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Abstract: In this note we characterize the graphs with a given small match-
ing number. We characterize the graphs with minimum degree at least 2 and
matching number at most 3. The characterization when the matching number
is at most 2 strengthens the result of Lai and Yan's that characterized the non-
supereulerian 2-edge connected graphs with matching at most 2; Furthermore,
the characterization of the graphs with matching number at most 3 addresses
a conjecture of Lai and Yan in [SuperEulerian graphs and matchings, Applied
Mathematics Letters 24 (2011) 1867-1869).
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1 Introduction

Motivated by the Chinese Postman Problem, Boesch et al. 3] proposed
the supereulerian graph problem: determine when a graph has a spanning
eulerian subgraph. They indicated that this might be a difficult problem.
Pulleyblank [13] showed that such a decision problem, even when restricted
to planar graphs, is NP-complete. We refer the readers to (6, 9] for the
supereulerian graph problem.

We use [2] for terminology and notation not defined here, and consider
simple finite graphs only. In particular, matching number of a graph G
is the size of the maximum matching in G, denoted by o/(G). We denote
by 6(G) the minimum degree of G. Let m,n be two positive integers. Let

*The research is supported by NSFC (No.11301371), NSF of Shanxi Province (No.
2014021010-2) and The Project-sponsored by SRF for ROCS, SEM.
tCorresponding author.E-mail: ywh222@163.com (W. Yang).

ARS COMBINATORIA 121(2015), pp. 125-130



H, = K; m and Hy = K5, be two complete bipartite graphs. Let u;,v; be
two nonadjacent vertices of degree m in Hj, and uy, v2 be two nonadjacent
vertices of degree n in H,. Let Sy ,, denote the graph obtained from H;
and H, by identifying v; and v,, and by connecting u; and u2 with a new
edge 1 uz. Note that Sy ; is the same as Cs, the 5-cycle. Define K,3(1,1,1)
to be the graph obtained from a 6-cycle C = ujuqugusususu; by adding
one vertex u and three edges uu;,uus and uus.

Recently, Lai and Yan in [12] considered supereulerian graph problem
with the restriction of matching number of a graph and posed two conjec-
tures as follows.

Conjecture 1. If G is a 2-edge-connected simple graph with maiching
number at most 3, then G is supereulerian if and only if G is not one of
{K2,, Sn,m, K1,3(1,1,1)} where n,m are natural numbers and t is an odd
number

Conjecture 2. If G is a 3-edge-connected simple graph with matching
number at most 5, then G is supereulerian if and only if G is not contractible
to the Petersen graph.

In (1], An and Xiong pointed that the second conjecture is a corollary
of a result in Chen [8] and they also pointed that the first conjecture is not
true by giving some counterexamples. They revised the first conjecture as
a new conjecture in [1], but the revision is not complete yet. We do not
list it here, see [1].

In this note we first obtain a characterization for graphs with minimum
degree 2 and matching number at most 2 that strengthens the result of Lai
and Yan in [12] (the main result in {12] is that every 2-edge-connected graph
with @/(G) < 2 is supereulerian if and only if G is not K, . for some odd
number ¢); Similarly, a characterization of the graphs with minimum degree
at least 2 and matching number at most 3 is obtained which addresses the
problem raised by Conjecture 1.

2 The characterization of graphs with mini-
mum degree at least 2 and matching num-
ber at most 2

In this section we characterize the graphs with minimum degree 2 and
matching number at most 2. For a graph G, a cycle of G is called dom-
inating cycle if the cycle contains at least one endvertex of any edge of

G.
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Theorem 3. Let G be a graph with minimum degree at least 2 and maz-
imum matching number at most 2. Then G € Fy; = {G : §(G) > 2 and
[V(G)| £ 5} U{K2,}U{K];,}, where K3, is obtained from Ks, by adding
an edge between the two vertices of degree t.

Proof. Suppose C is the longest cycle of G with length . If | < 3, then by
§(G) 2 2 and o'{G) £ 2 we clearly have either G = Kj3 or G isomorphic to
the hourglass, where the hourglass is a graph obtained from K5 by removing
the edges of a Cy. Thus, G € F1. Note that o’(G) < 2, then ! < 5.

Case 1. | = 5.

We claim that C is a dominating cycle of G, since other cases will
induce o/(G) > 3. Note that G is connected. If V(G — C) # @, the case
will induce a matching of size 3. Thus, |V(G)| = 5 and then G € {G :
6(G) 22and |V(G)| <5} C Fi.

Case 2. | =4.

Suppose C = z1x2x3247;. Clearly, C is a dominating cycle, since oth-
erwise it will induce o/(G) > 3. If V(G) = V(C), then G € F;. Otherwise,
let v € V(G — C). Since 6(G) > 2, v has exactly two neighbors in V(C)
(otherwise will induces a cycle of length 5). Since &’(G) < 2, all the vertices
in V(G — C) have the same neighbors in V(C). So we clearly have either
G=KyrorG=Kj,. O

Observation 4. A graph G with 6(G) > 2 and |[V(G)| < 5 is either
supereulerian or G = Ky 3. Moreover, Ky, is supereulerian if t is an even
number, and non-supereulerian otherwise.

Proof. It is easy to obtain the first part by considering its longest cycle.
The second part is obvious. O

Corollary 5 (Theorem 2 [12]). If G is a 2-edge-connected simple graph
with matching number at most 2, then G is supereulerian if and only if G
is not K, for some odd number t.

Proof. By the Observation 4, the corollary holds since K3 , is supereulerian.
O

3 The graphs with matching number at most
3

We first introduce some special graphs as follows.
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Figure.l The case n = 1.
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Figure.2 The case m > n > 2.

The following four graphs below are the simple variants of Sp.m: S7 ., =
Sim+ 2123, 57 = Si.m + 7123, S = S1,;m + 7123, S0 = S + 2174
Similarly, Cs(k;s,t) contains the following three variants that obtained
by adding edges {z,z3}, {z123, z3z5} and {zz3,Z3zs5, 521}, respectively.

We use C to denote the set of Cg(k; s,t,r) and its three variants mentioned
above. Let 8§ = {S1,m, S m»Stms St.ms Sims Stms Snums Snoms Snms K2,60 Kb 4 }

1,m:?

Theorem 6. Let G be a graph with minimum degree 2 and matching num-
ber at most 3. Then G isin F2 = {G: |[V(G)| < 7}USUC.

Proof. Suppose C is the longest cycle of G with length l. Similarly as in
Theorem 4, we have |V(G)| =7 if | = 7 and thus G € F.

Ifl = 3, then G € {K3,H,H',H"}, where H denotes the hourglass,
H', H" denote the two different graphs obtained from a hourglass and a
triangle by identifying a vertex of a hourglass and a vertex of a triangle.
Each of the cases implies |V(G)| < 7 and then G € F2. Thus we may
assume ! > 4.

Case 1. l=6

Let C = z1x2T3z4T5T6T; be a longest cycle of G. Clearly, C is a
dominating cycle of G. Suppose V(G —C) # 9. Since o/(G) < 3 and ! =6,
at most one of the two endvertices of an edge ab € E(C) has neighbors
in V(G — C). Thus at most three pairwise nonadjacent vertices of V(C)
have neighbors in V(G — C) and assume that they are 1,3, 5. Suppose
there are k vertices of V(G — C) such that each of them is only adjacent
to vertices of z1, T3, z5. In this case, it is easy to see that G € C.
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Case 2. =5

Let C = z1z27374257; be a longest cycle of G. Note that [ = 5 and
0(G) 2 2. Then if C is not a dominating cycle of G, then G is the graph
obtained from a cycle Cs (a cycle of length 5) and a triangle by identifying
a vertex of the Cs and a vertex of triangle and adding some edges on
the Cs. In this case, we have |V(G)| < 7. Suppose C is a dominating
cycle of G. It is easy to see that G contains a S, ,, as a subgraph for
some m,n. Ifm >n > 2, then G € {Snm,Spm1Snm}- Ifn =1, then
G € {S1,m, , 1,m»S1.m}, see Figure 2.-
Case 3. | =

Let C = z,22x3747); be a longest cycle of G. Similarly, if C is not a
dominating cycle, then |V(G)| < 7. If C is a dominating cycle, we have

G = K, or G = K, for some integer t. O
Note that S} ,, S S1'm, and Sy, , are supereulerian. If G 2 Cg(k; s, t,7),

k=1,s,t,7 > 1 and the parities of s t,'r are the same, then G is not su-
pereulerian. In fact, G has 4 vertices of odd degree and only one edge can
be removed. So G is not supereulerian. If k > 2, the k — 1 vertices of
degree 3 can be used to adjust the parities of s,¢,r such that one of them
is different from others, then the resulting is supereulerian clearly. So we
have the following theorem.

Theorem 7. Let G be a graph with minimum degree 2 and &/(G) < 3.
Then G is not supereulerian if and only if one of the following holds:
(1) If G= Sy m,m 2 n > 1, then one of n,m is an even number;
2)IfGe {Sl mrS1.m ), then m is even number;
B)IfG=S; pym > > n > 2, then x4 is a verter of odd degree.

(4) IfG = Cs(k s,t,7), then k = 0 or 1. Moreover, if k = 1, then the
parities of s,t,r are the same; If k =0, then s,t,r are different.

Proof. We only prove the necessity. We first claim that a graph G € SUC
with at most 7 vertices and §(G) > 2 is supereulerian. In fact, the claim
is easily obtained by considering the longest cycle of G. Thus we assume
|[V(G)| > 8. By Theorem 6 and the discussion above, (1), (2), (3), (4) are
easy to obtain by consider the parities of n,m, s, ¢t,r. (]

Remark 8. Theorem 7 implies Conjecture 1 is not complete and one can
revise it easily by using the theorem above.
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