A new construction of pooling designs based on bilinear forms

Fenyan Liu Junli Liu*

Math. and Inf. College, Langfang Teachers University, Langfang 065000, China

Abstract

In [H. Ngo, D. Du, New constructions of non-adaptive and error-tolerance pooling designs, Discrete Math. 243 (2002) 167–170], by using subspaces in a vector space Ngo and Du constructed a family of well-known pooling designs. In this paper, we construct a family of pooling designs by using bilinear forms on subspaces in a vector space, and show that our design and Ngo-Du's design have the same error-tolerance capability but our design is more economical than Ngo-Du's design under some conditions.

AMS classification: 05B30

Key words: Pooling design, disjunct matrix, error-tolerance, bilinear forms

1 Introduction

The basic problem of group testing is to identify the set of defective items in a large population of items. A group test is applicable to an arbitrary subset of items with two possible outcomes: a negative outcome indicates that all items in the subset are negative, and a positive outcome indicates otherwise. A pooling design is a specification of all tests such that they can be performed simultaneously with the goal being to identify all positive items with a small number of tests [1]. A pooling design is usually represented by a binary matrix with columns indexed with items and rows indexed with pools. A cell (i, j) contains a 1-entry if and only if the ith pool contains the jth item. By treating a column as a set of row indices intersecting the column with a 1-entry, we can talk about the union of several columns. A binary matrix is s^e -disjunct if every column has at least e + 1 1-entries not contained in the union of any other s columns [8]. An s^0 -disjunct matrix is also called s-disjunct. An s^e -disjunct matrix is called fully s^e -disjunct if it is neither $(s + 1)^e$ -disjunct nor s^{e+1} -disjunct. An s^e -disjunct matrix is $\lfloor e/2 \rfloor$ -error-correcting [3, 6, 7].

Let \mathbb{F}_q^n be the *n*-dimensional vector space over the finite field \mathbb{F}_q and $\begin{bmatrix} [n] \\ k \end{bmatrix}_q$ denote the set of all *k*-dimensional subspaces of \mathbb{F}_q^n . Then the size of the set $\begin{bmatrix} [n] \\ k \end{bmatrix}_q$

^{*}junli810@163.com

is $\begin{bmatrix} n \\ k \end{bmatrix}_q = \prod_{i=n-k+1}^n (q^i - 1) / \prod_{i=1}^k (q^i - 1)$. Ngo and Du [9] constructed a family of pooling designs by means of the containment relation of subspaces in \mathbb{F}_q^n .

Definition 1.1 ([9]) For positive integers d, k, n with d < k < n, let $M_q(d, k, n)$ be the binary matrix with rows indexed with $\begin{bmatrix} n \\ d \end{bmatrix}_q$ and columns indexed with $\begin{bmatrix} n \\ k \end{bmatrix}_q$ such that $M_q(A, B) = 1$ if and only if $A \subseteq B$.

D'yachkov et al. [2] studied the error-tolerance capability of $M_q(d, k, n)$ and obtained the following result.

Theorem 1.1 ([2]) If $k-d \ge 2$ and $1 \le s \le q(q^{k-1}-1)/(q^{k-d}-1)$, then $M_q(d,k,n)$ is s^e -disjunct, where

$$e = q^{k-d} \begin{bmatrix} k-1 \\ d-1 \end{bmatrix}_a - (s-1)q^{k-d-1} \begin{bmatrix} k-2 \\ d-1 \end{bmatrix}_a - 1.$$
 (1)

In particular, if $s \leq \min\{q+1, q(q^{k-1}-1)/(q^{k-d}-1)\}$, then $M_q(d, k, n)$ is fully s^e -disjunct.

In this paper, we construct a family of pooling designs by using bilinear forms on subspaces in a vector space, and show that our design and Ngo-Du's design have the same error-tolerance capability but our design is more economical than Ngo-Du's design under some conditions.

2 Construction

Now we construct a family of pooling designs by means of the containment relation of bilinear forms on subspaces in a vector space.

Let $\mathcal{B}_q(k,m)$ denote the set of all k-pairs (C,f) where C is a k-dimensional subspace of \mathbb{F}_q^m and f is a bilinear form on C. That is, f is a bilinear map from $C \times C$ to \mathbb{F}_q . For $(C,f) \in \mathcal{B}_q(k,m)$ and $(D,g) \in \mathcal{B}_q(d,m)$, the pair (D,g) is called a d-pair of (C,f) if $D \subseteq C$ and $f|_D = g$, where $f|_D$ is the restriction of f on D. If (D,g) is a d-pair of (C,f), we also say that (C,f) contains (D,g).

Definition 2.1 For positive integers d, k, m with d < k < m, let $B_q(d, k, m)$ be the binary matrix with rows indexed with $\mathcal{B}_q(d, m)$ and columns indexed with $\mathcal{B}_q(k, m)$ such that $B_q((D, g), (C, f)) = 1$ if and only if (D, g) is a d-pair of (C, f).

In order to study the matrix $B_q(d, k, m)$, we first introduce an useful lemma.

Lemma 2.1 Let d, k, m be positive integers with $d \le k \le m$. Then

- (i) The size of the set $\mathcal{B}_q(k, m)$ is $q^{k^2} \begin{bmatrix} m \\ k \end{bmatrix}_q$.
- (ii) For a given k-pair $(C, f) \in \mathcal{B}_q(k, m)$, let $(C, f)^{(d)}$ be the set of all d-pairs contained in (C, f). Then the size of the set $(C, f)^{(d)}$ is $\begin{bmatrix} k \\ d \end{bmatrix}_q$. Moreover, the function $\begin{bmatrix} x \\ d \end{bmatrix}_q$ about x is strictly increasing for $x \ge d$.

(iii) For a given d-pair $(D,g) \in \mathcal{B}_q(d,m)$, the number of k-pairs of $\mathcal{B}_q(k,m)$ containing (D,g) is $q^{k^2-d^2} \begin{bmatrix} m-d \\ k-d \end{bmatrix}_{g}$.

Proof. (i) There are $\binom{m}{k}_q$ many k-dimensional subspaces of \mathbb{F}_q^m and there are q^{k^2} bilinear forms on each k-dimensional subspace, so (i) holds.

- (ii) There are $\begin{bmatrix} k \\ d \end{bmatrix}_q$ many d-dimensional subspaces of C and the restriction of f on each d-dimensional subspace is unique, so (ii) holds.
- (iii) There are ${m-d \brack k-d}_q$ many k-dimensional subspaces of \mathbb{F}_q^m containing D and there are $q^{k^2-d^2}$ bilinear forms on each k-dimensional subspace such that their restrictions on D are all g, so (iii) holds.

Now we introduce main results of this paper.

Theorem 2.2 Let $k-d \ge 2$ and $1 \le s \le q(q^{k-1}-1)/(q^{k-d}-1)$. Then $B_q(d,k,m)$ is s^e -disjunct, where e as in (1). In particular, if $s \le \min\{q+1, q(q^{k-1}-1)/(q^{k-d}-1)\}$, then $B_q(d,k,m)$ is fully s^e -disjunct.

Proof. Let $(C_0, f_0), (C_1, f_1), \ldots, (C_s, f_s)$ be any s+1 distinct columns of $B_q(d, k, m)$. By Lemma 2.1 (i) (C_0, f_0) contains $\begin{bmatrix} k \\ d \end{bmatrix}_q$ many d-pairs. For each $1 \le j \le s$, let V_{0j} be the largest subspace of $C_0 \cap C_j$ such that $f_0|_{V_{0j}} = f_j|_{V_{0j}}$. Then $(C_0, f_0)^{(d)} \cap (C_j, f_j)^{(d)} = (V_{0j}, f_0|_{V_{0j}})^{(d)}$ for each $1 \le j \le s$. To obtain the maximum d-pairs in

$$(C_0, f_0)^{(d)} \cap \bigcup_{j=1}^s (C_j, f_j)^{(d)} = \bigcup_{j=1}^s (V_{0j}, f_0|_{V_{0j}})^{(d)},$$

by Lemma 2.1 (ii) we may assume that dim $V_{0j} = k - 1$ for each $1 \le j \le s$. Then the size of the set $(V_{01}, f_0|_{V_{01}})^{(d)}$ is $\begin{bmatrix} k-1 \\ d \end{bmatrix}_q$. Since $k-2 \le \dim(V_{0j} \cap V_{0l}) \le k-1$ for all $1 \le j, l \le s$, by Lemma 2.1 (i) the size of each of the sets

$$(V_{02}, f_0|_{V_{02}})^{(d)} \setminus (V_{01}, f_0|_{V_{01}})^{(d)}, \dots, (V_{0s}, f_0|_{V_{0s}})^{(d)} \setminus (V_{01}, f_0|_{V_{01}})^{(d)}$$

is at most ${k-1 \brack d}_q - {k-2 \brack d}_q$. Consequently, the number of d-pairs that belong to $(C_0, f_0)^{(d)}$ but not to $\bigcup_{j=1}^s (C_j, f_j)^{(d)}$ is at least

$$\begin{bmatrix} k \\ d \end{bmatrix}_q - \begin{bmatrix} k-1 \\ d \end{bmatrix}_q - (s-1) \left(\begin{bmatrix} k-1 \\ d \end{bmatrix}_q - \begin{bmatrix} k-2 \\ d \end{bmatrix}_q \right) = e+1.$$

Let $s \le \min\{q+1, q(q^{k-1}-1)/(q^{k-d}-1)\}$. We show that $B_q(d, k, m)$ is fully s^e -disjunct. Let (U,h) be a (k-2)-pair contained in (C_0, f_0) . Then the number of (k-1)-pairs between (U,h) and (C_0, f_0) is equal to the number of (k-1)-dimensional subspaces between U and C_0 . Since this number is q+1, we can choose s distinct ones among them, say $(V_j, f_0|_{V_j})$ $(1 \le j \le s)$. For each $(V_j, f_0|_{V_j})$

by Lemma 2.1 (iii) we can choose a k-pair (C_j, f_j) such that $V_j = C_0 \cap C_j$ and $f_0|_{V_j} = f_j|_{V_j}$. Then both (C_0, f_0) and (C_j, f_j) contain the same (k-2)-pair (U, h). Therefore, the desired result follows.

Next we show that our design and Ngo-Du's design have the same errortolerance capability under some conditions.

By Theorem 1.1 and Theorem 2.2, we obtain the following result.

Corollary 2.3 For positive integers d, k, m, n with $d < k < \min\{m, n\}$, if $k - d \ge 2$ and $1 \le s \le \min\{q+1, q(q^{k-1}-1)/(q^{k-d}-1)\}$, then both $B_q(d, k, m)$ and $M_q(d, k, n)$ are fully s^e -disjunct, where e as in (1).

Theorem 2.4 For positive integers d, k, n with d < k < n, if $M_q(d, k, n)$ is fully s^{e_1} -disjunct and $B_q(d, k, n)$ is fully s^{e_2} -disjunct, then $e_1 = e_2$.

Proof. Since $M_q(d, k, n)$ is fully s^{e_1} -disjunct, there exist s+1 distinct columns V_0, V_1, \ldots, V_s of $M_q(d, k, n)$ such that the number of d-dimensional subspaces of V_0 not contained in V_1, \ldots, V_s is e_1+1 . Pick a bilinear forms f_0 on V_0 . Let $V_{0j}=V_0\cap V_j$ and $f_{0j}=f_0|_{V_{0j}}$ for each $1\leq j\leq s$. Then $k_j:=\dim V_{0j}\leq k-1$ and (V_{0j},f_{0j}) is a k_j -pair of (V_0,f_0) . For each $1\leq j\leq s$, by Lemma 2.1 (iii) we can choose a $(V_j,f_j)\in \mathcal{B}_q(k,n)$ such that $f_{0j}=f_j|_{V_{0j}}$. Then $(V_0,f_0),(V_1,f_1),\ldots,(V_s,f_s)$ are s+1 distinct columns of $B_q(d,k,n)$. By Lemma 2.1 the number of d-pairs that belong to $(V_0,f_0)^{(d)}$ but not to $\bigcup_{j=1}^s (V_j,f_j)^{(d)}$ is equal to the number of d-dimensional subspaces of V_0 not contained in V_1,\ldots,V_s , it is e_1+1 . Since $B_q(d,k,n)$ is fully s^{e_2} -disjunct, $e_1\geq e_2$.

Since $B_q(d, k, n)$ is fully s^{e_2} -disjunct, there exist s+1 distinct columns (C_0, f_0) , $(C_1, f_1), \ldots, (C_s, f_s)$ of $B_q(d, k, n)$ such that the number of d-pairs that belong to $(C_0, f_0)^{(d)}$ but not to $\bigcup_{j=1}^s (C_j, f_j)^{(d)}$ is $e_2 + 1$. Let V_{0j} be the largest subspace in the set $\{V \subseteq C_0 \cap C_j \mid f_0|_V = f_j|_V\}$ for each $1 \le j \le s$. We assert that V_{01}, \ldots, V_{0s} are s distinct subspaces of C_0 . In fact, if $V_{0j} = V_{0l}$ for some $1 \le j < l \le s$, without loss of generality, let $V_{01} = V_{02}$. Then the number of d-pairs that belong to $(C_0, f_0)^{(d)}$ but not to $\bigcup_{j=2}^s (C_j, f_j)^{(d)}$ is $e_2 + 1$. Pick a d-pair (D, g) that belong to $(C_0, f_0)^{(d)}$ but not to $\bigcup_{j=2}^s (C_j, f_j)^{(d)}$. By Lemma 2.1 (iii) we can pick $(\tilde{C}_1, \tilde{f}_1) \in \mathcal{B}_q(k, n)$ such that $(\tilde{C}_1, \tilde{f}_1) \neq (C_0, f_0), D \subseteq \tilde{C}_1$ and $\tilde{f}_1|_D = g$. Then $(C_0, f_0), (\tilde{C}_1, \tilde{f}_1), (C_2, f_2), \dots, (C_s, f_s)$ are s+1 distinct columns of $B_q(d, k, n)$, and the number of d-pairs that belong to $(C_0, f_0)^{(d)}$ but not to $(\tilde{C}_1, \tilde{f}_1)^{(d)} \cup \bigcup_{j=2}^s (C_j, f_j)^{(d)}$ is at most e_2 , this is a contradiction by $B_q(d, k, n)$ being fully s^{e_2} -disjunct. For each $1 \le j \le s$, we choose a $V_j \in {[n] \brack k}_q$ such that $C_0 \cap V_j = V_{0j}$. Then C_0, V_1, \ldots, V_s are s+1 distinct columns of $M_q(d,k,n)$ and the number of d-dimensional subspaces of C_0 not contained in V_1, \ldots, V_s is equal to the number of d-pairs that belong to $(C_0, f_0)^{(d)}$ but not to $\bigcup_{j=1}^s (C_j, f_j)^{(d)}$, it is $e_2 + 1$. Since $M_q(d, k, n)$ is fully s^{e_1} -disjunct, $e_1 \leq e_2$.

Next we show that our design is more economical than Ngo-Du's design under some conditions.

Note that $M_q(d, k, n)$ is an $\binom{n}{d}_q \times \binom{n}{k}_q$ matrix and $B_q(d, k, m)$ is a $q^{d^2} \binom{m}{d}_q \times q^{k^2} \binom{m}{k}_q$ matrix. Since $\binom{x}{d}_q$ is a strictly increasing continuous function about x, for given

q, k, m, there exists a positive real number x_0 such that $\begin{bmatrix} x_0 \\ d \end{bmatrix}_q = \begin{bmatrix} m \\ d \end{bmatrix}_q q^{d^2}$. Let $n_0 = [x_0]$. Then $\begin{bmatrix} n_0 \\ d \end{bmatrix}_q \ge q^{d^2} \begin{bmatrix} m \\ d \end{bmatrix}_q$, the row-to-column ratio of $M_q(d, k, n_0)$ is

$$\frac{{n_0 \brack d}_q}{{n_0 \brack k}_q} = \frac{\prod\limits_{i=d+1}^k (q^i - 1)}{\prod\limits_{i=n_0-k+1}^{n_0-d+1} (q^i - 1)}$$

and the row-to-column ratio of $B_a(d, k, m)$ is

$$\frac{q^{d^2 {m \brack d}_q}}{q^{k^2 {m \brack k}_q}} = \frac{\prod\limits_{i=d+1}^k (q^i-1)}{q^{k^2-d^2} \prod\limits_{i=m-k+1}^{m-d+1} (q^i-1)}.$$

If $q^{k^2-d^2}\prod_{i=m-k+1}^{m-d+1}(q^i-1)>\prod_{i=n_0-k+1}^{n_0-d+1}(q^i-1)$, then the row-to-column ratio of $B_q(d,k,m)$ is smaller than that of $M_q(d,k,n_0)$. Therefore we obtain the following result.

Theorem 2.5 Let $\begin{bmatrix} x_0 \\ d \end{bmatrix}_q = q^{d^2} \begin{bmatrix} m \\ d \end{bmatrix}_q$ and $n_0 = [x_0]$. If $q^{k^2-d^2} \prod_{i=m-k+1}^{m-d+1} (q^i - 1) > \prod_{i=n_0-k+1}^{n_0-d+1} (q^i - 1)$, then $B_q(d, k, m)$ is more economical than $M_q(d, k, n_0)$.

Combining Corollary 2.3 and Theorem 2.5, we obtain the following result.

Corollary 2.6 Let d, k, m be integers with $1 \le d < k < m$ and $k - d \ge 2$. Suppose that $1 \le s \le \min\{q+1, q(q^{k-1}-1)/(q^{k-d}-1)\}$ and $q^{k^2-d^2}\prod_{i=m-k+1}^{m-d+1}(q^i-1) > \prod_{i=n_0-k+1}^{n_0-d+1}(q^i-1)$. Then both $B_q(d,k,m)$ and $M_q(d,k,n_0)$ are fully s^e-disjunct, where e as in (1) and n_0 as in Theorem 2.5. Moreover, $B_q(d,k,m)$ is more economical than $M_q(d,k,n_0)$

Example 2.1 Let d=2, k=3 and s=2=q. By Corollary 2.3, both $B_2(2,3,m)$ and $M_2(2,3,n_0)$ are fully 2^6 -disjunct. For $5 \le m \le 11$, the following table tells us that $B_2(2,3,m)$ is more economical than $M_2(2,3,n_0)$, where $n_0=7,8,9,10,11,12,13$ corresponding to m=5,6,7,8,9,10,11, respectively:

name	rows	columns
$B_2(2,3,5)$	2480	79360
$M_2(2,3,7)$	2667	11811
$B_2(2,3,6)$	10416	714240
$M_2(2,3,8)$	10795	97155
$B_2(2,3,7)$	42672	6047232
$M_2(2,3,9)$	43435	788035
$B_2(2,3,8)$	172720	49743360
$M_2(2,3,10)$	174251	6347715
$B_2(2,3,9)$	694960	403473920
$M_2(2,3,11)$	698027	50955971
$B_2(2,3,10)$	2788016	3250030080
$M_2(2,3,12)$	2794155	408345795
$B_2(2,3,11)$	11168432	26089457152
$M_2(2,3,13)$	11180715	3269560515

In [4, 5, 6, 10], Nan and the authors of these papers proposed a new model for pooling designs, and generalized Macula's design and Ngo-Du's design. Now we generalize our construction under the new model.

For $(C, f) \in \mathcal{B}_q(k, m)$ and $(D, g) \in \mathcal{B}_q(d, m)$, the pair (W, h) is called the *intersection* of (C, f) and (D, g) if $h = g|_W = f|_W$ where W is the largest subspace of $D \cap C$ such that $g|_W = f|_W$.

Definition 2.2 For positive integers i, d, k, m with $i \le d < k < m$, let $B_q(i; d, k, m)$ be the binary matrix with rows indexed with $B_q(d, m)$ and columns indexed with $B_q(k, m)$ such that $B_q((D, g), (C, f)) = 1$ if and only if the intersection of (C, f) and (D, g) is an i-pair.

Lemma 2.7 ([5]) Suppose $\max\{0, r+t-m\} \le j \le r$ and $j \le t \le m$. Let P be a t-dimensional subspace of \mathbb{F}_q^m and let W be a j-dimensional subspace of P. Then the number of r-dimensional subspaces of \mathbb{F}_q^m intersecting P at W is $f(j,r,m;t) = q^{(r-j)(t-j)} {m-t \brack r-j}_q$. Moreover the function $f(j,r,m;t+\alpha)$ about α is decreasing for $0 \le \alpha \le m+j-t-r$.

Theorem 2.8 Let $1 \le s \le q(q^{k-1}-1)/(q^{k-i}-1)$ and $m-(s+1)k \ge d-i \ge 1$. Then $B_a(i;d,k,m)$ is an s^e -disjunct matrix, where

$$e = q^{(d-i)((s+1)k+d)} \begin{bmatrix} m - (s+1)k) \\ d - i \end{bmatrix}_a \left(q^{k-i} \begin{bmatrix} k-1 \\ i-1 \end{bmatrix}_a - (s-1)q^{k-i-1} \begin{bmatrix} k-2 \\ i-1 \end{bmatrix}_a \right) - 1.$$

Proof. Let (C_0, f_0) , (C_1, f_1) , ..., (C_s, f_s) be any s+1 distinct columns of $B_q(i; d, k, m)$. By Theorem 2.2, the number of i-pairs that belong to $(C_0, f_0)^{(i)}$ but not to $\bigcup_{j=1}^s (C_j, f_j)^{(i)}$ is at least $q^{k-i} {k-1 \brack i-1}_q - (s-1)q^{k-i-1} {k-2 \brack i-1}_q$. Let $U := C_0 + C_1 + \cdots + C_s$. Then $k \le \dim U \le (s+1)k$. Given an i-pair (W, h) that belongs to $(C_0, f_0)^{(i)}$ but not to

 $\bigcup_{j=1}^{s}(C_{j},f_{j})^{(i)}$. By Lemma 2.7, the number of d-dimensional subspaces D in \mathbb{F}_{q}^{m} satisfying $D\cap U=W$ is at least $q^{(d-i)((s+1)k-i)}{m-(s+1)k\choose d-i}_{q}$. For each D, the number of $(D,g)\in\mathcal{B}_{q}(d,m)$ satisfying $g|_{W}=h$ is $q^{(d-i)(d+i)}$. Note that the intersection of (D,g) and (C_{0},f_{0}) is (W,h) but the intersection of (D,g) and (C_{j},f_{j}) is not (W,h) for each j. Therefore, the desired result follows.

Remarks. Similar to Theorems 2.2 (Theorems 2.8), we may obtain new pooling designs from alternating bilinear forms, symmetric bilinear forms or Hermitian forms. We suppress the details.

Acknowledgment

This research is supported by National Natural Science Foundation of China (Grant No. 11401282), Natural Science Foundation of Hebei Province (A2013408009) and the Foundation of Langfang Teachers University (LSZQ201003).

References

- [1] D. Du, F.K. Hwang, Pooling designs and nonadaptive group testing, Important tools for DNA sequencing, Series on Applied Mathematics, 18, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006.
- [2] A.G. D'yachkov, F.K. Hwang, A.J. Macula, P.A. Vilenkin, C. Weng, A construction of pooling designs with some happy surprises, J. Comput. Biol. 12 (2005) 1127–1134.
- [3] A.G. D'yachkov, A.J. Macula, P.A. Vilenkin, Nonadaptive and trivial two-stage group testing with error-correcting d^e-disjunct inclusion matrices, In: Entropy, Search, Complexity, Bolyai society mathematical studied, vol. 16, Spring, Berlin, pp 71-83, 2007.
- [4] J. Guo, K. Wang, A construction of pooling designs with high degree of error correction, J. Combin. Theory Ser. A 118 (2011) 2056–2058.
- [5] J. Guo, K. Wang, Pooling designs with surprisingly high degree of error correction in a finite vector space, Discrete Appl. Math. 160 (2012) 2172– 2176.
- [6] J. Guo, K. Wang, C. Weng, Pooling semilattices and non-adaptive pooling designs, Discrete Math. 320 (2014) 64-72.
- [7] T. Huang, C. Weng, Pooling spaces and non-adaptive pooling designs, Discrete Math. 282 (2004) 163–169.
- [8] A.J. Macula, A simple construction of *d*-disjunct matrices with certain constant weights, Discrete Math. 162 (1996) 311–312.
- [9] H. Ngo, D. Du, New constructions of non-adaptive and error-tolerance pooling designs, Discrete Math. 243 (2002) 167–170.
- [10] J. Nan, J. Guo, New error-correcting pooling designs associated with finite vector spaces, J. Comb. Optim. 20 (2010) 96-100.