Super 3-restricted edge connectivity of triangle-free graphs Litao Guo ^{1,2*} Xiaofeng Guo ² 1 School of Applied Mathematics, Xiamen University of Technology, Xiamen Fujian 361024, P.R.China 2 School of Mathematical Sciences, Xiamen University, Xiamen Fujian 361005, P.R.China Abstract: Let G = (V, E) be a connected graph. An edge set $S \subset E$ is a k-restricted edge cut, if G - S is disconnected and every component of G - S has at least k vertices. The k-restricted edge connectivity $\lambda_k(G)$ of G is the cardinality of a minimum k-restricted edge cut of G. A graph G is λ_k -connected, if k-restricted edge cuts exist. A graph G is called λ_k -optimal, if $\lambda_k(G) = \xi_k(G)$, where $$\xi_k(G) = \min\{|[X,Y]| : X \subset V, |X| = k \text{ and } G[X] \text{ is connected}\};$$ G[X] is the subgraph of G induced by the vertex subset $X \subseteq V$, and $Y = V \setminus X$ is the complement of X; [X,Y] is the set of edges with one end in X and the other in Y. G is said to be super- λ_k , if each minimum k-restricted edge cut isolates a ^{*}Corresponding author. E-mail address: ltguo2012@126.com (L.Guo) connected subgraph of order k. In this paper, we give some sufficient conditions for triangle-free graphs to be super- λ_3 . **Key words:** Edge connectivity; 3-Restricted edge connectivity; Triangle-free; Degree sequence; Fault tolerance #### 1 Introduction We only consider undirected simple connected graphs. Unless stated otherwise, we follow Bondy and Murty [1] for terminology and definitions. Let G = (V, E) be a connected graph. We define the order of G by n(G) = |V| and the size by m(G) = |E|. The vertex degree d(v) of a vertex $v \in V$ of a graph G is the number of vertices adjacent to v, $\delta(G)$ is the minimum degree of G. The degree sequence of a graph G is defined as the non-increasing sequence of the degrees of the vertices of G. For a vertex $v \in V$, N(v) is the set of all vertices adjacent to v. More generally for $S \subset V$, $N_G(S) = \{x \mid x \in V \setminus S, x \text{ is adjacent to a vertex in } S\}$ denotes the neighbor set of S in G. We denote the diameter of G by d(G), and write G - v for $G - \{v\}$. A network can be conveniently modelled as a graph G. A classic measure of the fault tolerance of a network is the edge-connectivity $\lambda(G)$. In general, the larger $\lambda(G)$ is, the more reliable the network is. It is known that $\lambda(G) \leq \delta(G)$. If G satisfies $\lambda(G) = \delta(G)$, then it is said to be maximally edge connected, or λ -optimal for simplicity. In the definitions of $\lambda(G)$, no restrictions are imposed on the components of G-S, where S is an edge cut. To compensate for this shortcoming, it would seem natural to generalize the no- tion of the classical connectivity by imposing some conditions or restrictions on the components of G-S. Hence, k-restricted edge connectivity were proposed [3]. An edge set $S \subset E$ is said to be a k-restricted edge cut, if G-S is disconnected and every component of G-S has at least k vertices. The k-restricted edge connectivity $\lambda_k(G)$ of G is the cardinality of a minimum k-restricted edge cut of G. If S is a k-restricted edge cut and $|S| = \lambda_k(G)$, then we call S a λ_k -cut. Not all graphs have k-restricted edge cuts. A connected graph G is called λ_k -connected, if it has a k-restricted edge cut. If S is a λ_k -cut, then G-S has only two connected components. We can see that if G is λ_k -connected ($k \geq 2$), then it is also λ_{k-1} -connected and $\lambda_{k-1}(G) \leq \lambda_k(G)$. It seems that the larger $\lambda_k(G)$ is, the more reliable the network is [5, 6, 10]. So, we expect $\lambda_k(G)$ to be as large as possible. Let $$\xi_k(G) = min\{|[X,Y]| : X \subseteq V, |X| = k, G[X] \text{ is connected}\},$$ where [X,Y] the set of edges of G with one end in X and the other in Y and Y=V-X. It has been shown that $\lambda_k(G) \leq \xi_k(G)$ holds for many graphs [7, 11]. G is said to be λ_k -optimal, if $\lambda_k(G) = \xi_k(G)$. Furthermore, G is called super k-restricted edge connected or super- λ_k , if every λ_k -cut of G isolates one connected subgraph of order k, that is, every λ_k -cut is a set of edges adjacent to a certain connected subgraph of order k. Clearly, $\lambda_1 = \lambda$, $\lambda_2 = \lambda'$, $\xi_1 = \delta$ and $\xi_2 = \xi$ is the minimum edge degree. If G is super- λ_k , then it is λ_k -optimal. However, the converse is not true. The cycle of length $n \geq 2k+2$ is a counterexample. Esfahanian and Hakimi proved the existence of 2-restricted edge cuts and upper bound for the 2-restricted edge connectiv- ity: **Theorem 1.1.** [2] For any connected graph G with at least four vertices which is not isomorphic to the star $K_{1,n-1}$, $\lambda'(G)$ is well defined. Furthermore, $\lambda'(G) \leq \xi(G)$. For $\lambda_3(G)$, It has been shown by Meng et al. that **Theorem 1.2.** (Meng, Ji [5]) If G is a λ_3 -connected graph, then $\lambda_3(G) \leq \xi_3(G)$. If a graph G is triangle-free, then a connected subgraph of G with three vertices is a path xyz of length two. Thus, $$\xi_3(G) = \min\{d(x) + d(y) + d(z) - 4 : xyz \text{ is a path of length two in } G\}.$$ In this paper, we give some sufficient conditions for graphs to be super- λ_3 . ## 2 Sufficient conditions for graphs to be super- λ_3 We start this section with the following lemma. **Lemma 2.1.** [8] Let G be a λ_3 -connected graph. G is super- λ_3 if and only if G is not λ_4 -connected, or G is λ_4 -connected and $\lambda_4(G) > \xi_3(G)$. **Lemma 2.2.** Let G be a λ_4 -connected triangle-free graph. If there is a λ_4 -cut S = [X, Y] with the vertex sets X and Y of the two components of G - S such that there exists a path xyz in G[X] with the property that $$\begin{split} |[X\backslash\{x,y,z\},Y]| &> |(N(x)\cap X)\backslash N(z)| + |(N(z)\cap X)\backslash N(x)| + \\ &2|(N(x)\cap N(z)\cap X)\backslash\{y\}| + \\ &|(N(y)\cap X)\backslash\{x,z\}|, \end{split}$$ then G is super- λ_3 . *Proof.* Suppose G is not super- λ_3 . The hypotheses imply $$\lambda_4(G) = |[X,Y]| = |[\{x,y,z\},Y]| + |[X \setminus \{x,y,z\},Y]|$$ $$> |[\{x,y,z\},Y]| + |(N(y) \cap X) \setminus \{x,z\}| +$$ $$|(N(x) \cap X) \setminus N(z)| + |(N(z) \cap X) \setminus N(x)| +$$ $$2|(N(x) \cap N(z) \cap X) \setminus \{y\}|$$ $$= |(N(x) \cap X) \setminus \{y\}| + |N(x) \cap Y| +$$ $$|(N(y) \cap X) \setminus \{x,z\}| + |N(y) \cap Y| +$$ $$|(N(z) \cap X) \setminus \{y\}| + |N(z) \cap Y|$$ $$= |N(x) \setminus \{y\}| + |N(y) \setminus \{x,z\}| + |N(z) \setminus \{y\}|$$ $$= d(x) + d(y) + d(z) - 4 \ge \xi_3(G)$$ By Lemma 2.1, we deduce a contradiction, and thus G is super- λ_3 . Corollary 2.3. Let G be a λ_4 -connected triangle-free graph. If there is a λ_4 -cut S with the vertex sets X and Y of the two components of G-S with the property that each vertex in $[(N(x)\cap X)\setminus\{y\}]\cup[(N(y)\cap X)\setminus\{x,z\}]\cup[(N(z)\cap X)\setminus\{y\}](\neq\varnothing)$ has at least two neighbor in Y, then G is super- λ_3 . Corollary 2.4. Let G be a λ_4 -connected triangle-free graph. If there is a λ_4 -cut S with the vertex sets X and Y of the two components of G - S such that each vertex in X has at least three neighbors in Y, then G is super- λ_3 . Let G be a λ_3 -connected triangle-free graph and let S = [X, Y] be an arbitrary λ_3 -cut, where X and Y are the vertex sets of the two components of G - S. We assume that S(x) is the number of edges of S incident to x. Set $X_i = \{x : x \in X, S(x) = i\}, i = 0, 1, 2; X_3 = \{x : x \in X, S(x) \geq 3\}, \text{ and } Y_i = \{x : x \in Y, S(x) = i\}, i = 0, 1, 2; Y_3 = \{x : x \in Y, S(x) \geq 3\}.$ We will study the property of X and Y. By symmetry, we will consider X. **Lemma 2.5.** If $|X| \ge 4$, then there is a vertex $x \in X$ such that $S(x) \le 3$. *Proof.* Suppose that for any $x \in X$, $S(x) \ge 4$. Take a path xyz in G[X], we have $$\xi_{3}(G) \leq d(x) + d(y) + d(z) - 4$$ $$= S(x) + S(y) + S(z) + |N_{X}(x) \setminus \{y\}| + |N_{X}(y) \setminus \{x, z\}|$$ $$+ |N_{X}(z) \setminus \{y\}|$$ $$\leq S(x) + S(y) + S(z) +$$ $$3|N_{X}(x) \cup N_{X}(y) \cup N_{X}(z) \setminus \{x, y, z\}|$$ $$\leq S(x) + S(y) + S(z) + 3|X \setminus \{x, y, z\}|$$ $$< S(x) + S(y) + S(z) + 4|X \setminus \{x, y, z\}|$$ $$\leq S(x) + S(y) + S(z) + \sum_{u \in X \setminus \{x, y, z\}} S(u) = |S| = \lambda_{3}(G),$$ which is a contradiction. **Lemma 2.6.** If $|X| \ge 4$ and $X_i = \emptyset$, i = 0, 1, 2, then for any $x \in X$, S(x) = 3. Proof. Since $X_i = \emptyset$, i = 0, 1, 2, for any $x \in X$, $S(x) \geq 3$. Assume that there is a vertex $u \in X$ with $S(u) \geq 4$. We claim that there is a path xyz in G[X] such that $x \neq u, y \neq u, z \neq u$. If not, because G[X] is connected, we have G[X] is a star or is isomorphic to the following graph Fig. 1 The isomorphic graph of G[X] If G[X] is a star, and $|X| \ge 4$, then there is a vertex $x \in X - u$ and G[X - x] is connected, $V(G[X - x]) \ge 3$. Because $S(x) \ne 0$ and $G[Y \cup \{x\}]$ is connected. Hence $S' = [X - x, Y \cup \{x\}]$ is a 3-restricted edge cut with $|S'| = |S| - S(x) + 1 \le |S| - 3 + 1 = |S| - 2$, contradicting to the minimum of S. If G[X] is is isomorphic to Fig.1, then G has a triangle, a contradiction. Hence there is a path xyz in G[X] such that $x \neq u, y \neq u, z \neq u$. We have $$\xi_{3}(G) \leq d(x) + d(y) + d(z) - 4$$ $$= S(x) + S(y) + S(z) + |N_{X}(x) \setminus \{y\}| + |N_{X}(y) \setminus \{x, z\}|$$ $$+ |N_{X}(z) \setminus \{y\}|$$ $$\leq S(x) + S(y) + S(z) +$$ $$3|N_{X}(x) \cup N_{X}(y) \cup N_{X}(z) \setminus \{x, y, z\}|$$ $$\leq S(x) + S(y) + S(z) + 3|X \setminus \{x, y, z\}|$$ $$< S(x) + S(y) + S(z) + \sum_{v \in X \setminus \{x,y,z\}} S(v) \quad (S(u) \ge 4)$$ = $|S| = \lambda_3(G)$, which is a contradiction. **Lemma 2.7.** If $|X|, |Y| \ge 4$ and $|N(u) \cap N(v)| \ge 4$ for all pairs u, v of nonadjacent vertices, then $X_0, Y_0 = \emptyset$. Proof. Since $|N(u) \cap N(v)| \ge 4$ for all pairs u, v of nonadjacent vertices, $d(G) \le 2$. So $X_0 = \emptyset$ or $Y_0 = \emptyset$, assume $X_0 = \emptyset$. Take a vertex $y \in Y_0$. If $X_1 \ne \emptyset$, then $|N(x) \cap N(y)| \le 1$ for some $x \in X_1$. Hence $X_1 = \emptyset$. Similarly, $X_2 = \emptyset$. By Lemma 2.6 for any $x \in X$, S(x) = 3. Then $|N(x) \cap N(y)| \le 3$ for any $x \in X$, which is a contradiction. **Lemma 2.8.** [4] Let G be a λ_3 -connected triangle-free graph. If $|N(u) \cap N(v)| \geq 3$ for all pairs u, v of nonadjacent vertices, then G is λ_3 -optimal. **Theorem 2.9.** Let G be a λ_3 -connected triangle-free graph. If $|N(u) \cap N(v)| \geq 4$ for all pairs u, v of nonadjacent vertices, then G is super- λ_3 . *Proof.* By Lemma 2.8 G is λ_3 -optimal. Suppose that G is not super- λ_3 . Let S = [X, Y] be an arbitrary λ_3 -cut and $|X|, |Y| \ge 4$. By Lemma 2.7, $X_0, Y_0 = \emptyset$. Case 1. $X_1, Y_1 \neq \emptyset$. Let $x \in X_1, y \in Y_1$, then S(x) = S(y) = 1, that is $|N(x) \cap N(y)| \le 2$. Hence we can get $xy \in E(G)$ and $X_1 = \{x\}, Y_1 = \{y\}$. For any $u \in X - x$, $|N(u) \cap Y| \ge 2$. Take a path xuv in G[X]. We have $$\xi_{3}(G) \leq d(x) + d(u) + d(v) - 4$$ $$= |N(x) \setminus \{u\}| + |N(u) \setminus \{x, v\}| + |N(v) \setminus \{u\}|$$ $$= |(N(x) \cap X) \setminus \{u\}| + |N(x) \cap Y| + |(N(u) \cap X) \setminus \{x, v\}|$$ $$+|N(u) \cap Y| + |(N(v) \cap X) \setminus \{u\}| + |N(v) \cap Y|$$ $$= |[\{x, u, v\}, Y]| + |(N(u) \cap X) \setminus \{x, v\}| +$$ $$|(N(x) \cap X) \setminus N(v)| + |(N(v) \cap X) \setminus N(x)| +$$ $$2|(N(x) \cap N(v) \cap X) \setminus \{u\}|$$ $$\leq |[\{x, u, v\}, Y]| + |[X \setminus \{x, u, v\}, Y]|$$ $$= |[X, Y]| = \lambda_{3}(G).$$ Since $\xi_3(G) = \lambda_3(G)$, we have $[(N(x) \cap X) \setminus N(v)] \cup [(N(u) \cap X) \setminus \{x,v\}] \cup [(N(v) \cap X) \setminus N(x)] = \emptyset$, then we can get $N(x) \cap X = N(v) \cap X$, $N(u) \cap X = \{x,v\}$ and $X = (N(x) \cup N(u) \cup N(v)) \cap X$. For any $w \in N(x) \cap X$, $wy \in E$, then $|N(w) \cap N(y)| \geq 3$, that is $|N(w) \cap Y| \geq 3$. Hence $$|[X \setminus \{x, u, v\}, Y]| \geq 3|(N(x) \cap N(v) \cap X) \setminus \{u\}|$$ $$> 2|(N(x) \cap N(v) \cap X) \setminus \{u\}|.$$ By Lemma 2.2, G is super- λ_3 , a contradiction. Case 2. X_1 or $Y_1 = \emptyset$. Set $Y_1 = \emptyset$. Let $u \in X_1$ and $N(u) \cap Y = \{x\}$. Choose a path xyz in G[Y]. It is analogous to Case 1, we can get G is super- λ_3 , which is a contradiction. Case 3. $X_1 = Y_1 = \emptyset$. If $X_2 \neq \emptyset$, then take $u \in X_2, N(u) \cap Y = \{x, x'\}$. Choose a path xyz in G[Y]. It is analogous to Case 1, we can get $N(x) \cap Y = N(z) \cap Y, N(y) \cap X = \{x, z\}$ and $Y = (N(x) \cup X) \cap Y$ $N(y) \cup N(z) \cap Y$. Hence $x' \in N(x)$ and uxx' is a K_3 , which is a contradiction again. Hence $X_2 = \emptyset$, by Corollary 2.4 G is super- λ_3 , again a contradiction. Using Turán's bound $2m(G) \leq \frac{n(G)^2}{2}$ for triangle-free graphs G [9], we obtain the following theorem. **Theorem 2.10.** Let G be a λ_3 -connected triangle-free graph of order $n \geq 6$ and degree sequence $d_1 \geq d_2 \geq \ldots \geq d_n = \delta$. If $$\sum_{i=1}^{\max\{1,\delta-4\}} d_{n-i} \geq \max\{1,\delta-4\} \frac{1}{2} \left(\left\lfloor \frac{n}{2} \right\rfloor + 3 - \frac{2}{n-5} \right) + 1,$$ then G is super- λ_3 . Proof. If G is not λ_4 -connected, then we are done. Assume that G is λ_4 -connected. Let S = [X,Y] be an arbitrary λ_4 -cut. Assume, without loss of generality that $|X| \leq |Y|$, then $|X| \leq \lfloor n/2 \rfloor$ and $|X|, |Y| \geq 4$. If $|X| \leq \delta - 2$, then every vertex in X has at least three neighbors in Y, Corollary 2.4 leads to the desired result in this case. For $|X| \geq \delta - 1$, let $x \in X$ such that $d(x) = \min\{d(u) : u \in X\}$. Choose a path xyz in G[X], using Turán's bound and the inequality $\max\{1, \delta - 4\} \leq |X| - 3$, the hypothesis yields $$\begin{split} |[X,Y]| & \geq \sum_{u \in X} d(u) - \frac{|X|^2}{2} \\ & = d(x) + d(y) + d(z) - 4 + 4 + \sum_{u \in X \setminus \{x,y,z\}} d(u) - \frac{|X|^2}{2} \\ & \geq \xi_3(G) + 4 + \sum_{i=1}^{max\{1,\delta-4\}} d_{n-i} + \sum_{i=max\{2,\delta-3\}}^{|X|-3} d_{n-i} - \end{split}$$ $$\frac{(|X|+3)(|X|-3)}{2} - \frac{9}{2}$$ $$\geq \xi_3(G) - \frac{1}{2} + \frac{1}{2}(|X|-3)(\lfloor \frac{n}{2} \rfloor + 3 - \frac{2}{n-5} - |X|-3) + 1$$ $$\geq \xi_3(G) - (\frac{1}{2} + \frac{|X|-3}{n-5}) + 1.$$ Since $\lambda_4(G)$ and $\xi_3(G)$ are integers and 1/2 + (|X|-3)/(n-5) < 1, it follows that $\lambda_4(G) \ge \xi_3(G) + 1$. By Lemma 2.1 G is super- λ_3 . **Theorem 2.11.** Let G be triangle-free graph of order $n \ge 10$. If $d(x) + d(y) \ge n - 1$ for all nonadjacent vertices x, y in G, then G is super- λ_3 . Proof. If there is a vertex v with d(v)=1, then let N(v)=u. For any $w\in V\setminus\{u,v\}$, w is not adjacent to v and $d(w)\geq n-2$. Hence G contains a clique of order n-2>3, contradicting G is triangle-free. Then $\delta(G)\geq 2$. Suppose G is not super- λ_3 . Let S=[X,Y] be an λ_3 -cut with $|X|,|Y|\geq 4$. If for any $x\in X, S(x)\geq 1$, then we say S saturates X. The hypotheses imply $d(G)\leq 2$. Claim 1. S saturates X or Y. If not, there are $x \in X, y \in Y$ such that S(x) = 0, S(y) = 0. Hence $d(G) \ge 3$, a contradiction. Let S saturate X. Claim 2. There is a vertex $x \in X$ such that S(x) = 1. Otherwise, for any $u \in X$ such that $S(u) \geq 2$. Take a path xyz in G[X], then $X - \{x, y, z\} \neq \emptyset$. $$\xi_{3}(G) \leq d(x) + d(y) + d(z) - 4$$ $$= S(x) + S(y) + S(z) + |N_{X}(x) \setminus N_{X}(z)| + |N_{X}(y) \setminus \{x, z\}| + |N_{X}(z) \setminus N_{X}(x)| + 2|N_{X}(z) \cap N_{X}(x) - y|.$$ If $(N_X(x)\backslash N_X(z))\cup (N_X(y)\backslash \{x,z\})\cup (N_X(z)\backslash N_X(x))\neq\emptyset$, then $$\xi_3(G) < S(x) + S(y) + S(z) + \sum_{v \in X \setminus \{x,y,z\}} S(v)$$ $$= |S| = \lambda_3(G),$$ which is a contradiction. If $(N_X(x)\backslash N_X(z)) \cup (N_X(y)\backslash \{x,z\}) \cup (N_X(z)\backslash N_X(x)) = \emptyset$, then $$\xi_{3}(G) \leq S(x) + S(y) + S(z) + 2|N_{X}(z) \cap N_{X}(x) - y|$$ $$\leq S(x) + S(y) + S(z) + \sum_{v \in X \setminus \{x, y, z\}} S(v)$$ $$= |S| = \lambda_{3}(G).$$ Hence each vertex of $X - \{x, y, z\}$ has two neighbors in Y and $X = N_X(x) \cup N_X(y) \cup N_X(z)$. Take $u \in N_X(z) \cap N_X(x) - y$, for the path yxu, we use the similar methods as above. We can get z also has two neighbors in Y. Similarly, x and y have two neighbors in Y, respectively. Hence $d(y) + d(u) \le 4 + 4 < n - 1$, a contradiction. Claim 3. S saturates Y. If not, there is $y \in Y$ such that S(y) = 0. And y is not adjacent to x of the vertex in Claim 2. Then $n-1 \le d(x) + d(y) \le (|X|-1) + 1 + (|Y|-1) \le n-1$, that is x is adjacent to each vertex of X and y is adjacent to each vertex of Y. Let $y_1 = N(x) \cap Y$, then $d(y_1) = 2$. Take $x_1 \in X - x$, then x_1 is not adjacent to y_1, y and each vertex of X - x. Hence we have $d(x_1) + d(y_1) \le (n-4) + 2 \le n-2$, a contradiction. Claim 4. There is a vertex $y \in Y$ such that S(y) = 1. The proof is similar to Claim 2. Claim 5. The vertex x in Claim 2 is adjacent to the vertex y in Claim 4. Otherwise, $n-1 \le d(x)+d(y) \le (|X|-1)+1+(|Y|-1)+1 \le n$, we have d(x)+d(y)=n or d(x)+d(y)=n-1. If d(x) + d(y) = n, then x is adjacent to each vertex of X and y is adjacent to each vertex of Y. Let $y_1 = N(x) \cap Y$, $x_1 = N(y) \cap X$, then $d(y_1) = d(x_1) = 2$. Hence we have $d(x_1) + d(y_1) = 4 < n - 1$, a contradiction. If d(x)+d(y)=n-1, then d(x)=(|X|-1)+1, d(y)=(|Y|-2)+1 or d(x)=(|X|-2)+1, d(y)=(|Y|-1)+1. Without loss of generality, let d(x)=(|X|-1)+1, d(y)=(|Y|-2)+1. Hence x is adjacent to each vertex of X and y is adjacent to each vertex of Y-u for some u. If $u=y_1$, then $x_1y_1\overline{\in}E$ and $d(x_1)=2$. We have $d(y_1)+d(x_1)\leq 2+(|Y|-2)+1\leq n-|X|+1\leq n-3$, a contradiction. If $u\neq y_1$ and $x_1y_1\overline{\in}E$, then $d(x_1)\leq 3, d(y_1)\leq 3$. We have $d(y_1)+d(x_1)\leq 6< n-1$, a contradiction. Claim 6. There is only one $x \in X$ such that S(x) = 1. Otherwise, there is a vertex $x'(\neq x) \in X$ such that S(x') = 1. Then x' is adjacent to y of the vertex in Claim 4, that is $S(y) \geq 2$, a contradiction. Hence for any $u \in X - x$, $S(u) \geq 2$. Choose a path xyz in G[X], and $X \setminus \{x, y, z\} \neq \emptyset$. it is similar to Claim 2, we can get a contradiction. **Remark**. The bound is sharp. Let $H=Q_3,x,y$ be two vertices, and G be the union of H and x,y. $V(G)=V(Q_3)\cup\{x,y\}$, $E(G)=E(Q_3)\cup\{x(011),x(110),x(000),x(101)\}\cup\{y(100),y(001),y(010),y(111)\}$. For all nonadjacent vertices $u,v,d(u)+d(v)\geq 8$ but G is not super- λ_3 . G is the following graph. Fig. 2 The counterexample G ### Acknowledgements The project is supported by NSFC (No. 11301440, 11171279), Xiamen University of Technology (NO. YKJ12030R), the Foundation to the Educational Committee of Fujian (JA13240, JA13025, JA13034), the Natural Science Foundation of Fujian Province (2013J05006). We would like to thank the referees for kind help and valuable suggestions. ### References - [1] J.A. Bondy, U.S.R. Murty, Graph theory and its application, Academic Press, 1976. - [2] A. Esfahanian, S. Hakimi, On computing a conditional edge connectivity of a graph, Inform. Process.Lett 27 (1988) 195-199. - [3] J. Fbrega, M.A. Fiol, On the extraconnectivity of graphs, Discrete Mathematics 155 (1996) 49C57. - [4] L. Guo, J. Meng, Sufficient Conditions for λ_3 -Optimality of Triangle-Free Graphs, OR Transactions 12 (2008) 25-31. - [5] J.X. Meng, Y.H. Ji, On a kind of restricted edge connectivity of graphs, Discrete Applied Math. 117 (2002) 183-193. - [6] J.X. Meng, Optimally super-edge-connected transitive graphs, Discrete Math. 260 (2003) 239C248. - [7] J.P. Ou, Edge cuts leaving components of order at least m, Discrete Math. 305 (2005) 365C371. - [8] L. Shang, The high order restricted edge-connectivity of graphs, Ph.D. Thesis, Lanzhou University, 2008. - [9] P. Turán, An extremal problem in graph theory, Mat-Fiz. Lapok 48 (1941) 436-452. - [10] M. Wang, Q. Li, Conditional edge connectivity properties, reliability comparison and transitivity of graphs, Discrete Math. 258 (2002) 205C214. - [11] Z. Zhang, J.J. Yuan, Degree conditions for retricted edge connectivity and isoperimetric-edge-connectivity to be optimal, Discrete Math. 307 (2007) 293-298.