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Abstract: Let D(G) be the distance matrix of a connected graph G. The distance
spectral radius of G is the largest eigenvalue of D(G) and it has been proposed to
be a molecular structure descriptor. In this paper, we study the distance spectral
radius of graphs with given independence number. Special attention is paid to the
graphs given independence number and maximal distance spectral radius.

1 Introduction

Let G be a connected simple graph with vertex set V(G) = {vi,va,..., V).
The distance between vertices  and v of G, denoted by dg(u, v), or d(u, v) without
confusion, is defined as the length of a shortest path from u to v. The eccentricity
of a vertex v is the maximal distance from v to any other vertex. The diameter,
denoted by d, of a graph G is the maximal eccentricity over all vertices in a graph.
The distance matrix of G, denoted by D(G), is an n X n matrix with its («, v)-entry
equal to dg(u, v). For a subset S € V(G), G[S] denotes the induced subgraph of
G. We use dg(v) or d(v) to denote the degree of v in G.

The distance spectral radius of G, denoted by o(G), is the largest eigenvalue
of D(G). Since D(G) is a non-negative irreducible matrix, by Perron-Frobenius
theorem (3], there is an eigenvector x corresponding to o(G) with positive coordi-
nates, known as the Perron eigenvector of D(G). Denote by x; the coordinate of x
corresponding to v; € V(G).

For the Perron eigenvector x of G, we have

o(G)xi = Xy eviG) A6 (Vi Vi)x;.
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The Wiener index of a connected graph G is defined as the sum of all distances

among vertices (see [4, 20, 27] for details)
W(G) = Yi<jdc(vi, vj).

The distance spectral radius of graphs is well studied in the literature. Balaban
et al. proposed the use of g as a molecular descriptor, while in [8] it was success-
fully used to infer the extent of branching and model boiling points of alkanes.
Apart from distance spectral radius, these exist many other topological molecu-
lar descriptors as well, including, for example, Wiener index [4], Wiener polarity
index [22], Randié¢ index [15], graph energy [12, 9], matching energy {13] and
HOMO-LUMO index [14] and many others listed in [20, 27]. In [11, 32] the au-
thors established various upper and lower bounds for distance spectral radius and
distance energy of graphs. Liu [19] characterized graphs with minimal distance
spectral radius in three classes of simple connected graphs with n vertices: with
fixed (vertex) connectivity, matching number and chromatic number. Zhang and
Godsil {31] studied the distance spectral radius of graphs with given number of
cut vertices or cut edges. Bapat et al. in [1] showed various connections between
distance matrix D(G) and Laplacian matrix L(G) of a graph G. Nath and Paul
[24] recently obtained the maximal distance spectral radius of trees with given
matching number, this resolved a conjecture posed in [10]. They also found the
extremal tree of maximal distance spectral radius with given number of pendent
vertices. Ili¢ [10] determined the minimal distance spectral radius of trees with
given matching number. Du et al. [S] further studied the distance spectral radius
of trees. Stevanovié and Ili¢ in [25] proved that among trees with fixed maximum
degree A, the broom graph is the unique graph with maximal distance spectral
radius. Furthermore, the authors proved that the star X, ,_; is the unique graph
with minimal distance spectral radius among tree on n vertices, i.e. for a tree G,

it holds
0G) 208 =n-2+ \(n =22+ (n-1).

For more details on distance matrices and distance spectra, one may refer to
[6,7, 16, 18, 17, 21, 23] and the references therein.

Recall that the clique number w(G) of a graph G is the largest number of
pairwise adjacent vertices of G and the chromatic number x(G) is the minimum
number of colors to be assigned to the vertices of G such that no two adjacent
vertices receive the same color. Obviously w(G) < x(G). A subset S of V(G) is
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called an independent set of G if no two vertices in S are adjacent in G. The in-
dependence number of G is the size of a maximum independent set of G, denoted
by a(G).

In this paper, we study the distance spectral radius of graphs with given inde-
pendence number. This paper is organized as follows. In Section 2, we consider
the minimal distance spectral radius of graphs. In Section 3, we study the dis-
tance spectral radius of graphs with small independence number. In Section 4,
graphs with large independence number and maximal distance spectral radius are
considered.

2 The lower bound

Theorem 2.1. Let G be a connected graph of order n with independence number
r. Assume that U = {v|,v,...,v,} is an independent set, and W = V(G)\ U =
{Vests Vrs2s -5 Vo) Let X = (xy,...,%,)7 be the Perron vector of D(G), where x;
corresponds tov; fori=1,...,n. Let

Xi = miny, ey X, Xj = miny, ey Xi.

Letr A (resp. B) be the set of vertices adjacent to v; (resp. v;) in W (resp. in
U) with |Al = a 2 1,|Bl = b > 1. Then we have o(G) > 3(n+r -3+

Vi +r=32-4@2r-2)(n—r-1)-Q2n-2r-a)2r - b))). )]
Proof. For vertex v; and its corresponding eigencomponent x;, we have

0xi 2 axj+2(r— Dxi+2(n—r—a)x;, )
and similarly, for x;, we have

©xj 2 bx; + 2(r = b)xj+ (n—r-1)x;. 3)

Thus it follows that
@-200-1))xiz(@+2(n-r-a)x,,
lo-(n—-r=1))x; 2 +2r-b))x.
Simplifying the above two inequalities, one has
O —(n+r=3)o+2(r—1)n-r-1)=Q2n-2r-a)2r->5) > 0.
Then the result follows immediately. (u}

Corollary 2.2. Let G be a connected graph of order n with a(G) = r. Then

o(G) 2 -'2-(n+r—3+ Vn2 =2(r = 1)n +5r> —6r +1).
The equality holds if and only if G = K,_, V K,, the join of the complete graph
K-, and the empty graph K,.




Proof. Obviously, a < n—rand b < r in Theorem 2.1, therefore from (2) and (3)
we can similarly have
ox; 2 ax;j+2(r—Dxi+2(n=r—a)x; 2 2(r—-1)x;+(n-r)x;, )
0x; 2 bx; +2(r=b)xi+(n—r—Dx; 2 rx;+(n—r—1)x;. 5)
Simplifying the above two inequalities, one has
P-n+r=-3)p+2r-Dn-r-1)-(m-nNrz0.
Thus we get the desired result.

If the equality holds, then all the inequalities in the proof must be equalities,
therefore a = n — r and b = r. If equality of (4) holds, then ali vertices in U (resp.
W) have the same eigencomponents x; (resp. x;). Every vertex in U is adjacent to
every vertex in W; every vertex in W is adjacent to every vertex in U. The equality
of (5) implies that the degree of the vertices in W is n — 1. Therefore we get the
result. The converse is easy to check. a

3 The extremal graph with @ =2 and [7] - 1

We denote by L(p, q,n — p — g) the graph of order n obtained from the graphs
K, and K, by joining u € K,, v € K, with a path of ordern—p-q (p 2 2,9 2 2).
For simplicity, for p > 2,9 2 2,p + g = n, let L(p, q) denote the graphs X, and
K, joined by a single edge uv with u € K, v € K.

Lemma 3.1. o(L(p,9)) < o(L(T51,L3))) with equality only if L(p, q) = L([31, L3 )

Proof. Suppose that V(L(p,q)) = {v1,...,va}. Letx = (xy,... ,x2)" be the Perron
vector of D(L(p, q)) where x; corresponds to v; for i = 1,...,n. By symmetry,
all the vertices in V(K,)\{u} have the same coordinate, say xo; all the vertices in
V(K )\{v} have the same coordinate, say x3; u corresponds to x; and v corresponds
to x3. Then

o(L(p,g)x0 = (p — 2)x0 + X1 + 2x2 + 3(g — D3,

o(L(p,g)x1 = (p = D)xo + X2 + 2(q — 1)x3,

o(L(p,g))x2 = 2(p — Dxo + x) + (g — Dx3,

o(L(p,@))x3 = 3(p = Dxo + 2x; + x2 + (¢ = 2)x3.

Then g is the Perron root of matrix M since gx’ = Mx’, where X’ = (xg, X1, X2, X3)'

and
p- 1 2 3¢g-3
| p-1 0 1 29-2
M= 2p-2 1 0 g¢g-1
3p—-3 2 1 ¢g-2
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Then by a simple calculation, the characteristic polynomial of M is
det(U-M) = P —(n—4) 3 +(2n+4-8pq) A2 +(6n—14pg)A+(2n-5pq) =: f(A, p,q).
It can be checked that
fAp.g)= f(Ap-1,g+1)=(p-q—1)8A%+ 141 +5).
Therefore, if p > g — 2, then
fle.p-1.9+1) < flo,p.q) = 0.
This implies that the largest real root of f(4, p,q) = 0 attains the maximum when
lp — gl < 1. This completes the proof. m}

Lemma 3.2, Let G be a connected graph on n > 4 vertices with diameter 2. Then
o(L(21121) > o(G).

Proof. In[16], it is obtained that if the diameter of G is two, then o(G) <n -2 +
Vn? - 3n + 3 with equality holding if and only if G = K, ,_,.
By a simple calculation, we have

ni |n 2n% - 3n, if n is even,
ZW(L([EI’lEJ)) B { 2n? =3n-1, ifnisodd.
Since o(L([51.15))) 2 % and n 2 4, we have o(L([31,[3])) 2 2n-3 > n-2+

Vn2 - 3n + 3 if n is even; and o(L([41, L 21))) 22n-3-1>n-2+Vn2-3n+3

if n is odd. Thus we complete the proof. O

In the following, we will consider the extremal graph with independence num-
ber 2 and maximal distance spectral radius.

Theorem 3.3. Among all graphs with order n and independence number 2, the
graph L([51,15]) attains the maximum distance spectral radius.

Proof. Let G be the extremal graph having maximum distance spectral radius
among all graphs with independence number 2. The cases for n < 3 are easy to
check, so we may assume that n > 4 in the sequel.

If the diameter of G is at least 4, then we can easily find three non-adjacent
vertices, which contradicts to the fact that the independence number is 2.

If the diameter of G is 2, then by Lemma 3.2, o(G) < o(L([§1, L5 1))-

If the diameter of G is 3, suppose that u and v are such candidates with
d(u,v) = 3. Thus we can partition V(G) into V; and u, where V; = {vi|d(u,v;) = i}
fori = 1,2,3. Since the independence number of G is two, thus G[V;] is a com-
plete graph for i = 1,2,3 and G[V, U V4] is also a complete graph. Note that
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deleting edges of G would increase the distance spectral radius, then the number
of edges between V; and V; is exactly one. Thus G is of the form L(p,q). By
Lemma 3.1, it follows that G = L([ 41, 15]). This completes the proof. (m]

Recall that the unicyclic (resp. bicyclic) graph is a connected graph with the

number of edges equal to the number of vertices (resp. plus one).
Lemma 3.4 ([28]). Among all unicyclic graphs, the graph L(3,2,n - 5) attains

the maximum distance spectral radius.

Lemma 3.5 ([2]). Among all bicyclic graphs with two edge disjoint cycles, the
graph L(3, 3, n — 6) attains the maximum distance spectral radius.

Lemma 3.6 ([29]). Among all connected graphs with clique number w(G), the

graph L(w, 2, n — w — 2) attains the maximum distance spectral radius.
Let G’ be the graph of order n obtained from K, — e by attaching a path of

length n — 4 at the vertex of degree 3in K; —e.

Lemma 3.7 ([2]). For G’ described above, we have o(L(3,3,n - 6)) > o(G’).
Theorem 3.8. Among all connected graphs with independence number r = [5]—
1, the graph L(3,2,n — 5) has the maximum distance spectral radius if n is odd;
L(3,3,n - 6) has the maximum distance spectral radius if n is even.

Proof. Suppose that G has the maximum distance spectral radius among all graphs
with independence number r.

If nis odd, then r = "—;—' Thus G contains at lease one odd cycle (otherwise G
is a bipartite graph, and thus (G) > n/2). Since deleting edges will increase the
distance spectral radius and G has the maximum distance spectral radius among
all graphs with independence number r. Thus we have G is a unicyclic graph with
the length of the cycle odd. Then by Lemma 3.4, we have G = L(3,2,n - 5).

If n is even, then r = &;2 Therefore G contains either at least two edge
disjoint odd cycles or a K,, if otherwise, we can delete a suitable vertex, say u, of
G such that G — u is bipartite, then &(G ~ u) = I"‘—z‘—'"l = 3, a contradiction.

If G contain at least two edge disjoint odd cycles, then by Lemma 3.5, we
have G = L(3,3,n - 6).

If G contains K4 as a subgraph, then by Lemmas 3.6 and 3.7, we have o(G) <
o(L(3,3,n — 6)), which is a contradiction to the maximality of G. (]

For graphs with independence number at most [ 5] — 2, we have the following

general bound.
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Lemma 3.9. [32] Let G be a connected graph with n vertices, minimum degree
6y and second minimum degree §,. Let d be the diameter of G. Then

0(G) < \J[dn - 2&D — ) —6,(d - )][dn - 24D — | —6,(d - 1)]
with equality if and only if G is a regular graph withd < 2.

Theorem 3.10. Let G be a connected graph of order n with independence number
r £ [31—2. Then we have o(G) < (n — r)(2r — 1). The equality holds if and only
ifG =K,

Proof. From Lemma 3.9, since 6, = §; = 1, we have
o(G) < dn - 440 — g =: f(d).
It is easy to check that f(d) is strictly increasing with respect to d. Since
2 <d+1 < 2r for any graph, we find d < 2r — 1 and f(d) < f(2r - 1) for
r < [3] - 2. This yields the result.
If the equality holds, then d + 1 = 2r, and note that 4 < 2 by Lemma 3.9,
therefore r = 1 and this leads to the result. The converse is easy to check. o

To conclude this section, we pose the following conjecture regarding the ex-
tremal graph with maximal distance spectral radius and independent number at

most [31—1.

Conjecture 3.11. Among all graphs with independence number r <[] - 1, the
graph L([%L [1'2%2-) 1,2(r — 2)) attains the maximum distance spectral.

4 The extremal graph with o > [5]

If the independence number equals to [%1, then the path P, attains the maxi-
mum distance spectral radius.

For s, p 2 0, the dumbbell graph D(n; s, p) consists of a path P,_,_,, s pendent
edges attaching to a pendant vertex of P,_s_,, and p pendent edges attaching to
the other pendent vertex. Denote by D(n, k; 5, p) = D(n; s, p) with s + p = k.

Lemma 4.1 ([24]). Among all connected graphs with k pendent vertices, the
graph D(n; [ §'|, I.-é-J) attains the maximum distance spectral radius.

Lemma 4.2 ([28]). Suppose uv is a cut-edge of a connected graph G, but uv is
not a pendent edge. If Gy is the graph obtained from G by identifying u and v, and
creating a new pendent vertex at the identified vertex, then o(G) > o(Go).
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By Lemma 4.2, we immediately get the following result.
Lemma 4.3. For k > 2, we have o(D(n; §1,141)) < o(D(n; [5511, 1552 ))).

Let 7, denote the set of trees with n vertices and independence number r >
[31+ 1. In the following, we shall find the minimum number of pendent vertices
among J,,.

LetT € J,, and S be the maximum independent set in T. Obviously, there
exists at least one pendent vertex u in S with its unique neighbor v. We will carry
out the following two transformations:

(a). If d(w) > 3, then suppose that its neighbor set is N(w) = {wy,...,w}
andd(w;)) = I, fori=1,...,swheres <t. If s <t thenletT' =T — {wwili =
I,...,sH+wwili=1,...,5). If s=t, thenlet T = T—{ww|i = 1,...t=1}+{vw|i =
l,...,t =1}

We carry out the transformation (a) recursively until the vertices other than v
of the tree are adjacent to at most one pendent vertex.

(b). For k, I > 2, we denote by T(w, k, ) the graph obtained from T U P, U P,
by adding edges between w and one of the end vertices in both P, and P;. Let
Pi=wuy...ypwand T’ =T, 0,1+ k— D\{u;} + {viy}.

Clearly, when we run the above two transformations, the number of pen-
dent vertices remains unchanged and the independence number does not decrease.
Then we will have the following result.

Lemmadd. LetT € 9, (r 2 [§]+ 1) be a tree with independence number r. If
T has the minimum number of pendent vertices, say k, then k = 2r —n + 1.

Proof. Let T be the extremal tree with minimum number of pendent vertices
after carrying out the above two transformations. Since the independence number
does not decrease after carrying out the above two transformations, then a(7}) =
k +[2=k=2] = [24£=2] = r_If n + k is even, then n — k is even, at this moment we
can subdivide the internal path one time and delete one pendent vertex, while the
independence number also does not decrease but the number of pendent vertices
decreases by one, this contradicts to the choice of T. Therefore n + k is odd and
k = 2r — n + 1. The result therefore follows. o

Then by Lemmas 4.1, 4.3 and 4.4, we have

120



Theorem 4.5. Among all graphs in I, (r 2 [}1), the graph D(n; [ 2411, | 2241 ))
attains the maximum distance spectral radius.

Theorem 4.6. Among all connected graphs with independence number r > [4),
the graph D(n; [2211, | 22%L |) attains the maximum distance spectral radius.

Proof. Let G be a graph with independence number r > [4]. Suppose that V; =
{vi,v2,...,v,} is a maximum independent set of G and V, = V\V,. Assume that
G; = G[V;] are the subgraphs induced by V; fori = 1,2, and C,...,C, are the
components of G,. Clearly, l <sm<n-r.

It is clear that either a pendent vertex or its neighbor must be contained in
the maximum independent set. We may assume, without loss of generality, that
U = {v,vs,...,v]} is the set of pendent vertices (f < r) in V; and set Vi =Vi\U.
Then all vertices in V| are of degree at least 2.

If|V|| £ m -1, then the number of pendent vertices of G is at least r —m + 1 >
2r-n+1asm < n—r. We delete edges of G until the graph is a tree, and denote the
new graph by G’. Clearly, the pendent vertices of G’ is at least r—m+1 > 2r—n+1.
Then by Lemma 4.3 and Theorem 4.5, 9(G) < o(G") < o(D(n; [ 2=g+1], | 25l |y),
This completes the proof.

If [V{| = m, then we delete edges until G is a tree such that each component C;
(i=1,---,m)of G, is a tree. Denote the new graph by G”. Then each vertex of
Vi is adjacent to at most one vertex in C;. Next we claim that at most m—1 vertices
in V] are not pendent vertices. In fact, if otherwise, there exists a set W C V] with
m vertices of degree at least 2, then the induced subgraph G = G{W U V3] has
m+(n - r) vertices, note that the edges between W and V; is at least 2m, one finds
that the number of edges of G is at least 2m + X7 (ICi| = 1) = 2m + (n — r) =
m = m + (n - r), which implies G contains a cycle, and so does G, leading to a
contradiction. Therefore the claim holds. Note that deleting an edge e of G (while
keeping G — e still connected) would increase the distance spectral radius, thus
we have o(G”) 2 o(G) with equality if and only if G = G”. Apparently G” is a
tree with the number of pendent vertices at least r — m + 1 > 2r — n + 1. Then by
Lemma 4.3 and Theorem 4.5, o(G) < o(G") < o(D(n; [Zf211, | 2541 ])). This
completes the proof. o
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