{g+1, (g - 1)/(g*9-1)),
then B,(d, k,m) is fully s°-disjunct. v

Proof.  Let(Co, fo),(C1, f1),...,(Cs, fs) be any s+1 distinct columns of B,(d, k, m).
By Lemma 2.1 (i) (Cy, fo) contains [:]q many d-pairs. Foreach 1 < j < s, let Vp;

be the largest subspace of Cp N C; such that foly, = filv,,. Then (Co, o) N
(Cjs )P = (Voj» folv,,)® for each 1 < j < s. To obtain the maximum d-pairs in

5 L4
Co, ) 0 (_J(Co 5@ = |V, folu, )2,
Jj=1 Jj=1
by Lemma 2.1 (ii) we may assume that dim Vp; = k — 1 for each 1 < j < 5. Then
the size of the set (Vo folv,, )@ is [";']q. Since k -2 < dim(Vo; N Voy) < k- 1 for
all 1 < j,I < s, by Lemma 2.1 (i) the size of each of the sets

(Voz, Solvia)\Vor, Jolve )9, - - - (Vos, folve,) P \(Vor» folve, )

is at most [";']q - [";Z]q. Consequently, the number of d-pairs that belong to
(Co, f6)@ but not to LS., (C, £)@ is at least

e )

Let s < min{g + 1,q(g*"' - 1)/(¢* — 1)}. We show that B,(d, k, m) is fully
s*-disjunct. Let (U, k) be a (k — 2)-pair contained in (Co, fp). Then the number
of (k — 1)-pairs between (U, k) and (Cy, fy) is equal to the number of (k — 1)-
dimensional subspaces between U and Cp. Since this number is g + 1, we can
choose s distinct ones among them, say (V}, folv,) (1 < j < s). For each (V}, Jolv,),



by Lemma 2.1 (iii) we can choose a k-pair (C}, _fj) such that V; = Cp N C; and
Jolv, = filv,. Then both (Co, fo) and (C;, f;) contain the same (k 2)-pair (U, h)
Therefore, the desired result follows.

Next we show that our design and Ngo-Du’s design have the same error-

tolerance capability under some conditions.
By Theorem 1.1 and Theorem 2.2, we obtain the following result.

Corollary 2.3 For positive integers d,k,m,n withd < k < min{m,n}, ifk—d > 2
and1 < s < min{g+1,q(¢*" - 1)/(g*4—1)), then both By(d, k,m) and M,(d, k, n)
are fully s*-disjunct, where e as in (1).

Theorem 2.4 For positive integers d,k,n with d < k < n, if My(d,k,n) is fully
s -disjunct and By(d, k,n) is fully s*-disjunct, then e; = e.

Proof. Since M,(d, k,n) is fully s**-disjunct, there exist s + 1 distinct columns
Vo, Vi,..., Vs of Mq(d k, n) such that the number of d-dimensional subspaces of
Vo not contamed inVy,...,Vsisep + 1. Pick a bilinear forms f on Vp. Let Vp; =
Voan and fo; = folv,, foreach 1 £ j < s. Thenkj := dim Vp; < k-1 and (Voj,ﬁ,j)
is a k;-pair of (Vo, fy). Foreach 1 < j < 5, by Lemma 2.1 (iii) we can choose a
(V;, f)) € By(k,n)such that fo; = fjlv,,. Then (Vo, fo), (V1, f1),. .., (Vs, fs) are s+1
distinct columns of By(d, k,n). By Lemma 2.1 the number of d-palrs that belong
to (Vo, o) but not to 5., (V;, /)@ is equal to the number of d-dimensional
subspaces of Vg not contained in V..., V;, itis e; + 1. Since By(d, &, n) is fully
sf-disjunct, e; 2 e;.

Since B,,(d k,n) is fully s®2-disjunct, there exist s+ 1 distinct columns (Cp, fo),
(C1, £ids .. (Cs, f5) of By(d, k,n) such that the number of d-pairs that belong to
(Co, fb)(") but not to U, (Cj, f)® is ez + 1. Let Vo be the largest subspace in
theset{VC CoNC; Ifolv = filv} for each 1 < j < 5. We assert that Vg, ..., Vos
are s distinct subspaces of Cp. In fact, if Vo; = Vg for some 1 < j < ! <s,
without loss of generality, let Vo; = Vgz. Then the number of d-pairs that be-
long to (Co, fo)¥ but not to U$.,(Cj, £)@ is ez + 1. Pick a d-pair (D, g) that
belong to (Co, /o) but not to [J5_,(C}, f;¥. By Lemma 2.1 (iii) we can pick
(€1, /i) € By(k,n) such that (Cy, fi) # (Co,fo),D € €y and filp = g. Then
(Co, fo) (C1, Fid(C2, f2), ..., (Cs, f5) are s+ 1 distinct columns of By(d,k,n), and
the number of d-pairs that belong to (Co, /o) but not to (Cy, /1)) PUU3,(C;), ne
is at most ey, this is a contradiction by B,(d, k, n) being fully s*2-disjunct. For each
1<j<s wechooseaV;e ['"]]q such that Co N V; = Vy;. Then Co, V1, ..
are s + 1 distinct columns of M,(d, k,n) and the number of d-dimensional sub-
spaces of Cp not contained in Vy,...,V; is equal to the number of d-pairs that
belong to (Co, fo)? but not to |J j_l(C 1 [, itis e+ 1. Since My(d, k, n) is fully
s -disjunct, e; < e;.

Next we show that our design is more economical than Ngo-Du’s design under

di
som;:&nthﬁc}‘rz(d k,n)is an [ 4] x[k] matrix and B,(d, k, m) isa g [ d] Xq"z [ ]

matrix. Since [ d] isa smctly increasing continuous function about x, for given
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4, k, m, there exists a positive real number x; such that [“°] = ["‘] q" Letng =
[xo01. Then [""] >4 ["'] the row-to-column ratio of M,(d, k, ng) is

g, J@-n

i=d+1

I I

=ng—k+1

and the row-to-column ratio of B,(d, k,m) is

A, J@-v

i-d+l

#hl, o "W -y

i=m—k+1

If ¢~ [l (@ - 1) > ['[;’2;:_",;,(:1" 1), then the row-to-column ratio of
B,(d, k,m) is smaller than that of M,(d, k, np). Therefore we obtain the following

result,

Theorem 25 Let [?]q = qdl[';]q and ng = rxo'l [fq*z-dl n:_';;'d_i;‘l“(qi -1 >
1724, \(q' = 1), then B,(d, k,m) is more economical than M,(d, k, no).

l=no-k+l

Combining Corollary 2.3 and Theorem 2.5, we obtain the following result.

Corollary 2.6 Letd,k,m be integers with1 <d <k < m and k—d > 2. Suppose
that 1 < s < minig + 1,9(¢*" = D/(g* = 1)} and ¢~ [I%3] (q' - 1) >
ﬂ;’:;:_"k’ﬂ(q = 1). Then both B,(d,k,m) and My(d, k,ng) are fully s*-disjunct,
where e as in (1) and ng as in Theorem 2.5. Moreover, By(d,k, m) is more eco-

nomical than My(d, k,np)

Example 2.1 Letd = 2,k = 3 and s = 2 = g. By Corollary 2.3, both B,(2, 3, m)
and M»(2, 3, ng) are fully 25-disjunct. For 5 < m < 11, the following table tells us
that B»(2, 3, m) is more economical than M>(2, 3, ny), where ng = 7, 8, 9, 10, 11,
12, 13 corresponding to m = 5, 6,7, 8,9, 10, 11, respectively:
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name rows columns
B2(2,3,5) 2480 79360
M,(2,3,7) 2667 11811
B»(2,3,6) 10416 714240
My(2,3,8) 10795 97155
B»(2,3,7) 42672 6047232
M>(2,3,9) 43435 788035
B»(2,3,8) 172720 49743360
M,y(2,3,10) 174251 6347715
B»(2,3,9) 694960 403473920
M,(2,3,11) 698027 50955971
B»(2,3,10) 2788016 3250030080
M5(2,3,12) 2794155 408345795
B»(2,3,11) 11168432 26089457152
My(2,3,13) 11180715 3269560515

In [4, 5, 6, 10], Nan and the authors of these papers proposed a new model for
pooling designs, and generalized Macula’s design and Ngo-Du’s design. Now we
generalize our construction under the new model.

For (C, f) € By(k,m) and (D, g) € B,(d, m), the pair (W, h) is called the inter-
section of (C, f) and (D, g) if h = glw = flw where W is the largest subspace of
D N C such that glw = flw.

Definition 2.2 For positive integers i,d, k,m with i < d <k < m, let B,(i;d, k,m)
be the binary matrix with rows indexed with B,(d, m) and columns indexed with
B,(k,m) such that B,((D, £),(C, f)) = 1 if and only if the intersection of (C, f)
and (D, g) is an i-pair.

Lemma 2.7 ([5]) Suppose max{0,r +t—-m} < j<rand j <t <m LetP
be a t-dimensional subspace of Fy and let W be a j-dimensional subspace of
P. Then the number of r-dimensional subspaces of Fy intersecting P at W is

fGg,rmp = q"'ﬂ("ﬁ[’;‘_"; . Moreover the function f(j,r,m;t + @) about @ is
decreasing forO<a <m+ j—t-r.

Theorem 2.8 Let 1 < s < gl - D¢ -1 andm—-(s+ Dk >2d-i> 1.
Then By(i; d, k, m) is an s°-disjunct matrix, where

_d-iX(ssDkeay| = (5 + 1K) k=1 aiak=2] )
e [ d-i q"k i-1] ¢ be' i-1f )"

Proof. Let(Co, fo),(C1, f1)s- .., (Cs, fs) be any s+1 distinct columns of B,(i; d, k, m).
By Theorem 2.2, the number of i-pairs that belong to (Co, o) but not to U, (Cj, /)®
is at least ¢[17)] - (s - g+ +73], Let U == Co+Cy+ - + Cs. Then

"k <dimU < (s + 1)k. Given an i-pair (W, k) that belongs to (Co, fo)® but not to
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U3i(Cj, £)®. By Lemma 2.7, the number of d-dimensional subspaces D in Fg
satisfying D N U = W is at least q“""’"‘“”""’[”"g:’i')")] . For each D, the number

of (D, g) € B,(d, m) satisfying glw = h is g-?@*)_ Note that the intersection of
(D, g) and (Co, fo) is (W, h) but the intersection of (D, g) and (C j» [7) is not (W, h)
for each j. Therefore, the desired result follows. o

Remarks. Similar to Theorems 2.2 (Theorems 2.8), we may obtain new pooling
designs from alternating bilinear forms, symmetric bilinear forms or Hermitian
forms. We suppress the details.
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