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Abstract: The cyclic edge-connectivity of a cyclically separable
graph G, denoted by cA(G), is the minimum cardinality of all edge
subsets, where edge subset F such that G — F is disconnected and
at least two of its components contain cycles. Since cA(G) < ¢(G),
where ((G)=min{w(A)|4 induces a shortest cycle in G}, for any
cyvclically separable graph G, a cyclically separable graph ¢ is said
to be cyclically optimal if ¢eA(G) = ((G). The mixed Cayley graph
is a kind of semi-regular graphs. The cyclic edge-connectivity is a
widely studied parameter, which can be used to measure the relia-
bility of network. Because the previous work studied the cyclically
optimal mixed Cayley graphs with girth g > 5, this paper focuses on
the mixed Cayley graphs with girth g < 5, and gives some sufficient
and necessary conditions for these graphs to be cyclically optimal.

Keywords: Mixed Cayley graph; Cyclic edge-cut; Cyclically
optimal; Cyclic edge-atom.

1 Introduction

Let G = (V, E) be a finite, undirected and simple graph. Call an edge
set I* a cyclic edge-cut if G — F is disconnected and at least two of its com-
ponents contain cycles, and denoted by g the girth of G is the length of a
shortest cycle of G. Hence, a graph has a cyclic edge-cut if and only if it has
two disjoint. cycles. Lovész [8] characterized all multigraphs without two
disjoint cycles. We call those graphs, which do have cyclic edge-cut, cycli-
cally separable. Following [9]. Pluinmer defined the cyclic edge-connectivity
of G, denoted by ¢A(G), as follows: If G is not connected, then ¢A(G) = 0;
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If G is connected but does not have two disjoint cycles, then cA(G) = oc;
Otherwise, ¢cA(G) is the minimum cardinality over all cyclic edge-cuts of G.
For disjoint vertex sets A, B of G, A, B] is the set of edges with one end
in A and the other end in B. G[A] is the subgraph of G induced by vertex
set 4, and A is the complement of A in G, and w(A) = |[4, A4]| is the number
of edges hbetween A and A in G. If [A, 4] is a minimum cyclic edge-cut,
then both G[A] and G[A] are connected. Define {(G)=min{w(A)|4 induces
a shortest cycle in G}. In [1], Wang and Zhang showed that any cyclically
separable graph satisfies cA(G) < ¢(G). Hence, a cyclically separable graph
G is called cyclically optimal if cA(G) = ((G). That is, for any cyclically
separable graph G, if G is not cyclically optimal, then cA(G) < ((G).

In [12], Nedela and Skoviera studied the existence of the cyclic edge-cut
in cubic multigraphs, and showed that a connected cubic graph G has no
cyclic edge cut if and only if it is isomorphic to one of Ky, Ky 3 or 6y (the
multigraph with two vertices and three edges between them). Xu and Liu
in 6] showed that a k-regular simple graph G with k > 3 which is not
Ky, K5 and K34 is cyclically separable, and ¢A(G) < ¢(G). Furthermore,
they proved that a connected k-regular vertex transitive graph G with
k>4 (k #5) and girth g(G) > 5 is cyclically optimal. Lou and Wang (2]
gave a polynomial algorithm deciding whether ¢A(G) < oo for multigraph
. Wang and Zhang in [1] showed that any vertex transitive graph with
regularity degree k¥ > 4 and girth ¢ > 5 is cyclically optimal. Chen et
al. in [7] studied super edge-connectivity of mixed Cayley graph. Tian
and Meng in [16] showed that any half vertex transitive regular graph with
9(G) > 6 is cyclically optimal. Lin et al. [4] studied the cyclic edge-
connectivity of graphs with double orbits of same size. Tian and Meng in
[17] studied A'-optimally of mixed Cayley graph. Yang et al. reported the
edge-connectivity of graphs with two orbits of the same size in [14]. Yang
et al. in [15] studied super 2-restricted and 3-restricted edge-connected
vertex trausitive graphs. Lin et al. in [3] studied super restricted edge
connectivity of regular graphs with two orhits. Yang et al. in [13] studied
the cyclically optimality of the regular double orbits graphs. and they gave
that if girth ¢ > 5 and the Cayley graphs Cay(G, So) and Cay(G, S;) are
connected, then the mixed Cayley graph MC(G, Sy, S, S2) is cyclically
optimal, where Sy, S| and Sy are subsets of G. and 1 ¢ S;, S,-'l = §; for
i€ {0,1}. Tu this paper, we study the cyclically optimal connected mixed
Cayley graph with girth g < 4.

2 Preliminaries

A vertex set A is a cyclic edge-fragment if [A, A] is a minimum cyclic
edge-cut. A cyclic edge-fragment with the minimum cardinality is called a



cyclic edge-atom. Without confusion, the fragment will stand for the cyclic
edge-fragment and the atom will stand for the cyclic edge-atom. It is easy
to know, if A is a fragment, then 4 is also a fragment, and both G[A] and
G[A] are connected. Clearly, if A is an atom, and A’ is a proper subset of
A such that [A. 47 is a cyclic edge-cut, then w(A4’) > w(A).

Mader [11] and Watkins [10] first proposed the concepts of fragment
and atom, and the fragment and atom play an important role in studying
various kinds of connectivity. An atom is said to be trivial if it induces
a cycle of (7, otherwise it is non-trivial. For a vertex u and a vertex set
A. Ny(u)={v € Alv is adjacent with u} is the set of neighhors of u in A,
denoted by da(u) = |N4(u)] the degree of u in A.

Lemma 2.1. ([1]) Let G be a connected graph with 6(G) > 3 and girth
g>5, or 6(G) > 4 and order n > 6, then G is cyclically separable.

Lemma 2.2. ([1]) Let G be a connected graph with §(G) > 3 and A be a
fragment, then

(1) 8(GlA]) > 2

(2) If 5(G[A]) > 3, then da(v) > dz(v) holds for any v € A;

(3) If G|A] is not a cycle and v is a vertez in A with da(v) = 2. then
da(e) 2 d-(v);

(4) If (G) > 4. and A is a non-trivial atom of G, then §(G[A]) > 3.

Furthermore, dy(v) > d3(v) holds for any v € G.

Definition 2.3. (/7)) Let G be a finite group, and Sy, S; and S, be subsets
of G, where 1¢ ¢ Si and S7' = S; fori € {0,1}. The mized Cayley graph
X = MC(CG,Sy.51,82) has vertex: set V(X) = G x {0,1} and edge set
E(X) = EyU Ey U Ey, where E; = {{(g,1),(s:9,i)} : g € G,s; € Si} for
i€ {01}, and Iy = {{(9,0), (529, 1)} : g € G, 52 € S2}.

In the following, we assume that X = MC(G, Sp, S1, S2) is a connected
mixed Cayley graph. V(X) = V, U V;, where V; = G x {i}, Xi = (Vi, E)
for i € {0,1}, and k; = |S;| for i € {0,1,2}. Clearly, the minimum degree
of X is 0(X)=min{ko + ko,k; + k2} and the maximum degree of X is
A(X)=max{ko+k2,k1+k;}. Denote MR(G) = {MR(g)|MR(g) : (h,i) =
(hg,i) for g,h € G and 7 € {0,1}}. Clearly, M R(G) acts transitively hoth
on Vy and on V.

Lemma 2.4. Let G be a cyclically separable connected graph with § > 3
and girth g. Assume ((G) = (6 — 2) - g. For any vertex set A of G with
[A| > g. if C[A] is a forest, then w(A) > ((G) + 2.
Proof. Since G[A] is a forest, we have |E(G[A])| < |A] — 1, and
w(A) = Yiead(v) - 2|E(G[A])] 2 6 -]A| - 2(JA| - 1)
= (6-2)-|A|+22(0-2)-g+2=¢(G)+2D



Lemma 2.5. Let G be a cyclically separable connected graph with § > 3
and girth g. Assume {(G) = (6 —2)-g. If G is not cyclically optimal, then
for any two distinct atoms A and B with ANB # ¢, |ANB| <g—1, and
|Al =Bl < 2(¢g - 1).

Proof. Assume |A N B| > g. By the minimality of atom, we have |A| =
1Bl < N Thus [AUB| = [V(G)| - |A| - Bl +|ANB| > g. In
the following, we show w(A N B) > cA(G). If G[A N B] contains cycles,
since G[A N B] 2 G[A] and G[A] contains cycles, [AN B, AN B} is a cyclic
edge-cut, and w(A N B) > w(A) = cA(G). If GJAN B] is a forest, then
w(AN B) > {(G) +2 by lemma 2.4, and w(A N B) > cA(G).

By a similar argument as above, we have w(A U B) > c¢A(G). By w(AU
B) = w(A U B) and the submodular inequality, we have

2cM(G) < w(AN B) +w(AU B) < w(A) + w(B) = 2c\(G),

a contradiction.
Assume |A| = |B| > 2(g — 1), then JAN B| = |AN B| > g, by a similar
arguiment as above, we also have a contradiction.O

Lemma 2.6. Let G be a cyclically separable connected graph with § > 3
and girth g. Assume ((G) = (6 - 2)-g. If C is the shortest cycle with
w(C) = ¢(G), then [C,C] is a cyclic edge-cut.

Proof. Suppose [C,C] is not a cyclic edge-cut, then § is a forest. Since
G is cyclically separable, we have |V(G)| > 2g. Thus |C| > ¢, and w(C) >

¢(G) + 2 by lemma 2.4. Thus w(C) = w(C) > ¢(G), a contradiction.O

Lemma 2.7. Let G be a cyclically separable connected graph with 6 > 3
and girth g. Assume ((G) = (6§ —2)-g. Then G is cyclically optimal if and
only if every atom of G is trivial.

Proof. Let A he an atom of G. Suppose A is trivial, then |E(G[A])] =
|A|l = g. and we have

eMG) = w(A) = Tuead(v) -2/ E(G[A))| 2 §-|A| -2/|A] = (6-2)-g = ((G).

Since ¢A(G) < ((G), we have cA(G) = ((G). Hence G is cyclically optimal.

Conversely, G is cyclically optimal. Let C be a shortest cycle with
w(C) = ¢(G). then w(C) = cA(G). [C,C} is a cyclic edge-cut by lemma
2.6. So V() is a fragment. Since any atom of G contains at least g vertices,
we find that C is an atom, and so every atom of G has g vertices. Let A
be an arbitrary atom, then G[A] contains a cycle, and G[A] is a shortest
cycle, and so A is a trivial atom.O



Lemma 2.8. Let G be a cyclically separable connected graph with § > 3
and girth . Assume ((G) = (6 — 2) - g. If G is not cyclically optimal with
§>6andg=3, oréd >4 and g > 4, then for any two distinct atoms A
and B of G, AN B = ¢.

Proof. Since G is not cyclically optimal, A and B are two non-trivial
atoms hy lemma 2.7. Suppose AN B # ¢, then |A| = |B| £ 2(¢g — 1) and
|AN B| < g~ 1 by lemma 2.5, §(G[A]) = 3 and §(G[B]) > 3 by lemma 2.2
(4).
Case 1. g == 3. Then |A]| =|{B| <4 and |[ANB]| < 2.

Since §(G[A]) > 3 and 6(G[B]) 2 3. A = B = K4, and |E(G[A])| = 6.
We have

eA(G) = w(A) = Tyead(v) ~ 2/ E(CIA])| 2 5-|A] -2 x 6
=46—12=3(0 - 2) + 6 — 6 > ((G) > cA(G)

for § > 6, a contradiction.
Case 2. ¢ > 4.
Subcase 2.1. ¢ =4. Then |A] =[B| < 6and |[ANn B| < 3.

If JA| = |B| = 4., then A is a cycle, which contradicts to that A is non-
trivial. If |A] = |B| = 5, then |E(G[A])| = 42 by §(G[4]) > 3. By Turén
theorem [5], we have |E(G[A])| < |E(T>5)| = 6 for g = 4, a contradiction.
Thus |A| = |B| = 6. Since §(G[A]) > 3 and §(G[B]) = 3, we have G[A] =
G[B| = Ny4. and |E(G[A])] = 9.

If JAN B| = 1, suppose AN B = {u}, then danp(u) = 0, and d(u) >
da(u) +dp(u) — danpg(u) = 6. We have

CA(G) = w(A) = Tyead(v) — 2|E(GIA)])| > 5 - (JA| = 1) +d(u) =2 x 9
> 4(0 = 2) + 8 -+ d(u) — 10 > 4(3 — 2) = ¢(G) > cA(G)

for & > 4, a contradiction.

If JAn B| = 2, suppose AN B = {v;,vs}, then danp(v:) < 1, and
(l(’l,',;) Z (iA(lli)+dB(U-i)—dAnB(‘U,') Z 5fori S {1,2} So d(U])+d('()2) Z 10,
and we have

eA(G) = w(A) = Suead(v) 2| E(GA]] 2 5-(|1A|~2)+d(vy) +d(vz) ~ 2 x 9
= 4(8 = 2) + d(vy) + d(vg) — 10 2 4(6 - 2) = ¢(G) > eA(G),

a contradiction.

If | AN B == 3. suppose AN B = {v;, vz, v3}, then at least two elements
of AN B satisfy danp(vi) <1 by g = 4. Without loss of generality, assume
danp(vi) < 1, then d(v;) > da(v;) + dp(vi) — dans(vi) = 5 for i € {1,2}.
So d(v) 4 d(ve) > 10, and we have

eMG) = w(A) = Toead(v) —2|E(G[A])| 2 6-(|A]—2) +d(v)) +d(v2) - 2% 9



= 4(0 — 2) + d(v)) + d(va) — 10 > 4(6 — 2) = ¢(G) > cA(G),

a contradiction.
Subcase 2.2. ¢ > 5.

By lemma 2.1, G[A] and G[B] contain two disjoint cycles,respectively,
which implies |A| = |B| > 2g > 2(g — 1), a contradiction.O

Assume ® is a group of permutations of a set T', and A is a proper, non-
trivial subset of T, if ¢ € ® such that either ¢(A) = A or p(A)N A = ¢,
then A is an @mprimitive block for ®.

Lemma 2.9. fet X = MC(G, Sy, S1,S52) be a connected graph, k; = |S;|
Jorie {0,1,2}. Assume A is an atom of X, and Y = X[A] is the subgraph
of X induced by A, and ((X) = (6 - 2)-g. If X is not cyclically optimal
with g=3 and § > 6, or g >4 and § > 4, then

(1) When A CV; and A = H x {i}, V; is a disjoint union of distinct
atoms, and Y = X[A] is a r-reqular vertex transitive graph fori =0 or 1,
where r > 3. If 1o € H, then H < G;

(2) When A; = ANV, # ¢, and A; = H; x {i}, V(X) is e disjoint union
of distincl atoms, and Y; = X[A;] is a r;-regular vertex transitive graph. for
i€ {0.1}. and |Ag| = |Ay|. Iflg € H;. then H; <G fori=0or1l.

Proof. Obviously, A is an imprimitive block of X by lemma 2.8.

(1) Without loss of generality, we assume A C Vp. Since Xj is a vertex
transitive graph, each vertex of Xp lies in some atom, and so Vj is the
disjoint union of distinct atoms by lemma 2.8. Since for any g € G, M R(g)
is an automorphismm of X, for any (g,0),(h,0) € A4, MR(g~'h)(A) is also
an atom of X and MR(g™'h)(A) N A # ¢, and so MR(g™'h)(A) = A.
Obviously, the restriction of M R(g~'h) to A induces an automorphism of
Y, which maps (g.0) to (h.0), so Y = X[A] is r-regular vertex transitive
graph. and r > 3 by lemma 2.2 (4).

If 1¢: ¢ H. then (1.0) € A. For any (¢.0) € A, we have (15,0) €
MR(g=')(A) = Ag™!, so Ag~! = A. Since (g,0),(h,0) € A, we have
(hg='.0) ¢ A, and for any g,h € H, we have hg~' € H. Thus H < G.

(2) By a similar argument to (1), we have V(X) is a disjoint union of
distinet atoms. For i € {0.1}, let V(X) = U;"___IJWR(gj)(A)(g] = 1¢). then
V, = U";'=1111112(g/.,)(A;). Since [Vo| = [V, Aol = |A1]. For any (g,%), (h.t) €
A;. MR(y~'h)(A) is also an atom of X and MR(g~1h){(A) N A # ¢, we
have MR(g™'h)(A) = A and MR(g~'h)(A;) = A;. Thus the restriction
of MR(g~'h) to A; induces an automorphism of Y;, which maps (g,%) to
(h, 7). It implies that Y; = X[A,] is a r;-regular vertex transitive graph for
i€ {0,1}.

If 1¢ € H;, then (1g,¢) € A; for i =0 or 1. Assume i = 0. For any
(4.0) € Ay, we have (1¢,0) € MR(g™')(A) = Ag~!, Ag~! = A, and so



Agg~! = Ay. Thus for any (g,0),(h,0) € Ay, (hg~',0) € Ay, that is, we
have hg "' ¢ H, for any g,h € Hy,. Thus Hy < G.O

3 cA—optimally connected mixed Cayley graph
with g =3

If kg = ky in X = MC(G, Sy, S1,52), where k; = |S;| for 7 € {0,1,2},
then X = MC(G, Sy, 51.852) is a k-regular graph, where k = ko + ko =
ky + ko.

Lemma 3.1. Let X = MC(G, So, 51,52) be a k—regular connected graph
with k > 6 and girth g = 3. Assume A is an atom of X. If X is not
cyclically optimal, then |A| > k — 2.

Proof. Assume a = |A|. Since A is an atom of X, and X is not cyclically
optimal, we have w(A) = eA(X) < {(X)=(k-2)-9.

Considering the sum of degrees of all vertices of 4, we have

koa=%,.cad(v) <ala—1)+w(Ah) <a®-a+3(k-2),
that is (@ - 3)(k —a—2) < 0, which impliesa > k-2 fora = |4| > ¢ = 3.0

Lemma 3.2. Let X = MC(G, Sy, S1.52) be a connected graph with § > 6
and girth ¢ = 3. Assume A is an atom of X, ky > kg, and Xy contains a
cycle of length g. If X is not cyclicelly optimal, then:

(1) When A C VW, |A] > 8 -2;

(2) When A CVy, |A]l > A =2,

(3) When ANV, # ¢ forie (0,1}, |A] > +4=4,

Proof. Assume a = |A|. Since A is an atom of X, and X is not cyclically
optimal, w(A) = eA(X) < ¢(X). Since Xy contains a cycle of length g,
(X)=(d-2)-g.
(1) When A C Vj,we have
§-a==L,cad(v) <ala—1)+w(Ad) <a®—a+3(-2),
that is (@ ~ 3)(6§ —a —2) <0, hencea > d§ -2 fora = |A| > g =3.
(2) When A C V), we have
A-a=Z,ead(v) <ala—-1)+w(A) <a? -a+3(6 -2),
that is (¢ — 3)(A —a —2) <0, hence a > A — 2.
(3) When A, = ANV, # ¢ for i € {0,1}, |Ao| = |A1]| by lemma 2.9, we
have

5545 = Sucadv) S ala~ 1) +u(4) <a® ~a+3(6-2),

that is (@ -- 3)( + A — 2¢ — 4) < 0, hence a > #4=4.0



Theorem 3.3. Let X = MC(G, Sp, S1,52) be a k-regular connected graph
with k > 6 and girth g = 3. Assume G; = (S;) for i € {0,1} and Sy =
{s2}. Then X is not cyclically optimal if and only if X satisfies one of the
following conditions:

(1) There exists a subgroup H of G satisfied |H| < (k—2)-g and G; < H
forie {0,1};

(2) There exists a subgroup H of G and an element s; € S;, satisfied
|H| < £ (k—2) and (S;\ {si}) < H forie {0,1};

(3) Thc re caists a subgroup H of G, a proper, inverse- closed subset So =
{301, ---»Som } of So, and a proper, inverse-closed subset Sl = {s11,..-,S1n}

of $1(1 < m +n < 4), satisfied |H| < 74 - (k —2),(So\ Sp) < H and
(S1\ Sy) < saHs3t.

Proof. We first prove the if part.

(1) Assume i = 0. Let A = H x {0}. Since Go < H, §(X[A]) = ko =
[So| > 2, and so X[A] contains cycles. §(X;) = k; = |S] > 2, we have
X, contains cycles, and so X[A] contains cycles. Thus [A,4] is a cyclic
edge-cut, and we have

CACX) < w(A) = (k- ko) - |A] = |H| < (k= 2) - g = ¢(X).

Hence X is not cyclically optimal.

(2) Assuine i = 0. Let A = H x {0}, since (Sp \ {so}) < H, §(X[4]) =
ko —1 > 2, and X[A] contains cycles. §(X,;) = k; > 2, we have X, contains
cycles, and so X[A] contains cycles. Thus [A4,A] is a cyclic edge-cut, we
have

eMX) Sw(A) = (k—ko+1)-|A] = 2/H| < (k—2) - g = ((X).

Hence X is not cyclically optimal.

(3) Let A = H x {0} UsoH x {1}, 4; = AN X, for i € {0, 1}. Since S,
and Sx are proper suhsets of Sy and S, respectively, (Sp \ S§) < H, and
(S1\ S}) < saHs3!, we have 6(X[A}]) > 2, and so X[A] contains cycles.
Since 1 < m +n < 4, §(X[A]) > k — (m +n) > 2, and so X[A] contains
cycles. Thus [4. 4] is a cyclic edge-cut, and we have

CAX) Sw(A)=m- Aol +n-]A1]|=(m+n)-|H| < (k-2) g=(X)

Hence X is not cyclically optimal.

Now we prove the only if part. Let A be an atom. Since X is not
cyclically optimal and girth g = 3, we see that |A| > k — 2 by lemma 3.1.
Casel. ACVyor ACV;.

If AC VW, let A= H x {0}, without loss of generality, assume 1¢ € H,
then H < G and Y = X|[A] is a r¢-regular graph hy lemma 2.9. We have

eMX) = w(A) = (k —10) - |A] < ¢(X) = 3(k - 2).
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Since |A] > k-2, 79 > k— 3. Since k = kg + ko and ky = |S;| = 1,
1o > ko — 1. Obviously, ¢ < kg, then 7o = kg or g = kg — 1.

If 1o = ky, then Go < H and |H| < (k-2) - g.

If g = ko—1, then there exists an element so € Sy satisfied (So\{s0}) <
Hand [H| < % (k-2).

In a similar manner, if A C Vp, then X is not cyclically optimal only
if there exists a subgroup H of G satisfied G; < H and |H| < (k—2) - g,
or there exists a subgroup H of G and an element s; € S}, satisfied (S) \
{sih) < Hand |H| < §-(k-2).

Case 2. A; = ANV, # ¢ for i € {0,1}.

Let A; = H; x {i}. Without loss of generality, assume 1¢ € Hj, then
Hy < G by lemma 2.9. For any h € Hy, we have M R(h)(A) N A # ¢, then
MR(h)(A) = A hy lemma 2.8. Since H1h = H,, HiHo = H,. Since X[A]
is connected, we have H; = so Hp.

Since Hy < G, we have G = U§=1Hogj(gl = 1¢g). Hence V(X)
UL, MR(g;)(A), Vo = Uk, MR(g;)(Ao) = UE_ Hog; x {0}, and 14
U.’;'=11\/1R(yh,~)(A1) = U§=182Hogj X {1}

The subgraph Y; = X|[A4;] is regular by lemma 2.9 for i € {0,1}, and
Y’ = X[A]\ (E(Yy) U E(Y})) is also a regular graph. Assume that Y, is a
ri-regular graph. Obviously, Y’ is a 1-regular graph. We have

cMX) = w(A) = (ko — 10) - |Ao] + (ky —71) - |A1| < ¢(X) = 3(k - 2).

Since |A| > k -- 2, we have |Ag| = |A;] > 552, Let ko — 70 = m and
ki —-ry=mn.then 1 <m+n <4and |Hp| < m%_n - (k-2).

Since kg — 19 = m < 4, there exists a proper, inverse-closed subset
S;, = {$01...., Som } Of Sp satisfied (Sop \ Sf',) < Hp. Suppose l¢ € saHoys,
then 1g = sahygs, and g = hg ls'_I ! for some hy € Hp. Since M R(g:)(A)
is also an atom, and k; —r; = n < 4, there exists a proper, inverse-closed
subset S; = {s11,..., S1n} Of S satisfied (S \S;) < soHpgs = szHosz".D

Theorem 3.4. Let X = MC(G, Sp, S1, 52) be a k-reqular connected graph
with k > 6 and girth g = 3. Assume G; = (S;) fori € {0,1}, G2 = (S5'S5),
ko =ky 2 2 and ko > 2, then X is not cyclically optimal if and only if X
satisfies one of the following conditions:

(1) There exists a subgroup H of G satisfied |H| < o (k=2)(ky =2)
and G; < H foric {0,1};

(2) There evists a subgroup H of G, an inverse-closed subset Sy =
{301, s S0 } of So. an inverse-closed subset S; = {S11,-- 510} 0f $1(1 <
mA4-n < 4), and an element so € Sa, satisfied |H| < ;f}m - (k- 2),
(So\ Sy) < H. (S1\'S}) < soHsy ', and G < H;

(3) There exists a subgroup H of G, a proper, inverse-closed subset
S(') = {s01.-..- s0m } of Su, a proper, inverse-closed subset S; = {S11y.0-s S1n }



of $1(0 < m+n < 2), and two elements 32, 8y € Sy, satisfied |H| < ,ﬁ_%ﬂ
(k=2), (So\So) < H. (S1\5)) < s2Hs3", and ((S2\{s2})""(S2\ {s2})) <
H;

(4) There eaists a subgroup H of G, and three elements 89,821,522 €
Sy, satisfied |H| < § - (k — 2) Go < H, G; < 32H52 , and ((S2 \
{s21.522})71(S2\ {s21,822})) < H

Proof. We first prove the if part.

(1) Assume i = 0. Let A = H x {0}. Since Go < H, §(X[A}) = ko 2 2,
and X[A] contains cycles. 6(X;) = k; > 2, we have X, contains cycles,
and so X|[A] contains cycles. Thus [A, 4] is a cyclic edge-cut, and we have

eA(X) Sw(A) = (k — ko) - |A] = k2 - [H| < (k= 2) - g = {(X).

Heuce X is not cyclically optimal.

In the following, let A = H x {0} Us2H x {1}, where s3 € S5. Assume
A, =ANnV, for i € {0,1}.

(2) Since (S, 18,) = Gy < H, for any s;, s; € Sz, 5 : s; € H, and so
sj € so2H. Thus §(X[A]) > k2 > 2, and so X[A] contains cycles. Since
1<m+n<4,§X[A) > k- (m+n) =2, and so X[A] contains cycles.
Then [A, 4] is a cyclic edge-cut, and we have

CA(X) S w(A) = m - |Ao| +n-|A)| = (m+n)- |H| < (k—2)-g = ((X).

Hence X is not cyclically optimal

(3) Since {(S2 \ {s5})"1(S2\ {s5})) < H, for any s;,s; € Sz \ {s5},
s7's; € H, and so s; € soH. Since S§ and S] are proper subset of Sy
and S, respectively, §(X[A]) > 1+ ky — 1 = ky > 2, and so X[A] contains
cycles. Since 0 < m+n < 2, we have §(X[A]) > k — (m +n) > 2, and so
X[A] contains cycles. Thus [A, 4] is a cyclic edge-cut, and we have

cAMX) Sw(A)=(m+1)-|Ao| + (n+1)-|A44]
=(m+n+2)|H| < (k-2)-g={(X).

Hence X is not cyclically opcimal.

(4) Since Gy < H,G) < s9Hs; "', and X is a k—regular graph, §( X [A4]) >
ko +1 > 2. and so X[A] contains cycles. Since ((S2 \ {s21,822})"1(S2 \
{521, 522})) < H, o (X[A]) > k — 2 > 2, and so X[A] contains cycles. Then
[A.A] is a cyclic edge-cut, and we have

eA(X) S w(A) = 2]Ao| + 2|4;1| = 4|H| < (k- 2) - ¢ = {(X).

Hence X is not cyclically optimal.
Now we prove the only if part. Let A be an atom. Since X is not

cyclically optimal, and girth g = 3, |A] > k — 2 by lemma 3.1.



Casel. ACVyor AC V.
If AC VW, let A= H x {0}, without loss of generality, assume 1 € H,
then H < G and Y = X[A4] is a ro-regular graph by lemma 2.9. We have

eAX) = w(A) = (k —10) - |4] < ¢(X) = 3(k — 2).

Since |A] > k-2, 79 > k — 3. Since k = kg + ko and kg > 2, 19 > ko.
Obviously, 1y < ky. Then ry = ko, Go < H, and |H| < zL (k — 2).
|H| = |A| > k — 2, we have ky = 2.

In a similar manner, if A C V), then X is not cyclically optimal only if
there exists a auhgloup H of G satisfied G, < H, |H| < & - (k—2), and
ko = 2.

Case 2. A, =ANV; # ¢ forie {0,1}.

Let A; == H; x {i}. Without loss of generality, assume 1¢ € Hp, then
Ho <G hy lemma 2.9. For any h € Ho, MR(h)(A) = A, we have H1h =
Hy, and H\Hy = H,. Since X|[A] is connected and Hy < G, we have H; =
saHp, and G = U,’J‘-’:lHogj(gl = 1g). Hence V(X) = US_ MR(g;)(4),
Vo = US_ M R(g;)(Av) = U5_ Hogj x {0}, and Vi = Uk, MR(g;)(A1) =
UI;:]SQ]']()!/_,' X {1}

The subgraph Y; = X[A,] is ri-regular by lemma 2.9, and Y’ = X[A] \
(E(Yo) U E(Y7)) is a d-regular graph, we have

(‘/\(X) = w(A)= (ko — 19+ ko — d) . lA()l + (k] —ry + ko — d) . |A1|
< ¢(X)=3(k=-2).

Let ko - rg =m, k) — 7y = n and kg —d = ¢t. Since |A;| = |Ao| = |Hol,
|Hol < 5537 - (k= 2). Since |[A| > k —2 and 3(k —2) > (m +t)- |Ao| +
(re4-t) - |Ay] 2 t-]Ao] +1-]Ar] =t-|A| t < 3. We consider three subcases
in the following:

Subcase 2.1. ky - d = 0.

Since kp—d = 0,1 < m+n < 4. Obviously, 7o > 0 and r1 2> 0,s0m < ko
and n < ky, and there exists an inverse-closed subset So = {501, ...s Som } of
So satisfied (Sp\ 5'0) < Hy, and a.n inverse-closed subset S1 = {s11,.+,S1n}
of Sy satisfied (S; \Sl) < 32H032 Since ks —d = 0, sHg = spHp for any
element s ¢ S;. Hence G, < Hj,.

Subcase 2.2. ky —d = 1.

Since ky ~d =1, 0 < m+n < 2. Obwviously, 7¢ > 1, which implies m <
ko. Thus there exists a proper, inverse-closed suhset Sy = {501, ..+ $om } of
b(, s,mslwd (.So \ So) < Hy. Suppose 1¢ € soHpgs, thus 1 = s2hgygs and

= hy's3 ! for some hg € Hy. Since M R(y,)(A) is also an atom and k, —
ry = n < kq. there exxsts a proper, inverse-closed subset Sl = {$11, -, Sin }
of 8§ satisfied (S, \S ) < saHoy, = saHps; . ! Since ky —d = 1, there exists
an element s5 € So, and sq;Ho = soHp for any element sq; € So \ {s5}.
Hence ((S2\ {s5})~}(S2\ {s5})) < Ho.
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Subcase 2.3. ks —d = 2.

m+n =0 for kp —d =2. Since ky —rg = m =0, Gy < Hy. Suppose
l¢ € saHygs, thus 1g = sahogs and g; = hgls;‘ for some hg € Hp.
Since M R(g:)(A) is also an atom and k) —r; = n = 0, we have G; <
soHogs = soHosy 1 Since ko — d = 2, there exists two elements a1, S22 €
Sz, and sqjHo = soHp for any element sg; € Sz \ {s21, s22}. Hence ((S2 \
{s21,822}) 7 (S2\ {s21, 522})) < Ho.O

With the similar manner to that for theorem 3.3 and 3.4, we have the
following two theorems.

Theorem 3.5. Let X = MC(G, Sy, S1.S2) be a connected graph with é > 6
and girth g = 3. Assume G; = (S;) for i € {0,1}, and Sy = {sq2}. If
ky > ko, and Xo contains a cycle of length g, then X is not cyclically
optimal if and only if X satisfies one of the following conditions:

(1) There exists a subgroup H of G satisfied |H| < (6—2)-g ond G; < H
forie {0,1};

(2) There eaxists a subgroup H of G and an element s; € S;, satisfied
|HI < §-(0~2) and (S;\ {s:}) < H forie {0,1};

{3) There exists a subgroup H of G, a proper, mverse-cloced subset Su =
{501, ---» Som } of So, and a proper, znve1se closed subset .S'l = {su,. o Sin}
of S1(1 < m +n < 4), satisfied |H| < —2— - (6 — 2), (So \ Sp) < H, and

(S) \51) < spHsyt

Theorem 3.6. Let X = MC(G, Sg, Sy, S2) be a connected graph with é > 6
and girth g = 3. Assume G; = (S;) for i € {0,1}, and Go = (S;'S,). If
ky > ko > 2,ky > 2, and Xo contains a cycle of length g, then X is not
cyclically optimal if and only if X satisfies one of the following conditions:

(1) There exists a subgroup H of G satisfied [H| < & - (6 — 2)(k2 = 2)
and G; < H forie {0,1};

(2) There evists a subgroup H of G, an inverse-closed subset S, =
{501, .-y Som } of So, an inverse-closed subset 51 = {511, S1n} of S1(1 <
m+n < 4), and an element sy € Sa, satisfied |H| < ﬁ - (0 - 2),
(So\So) < H. (S1\S)) < s0Hs;', and Go < H;

(3) There erists a subgroup H of G, a proper, inverse-closed subset
S(', = {801, ..., Som } of So, a proper, inverse- clased subset SI {s11, .. sl,,}
of S)(0 < m+n < 2), and two elements s2,52 € S, satisfied |H| < m
(6-2). (So\So) < H. (S1\ S}) < s2Hs3", and ((S2\{s2}) 7! (S2\{s2})) <
Il

(4) There exists a subgroup H of G, and three elements sy, 521, 522 €
S,. satisfied |H| < §-(6-2), Go £ H, Gy < sszz'l, and {(Sz \
{s21,822}) 7 (82 \ {s21,822})) < H

m+n
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4 cA—optimally connected mixed Cayley graph
with g =4

Lemma 4.1. Let X = MC(G, Sy, S1,S52) be a k—reqular connected graph
with k > < and girth ¢ = 4. Assume A is an atom of X. If X is not
cyclically optimal, then |A| > 2k — 4.

Proof. Assume a = |A|. Since A is an atom of X, and X is not cyclically
optimal, we have w(A) = cA(X) < {(X)=(k—-2)-g.

By Turdn theorem, we have |E(A)| < |E(T5,,)|. Considering the sum
of degrees of all vertices of A, we have

a a
2 2
that is (a —4)(2k—a—4) < 0. Hence |A| =a > 2k—4fora = |A| > g = 4.0

Lemma 4.2, Let X = MC(G, So, S1,S52) be a connected graph with § > 4
and girth g = 4. Assume A is an atom of X, k; > ko, and Xy contains a
cycle of length g. If X 4s not cyclically optimal, then

(1) When A C Vy, |A] > 26 — 4;

(2) When A C Vi, |A| > 2A — 4;

(3) When ANV, #£¢(i =0,1), |A] > 5+ A — 4.

2
k-a=YS,eadv) <2 +w(A) < % +4(k - 2),

Proof. Assume ¢ = |A|. Since A is an atom of X, and X is not cyclically
optimal, we have w(A) = eAM(X) < {((X)=(6-2)-g.
(1) When A C V, we have

a a a?

3 §+w(A) < > +4(6 - 2),

that is (@ - 4)(26 —a —4) < 0. Hence |A| =a > 20 —4 fora = |A| > g = 4.
(2) When A C Vi, we have

doa =%, cad(v)<2.

a

2
that is (@ — 4)(2A —a — 4) < 0. Hence |A| = a > 2A — 4.

(3) When A, = ANV, # ¢ for i € {0,1}, |Ag| = |A1| by lemma 2.9, and

we have

2
A a=Tpead(v) 52-‘21 +w(A) < %+4(5-2),

2
a a a a
+A - =Theadv) <2 = - = - 5 —2),
A 5 261((0)_22 2+L.:(A)<2+4( )
that is (¢« ~4)(0 + A —a—4) < 0. Hence |A]=a >+ A - 4.0
With the similar manner to that for theorem 3.3 and 3.4, we obtain the
following four theorems.

4 -
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Theorem 4.3. Let X = MC(G, Sy, 51, S2) be a k-regular connected graph
with k > 4 and girth g = 4. Assume G; = (S;) for i € {0,1}, and S, =
{s2}. Then X is not cyclically optimal if and only if X satisfies one of the
following conditions:

(1) There ezists a subgroup H of G satisfied |H| < (k—2)-g and G; < H
forie {0,1};

(2) There exists a subgroup H of G, a proper, inverse-closed subset Sy =
{so01,---»Som } of So, and a proper, mverse closed subset Sl = {sn, ' Sin}
of S1(1 < m+n < 3), sotisfied |H| < 74 - (k—2), (So\ Sp) < H, and

(S1\ S}) < soHs3 1.

Theorem 4.4. Let X = MC(G, So, S1,S2) be a k-regular connected graph
with k > 4 and girth g = 4. Assume G; = (S;) fori € {0,1}, and G, =
(S_ISQ) If kg = k1 > 2 and ky > 2. Then X is not cyclically optimal if
and only if X satisfles one of the following conditions:

(1) There exists a subgroup H of G, an inverse-closed subset Sy =
{s01,-.s Som } of Sou, an inverse-closed subset S, = {s11,. ,31,,} of Si(1 <
m+n < 3), and an element sy € Sy, satisfied |H| < 74 - (k- 2),
(So\ Sy) < H. (S \'S)) < soHs;'. and G2 < H;

(2) There erists a subgroup H of G, a proper, inverse-closed subset
S(, = {501, .-, Som } of So, a proper, inverse- closed subset Sl = {8115, Sin}
of $1(0 < m+n < 1), and two elements 32,32 € Sy, satisfied |H| < Wgzﬁ'

%6—2), (So\So) < H, (S1\5)) < s2H 3", and {(S2\{s2})7}(S2\ {52})) <

Theorem 4.5. Let X = MC(G, S, S1.S2) be a connected graph with § > 4
and girth g = 4. Assume G; = (S;) fori=0,1 and S = {s2}. If k1 > ko,
and Xy contains a cycle of length g, then X is not cyclically optimal if and
only if X satisfies one of the following conditions:

(1) There exists a subgroup H of G .sa.tisﬁed |H| < (6—-2)-gand G; < H
forie {0,1};

(2) There exists a subgroup H of G, a proper, inverse-closed subset
S(, = {501.---; Som } of Sy, a proper, znvers‘e closed subset Sl = {s“ 51n}
of S1(1 < m + n < 3), satisfied |H| < =L - (6 — 2), (S0 \ Sp) < H and

(S \Sl) < syHsy

Theorem 4.6. Let X = MC(G, Sp, S1,S2) be a connected graph with § > 4
and girth g = 4. Assume G; = (S;) for i = 0,1 and Gy = (52_152>. If
k1 > ko > 2 and ky > 2, and Xo contains a cycle of length g, then X is not
cyclically optimal if and only if X satisfies one of the following conditions:

(1) There exists a subgroup H of G, an inverse-closed subset Sy =
{501+, Som } Of So. an inverse-closed subset Sl = {811, .., 51n} of S$1(1 <

m+u



m+n < 3), and an element s; € Sz, satisfied |H| < 755 - (6 — 2),
(So\ Sp) < H. (S1\S}) < s2Hs;', and G, < H;

(2) There exists a subgroup H of G, a proper, inverse-closed subset
S;) = {So1, ..., Som } of So, a proper, inverse-qlosed subset S) = {s11,..., S1n}
of $1(0 < mt-n < 1), and two elements sz, s, € Sy, satisfied |H| < ;54—
(8-2), (So\Sy) < H, ($1\8)) < soHs3 ", and (S2\{s2})7"(S2\ {s2})) <
H
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