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Abstract

This paper devotes to the investigation of 3-designs admitting the
special projective linear group PSL(2,2") as an automorphism, and
we determine all the possible values of A in the simple 3-(2" +1,7, A)
designs admitting PSL(2,2") as an automorphism group.

MSC: 05B05; 20B25
Keywords: 3—designs; block transitive; projective linear groups

1 Introduction

For positive integers 3 < k < v and A > 0, we define a 3-(v, &, \) design
to be a finite incidence structure D = (X,B,I), where X denotes a set
of v points, and B a set of k-subsets of X called blocks, such that any 3-
subset of X is incident with exactly A blocks. Such a design D is said to be
simple if B has no repeated blocks. In this paper, we only consider simple
3-designs. We consider automorphisms of D as pairs of permutations on X
and B which preserve incidence. An automorphism group of D is a group
whose elements are automorphisms of D and call it t-homogeneous if it acts
t-homogeneously on the points of D.

Among classical simple groups, the structure of the subgroups and the
permutation character of the elements of the projective special linear group
PSL(2,q) are best well-known(see {1]). And it is well known that PSL(2,q)
is 3-homogeneous if and only if ¢ = 3 (mod 4). Therefore, a 3-(¢ + 1,k, )
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design admits PSL(2,q) as an automorphism group if and only if its block
set is the union of orbits of PSL(2, ¢) on the set of k-subsets. Thus it is easy
to see that if k > 3 each orbit of k-subsets of X is a simple 3-(q + 1, %, A)
design for some A. When ¢ = 2", PSL(2,2") is isomorphic to projective
general linear group PGL(2,2"), so it is sharp 3-transitive, and certainly
is 3-homogeneous. This simple observation has led different authors to use
this group for constructing 3-designs(see[2, 3, 4, 5, 6, 7]). In [3], all 3-
designs with block size 4 and 5 and admitting PSL(2,q),q = 3 (mod 4) as
an automorphism group are completely determined. When ¢ =1 (mod 4),
quadruple systems from PSL(2, q) are determined in (7]. For all 3-designs
with block size 6 admitting PSL(2,q), when ¢ = 3 (mod 4) and ¢ = 1
(mod 4), are reported in [4] and [5] respectively. In (8], we investigate
the existence of simple 3-designs with block size 7 from PSL(2,q) with
q = 3 (mod 4) and determine all the possible values of A in the simple
3-(g+1,7,)) designs admitting PSL(2,q) as an automorphism group. In
the paper, we continue this work, and consider the existence of simple 3-
designs with block size 7 from PSL(2,2") and determine all the possible
values of A in the simple 3-(2" + 1,7, A) designs admitting G = PSL(2,2")
as an automorphism group.

Main Theorem: There ezists a 3-(¢ + 1,7,)) design with automor-

phism group G and 1 < A < ( q;—? ) if and only if

A = 15z; + 21z + 703 + 10524 + 210x5,
and
0<z,22 £1,0 <23 < Nyo,0 < 24 < Nio5,0 < 75 < Najo,

where Ny denotes the number of orbits which form a 3—(2"+1,7,\) design.

2 Notation and Preliminaries

In this section, we give some notations and preliminaries which will he used
throughout this paper.

For B C X, let G(B) = {g(B) : g € G} denote the orbit of B under G
and Gp = {g € G : g(B) = B} denote the stabilizer of B under G. It is well
known that |G| = |G(B)||Gp|. It follows that G is an automorphism group
of the 3-design (X, B, I) if and only if B is a union of orbits of k-subsets of
X under G (see [9]).

Let ¢ be a prime power and let X = GF(g) U oo, called projective line.
We define b/0 = 00,b/00 = 0,b — 00 = 00 — b = 00,00/00 = 1. For any
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a,b,¢,d € GF(q), if ad — bc is a non zero square , then the set of all map-
pings f(z) = %_*‘—3 on X is a group under composition of mappings, called
projective special linear group and is denoted by PSL(2,q). When g = 2%,
PSL(2,2") is isomorphic to projective general linear group PGL(2,2").

From [1] we can gather some important results on PSL(2,q) which are
used below.

Lemma 2.1 G = PSL(2,q) acts 2-transitively on the point set of X, and
each non-identity element of G has at most two fized points on X.

Lemma 2.2 Let P be a p-Sylow subgroup of PSL(2,q), then P is isomor-
phic to the additive group of GF(q), and the elements of P have a common
fized point and each non-identity element of P only has this fized point.

Lemma 2.3 The subgroup U of G = PSL(2,q) which fizes the number 0
and oo is a cycle-group of order u = "Id—_l, where d = (pf - 1,2).

Lemma 2.4 G = PSL(2,q) has a cycle-group S of order u = L’;—l, where
d=(pf —1,2). Andife # s € S, then s has no fired points on GF(g) Uco.

Lemma 2.5 The structure of the elements g's of PSL(2,q),q = 2" is
given in the following table, where o(d) denotes the Euler function.

Order of the g Order of centralizer Number of conjugate  x(g)

classes
1 6(°5t) 1 2" +1
2 2" 1 1
dj2n -1 p | eld) 2
d2" +1 2" 41 fé’l 0

Where x(g) denots the number of fixed points by element g.

Lemma 2.6 (seef9]) Let D = (X,B,I) be a t-(v,k,\) design. Then the
following equations hold:
(a) bk = vr.

o (i(8)

3 Order of stabilisers of 7-subsets

In this section we will determine the possible sizes of orbits of 7-subset of
X under G and its number. Let B be a 7-subset of X. Now we discuss the
order of Gg.
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Lemma 3.1 Let B be a 7-subset of X. Then |G| # 6,30, 70,210.

Proof. (1) If |Gg| = 6, by Sylow theorem, there is a normal subgroup H of
order 3 and 3 subgroups of order 2, K, K2, K3 in Gg. Let k € Gg be one
element of order 2, then there are hy, ho € H. such that kh; = hak. Note
that hy, ho fix exactly one element x of B. we have k(z) = k(hi(z;)) =
ha(k(z)), then k(z) = z, which implies that k£ and A fix a same point in
B. By lemma 2.5, h fix exactly two pionts in X, write as {z,z’'}. Since
H* = H, so H fix k(z'), which implies k(z’) = 2’ since k(z) = z, a
contridiction.

(2) If |G| = 30, then there is H < G with |H| = 15 by Sylwo theorem.
Also by Sylow theorem, ng = ns = 1, where nz and ns denote the number
of Sylow 3-subgroups and Sylow 5-subgroups of H, respectively. Therefore
there is a unique group of order 15 which is cyclic, Gp has an element of
order 15, but such an element cannot fix B, a contradiction.

(3) If |G| = 70,210,then there H < G = 35 with |H| = 35 by Sylow
theorem. Then ny = ns = 1, where n; and ng denote the number of Sylow
7-subgroups and Sylow 5-subgroups of H respectively. Therefore there is
a unique group of order 35 which is cyclic, G has an element of order 35.
but such an element cannot fix B.

Lemma 3.2 Let B be a 7-subset of X. If5 | |Gp| or7 | |Gp| then 2| |G|,
and the G(B) is the only orbit content with the condition.

Proof. If 5|/Gpg, let g € Gp be an element of order 5, then g fix two
element of B, write {;,z2}. Write B = {z,,72,@01,a2, - ,a5}. Since G
is 3-transitive, there is h € G such that h(z;) = 0, h(z2) = oo0,h(a1) = 1.
Let B’ = h(B) = {0,00,1,h(az2),-- ,h(as)}, then fix(hgh~1) = {0, 00}
and {1, h(az2),---,h(as)} is it’s 5-cycle. Therefore there is a € GF*(2")
such that hgh~! = az and |a| = 5. So B’ = {0,01,a,--- ,a*)}. Clealy,
{1,a,---,a%)} is subgroup of order 5, and it is uniqueness in GF*(2"). So
G(B) = G(B') is uniqueness. Clealy element of order 2 f(z) = 1 € Gp-.
Similiar hold for 7 | |Gg|.

It is well known that a set of necessary conditions for the existence of
a t-(v, k, A) design is

(el o

for 0 < i < t. This fact together with Lemma 2.6 can deduce the following
Lemma.

Remark 1. If both G(B) and G(B’) are all the 3-(2" +1,7, A) designs,
then either G(B) N G(B’) = 0 or G(B) = G(B’). Therefore, for fixed A,
what the number of B statisfying G(B) is a 3-(2" + 1,7, A) design is equal
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to/\(2n;_1 )N,\/(;).

Lemma 3.3  Every orbit of 7-subset is a 3-(2" + 1,7, \) design with A €
{5,15,21, 70, 105, 210}.

Proof. Since G(B) is a 3-(2" + 1,7, A) design,

cen=2( 51 )/(3)

by Lemma 2.6. Therefore, by |G| = |G(B)||Gg|, we see A\|Gp| = 210. By
Lemma 3.1 and 3.2 we can get the results.

4 Orbits of 7-subsets

From now on, we let N) denote the number of the orbits each of which
forms a 3-(2" +1,7, \) design. Let B be a 7-subset of X, and G(B) be the
set of blocks of a 3-(2"+1, 7, A) design. Then the group G is block-transitive
on this design.

In the following, we will determine the Ny for A € {5, 15,21, 105, 210}.

Lemma 4.1 Let B be a 7-subset of X. If the orbit G(B) is a 3 — (2" +
1,7,)) design, then N5 = 0,

)

_J 1 whenn=0 (mod 3)
Mg = { 0 otherwise

_f 1 whenn=0 (mod4)
Nay = { 0 otherwise :

Proof. Let G(B) form a 3-(2" +1,7,21) design. Since A|Gp| = 210, and
Gp = 10. Thus 5|2” — 1, that is n = 0 (mod 4) by lemma 2.5, and every
element of order 5 of G fixes exactly two points of B, and Ny = 1 by
Lemma 3.2. Otherwise when 542" — 1, or n = 1,2,3 (mod 4), N3; = 0.
Similiarly, when n = 0 (mod 3), N3; = 1. When n = 1,2, (mod 3),
N2, = 0. By Lamme 3.2, Ni5 + N5 < 1. By calculating the numbers of
7-subset including points {0,1, 0}, we have

210N210 + 1051\,105 + 70N70 + 21N21 =+ 15N15 + 5N5 = ( 2 ; 2 ) .

So,
_f 2" -2
21N3; + 15N5 + 5N = 4 (mod 35). (2)
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If N5 # 0, then 3|n and N5 = 0. If 4|n, then n = 12k and N2 = 1, then
21N, + 15N;5 +5Ns =26 (mod 35).

But this time,

( on 2 ) (2" =2)(2"-3)(2" —4)(2"=5)
4 = 24

(36—2)(36—3%236-4)(36—5) =1 (mod 35)

Since 2!2* = 1 (mod 35). This is cotradiction with equation (2). If 4 { n,
then n = 3,6,9 (mod 35) and 21N3; + 15N15 + 5Ns = 5 (mod 35). But
this time

on _9 n_ n_ n_4)(2"—5
( . ) = BT N@ -9 < 12,153 (mod 35).

Since 2!%* =1 (mod 35). This is cotradiction with equation (2). Therefore
N5 = 0, the results hold.

Lemma 4.2 Whenn =0 (mod 2), Ny = — ; Otherwise, N7g = 0.

Proof. Let G(B) form a 3-(2" + 1,7,70) design. Then |Gp| = 3. Thus

the elements of order 3 fix at least one point of B. By lemma 2.2-2.4, we

have 3|2" — 1, and then n = 0 (mod 2). Therefore, by Remark 1 we
1

see that the number of such B’s is 70( 2 ;-1 )Nm/( ; ) . On the

other hand, since 3|2" — 1, by Lemma 2.3 each element of order 3 of G
H n n
fixes exactly 2 ( % = 52_—1§1_—4) 7-subsets of X each of which is

fixed exactly by 2 elements of order 3 and there are exactly 2™(2™ + 1)
elements of order 3 in G. Therefore, the elements of order 3 of G fix
exactly 2™(2™ + 1}(2" — 1)(2™ — 4)/18 distinct 7-subsets of X. So we have

70( 2n; : )Nvo/( ; ) = 27(2" +1)(2" - 1)(2" - 4)/18, and hence

2'-4
Nqgg = &4

Lemma 4.3 The number of orbits O, of 7-subsets is

T+——(’%‘)ﬂ n=0 (mod 12);
T4+ 02220 =210 (mod 12);
0.1 T+ %’" n=3,9 (mod 12);
! T+1 .qgo_wr n=6 (mod 12);
T+42=18 n=4,8 (mod12);
T, n=1,5711 (mod 12).
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n—1 n=—2 n n_
whereT~(2 ~1)(2 1)6(3(3 —3)(2 5)+105

proof. Let x7(g) denote the number of 7-subsets of X fixed by element g.
Then by lemma 2.5, x7(g) # 0, only when g € {1,2,3,5,7}. Therefore, by
Cauchy-Frobenius-Burnside lemma, we have

Or = |GIZX7(g | | Z x7(9)

9€G 9€G,|9]=1,2,3,5,7

Clearly,
2" + 1
> xilg) = =
lgl=1
an(antl —1)(2n-t - 1)(272% - 1)(2" - 3)(2" - 5)
630

and

2n-1 ) |G| _ 2r@r Tt —(en? - 1)(2ntt — 1)
15;2 x7(g ( ) on 6 .

Also by lemma 2.5, we can get

2(22 )4_ @ -aa]

E_:S X7(9) =9 Whenn =0, 2,4,6,8,10 (mod 12)
9= 0, otherwise
and
Y xilg) = { L. 29 — 28 whenn=2,6,10 (mod 12)
e otherwise
and
whenn =0,3,6,9 (mod 12)
“;7 x7(g) = { otherwise

So the results hold.

Lemma 4.4

w_m n=0 (mod 12)
=1 n—
Nigs = { @izerion n=1,2,5,7,10,11 (mod 12) .
n—1 -2
MM‘I, n=3,4,6,8,9 (mod 12)
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M- %Eﬁ n=0 (mod 12);
M-12A20 5 =210 (mod 12);
Noto = M+t 180 n=3,9 (mod12);
WY M- ﬂéi“-:‘-g n=6 (mod12);
M- 1024286 5 =48 (mod 12);
M n=1,57,11 (mod 12).

where M =

r-l-1(en-2-1)((2"-3)(2"-5)~105
630 ’

Proof. By Lemma 3.3 and Lemma 4.1, any orbit of 7-subsets of X is a
3 —(2" +1,7,)) design, where X € {15,21, 70,105,210}. So we have

15Ny + 21 N3y + T0Nro + 105N 105 + 210Ny10 = ( 2 n 2 ) )

On the other hand, we also have
Nis + N3y + N7o + Nigs + Najo = O7 (4)

So by Lemma. 4.1-4.3 and equation (3) and (4), we can get the results easily.

5 The proof of the main theorem

Let D be a simple 3-(2™ + 1,7, ) design admitting G as an automorphism
group. It is well known that a simple 3-(2" +1, 7, A) design admits G as an
automorphism group if and only if its block set is the union of orbits of G
on the set of 7-subsets. By Lemmad.1-4.4, we find that in each orbit of G on
the set of 7-subsets the possible numbers of blocks incident with {0, 1, oo}
are 15, 21, 70, 105, 210. So A = 15z; + 21z + 70z3 + 105z4 + 210zs,
0< 21,72 <1,0 < 23 < Nyp,0 < 74 < Nyos, 0 £ 75 < Nago. This proves
the necessity.

Conversely, by Lemmas 4.1-4.4, there exist non-negative integers 0 <
21,72 £ 1,0 < 3 < N7, 0 < x4 < Nyos,0 < 25 < Najo. such that

A = 15x; + 21z + 70z3 + 1054 + 210z5.

We take x; orbits of length |G|/14,z2 orbits of length |G|/10, z3 orbits
of length |G|/3, z4 orbits of length |G|/2 and x5 orbits of length |G|, then
this gives a simple 3-(2" +1,7, A) design admitting G as an automorphism
group. This proves the sufficiency.
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