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Abstract: Let G = (V,E) be a connected graph. An edge
set S C E is a k-restricted edge cut, if G — S is disconnected
and every component of G — S has at least k vertices. The k-
restricted edge connectivity Ax(G) of G is the cardinality of a
minimum k-restricted edge cut of G. A graph G is A-connected,
if k-restricted edge cuts exist. A graph G is called Ai-optimal,
if Ae(G) = &(G), where

£(G) = min{|[X,Y]]: X C V,|X| =k and G[X] is
connected};

G|[X] is the subgraph of G induced by the vertex subset X C V,
and Y = V\X is the complement of X; [X,Y] is the set of
edges with one end in X and the other in Y. G is said to
be super-JXg, if each minimum k-restricted edge cut isolates a
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connected subgraph of order k. In this paper, we give some
sufficient conditions for triangle-free graphs to be super-As.
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1 Introduction

We only consider undirected simple connected graphs. Unless
stated otherwise, we follow Bondy and Murty [1} for terminology
and definitions.

Let G = (V, E) be a connected graph. We define the order of
G by n(G) = |V| and the size by m(G) = | E|. The vertex degree
d(v) of a vertex v € V of a graph G is the number of ver-
tices adjacent to v, 6(G) is the minimum degree of G. The
degree sequence of a graph G is defined as the non-increasing
sequence of the degrees of the vertices of G. For a vertex v e V,
N(v) is the set of all vertices adjacent to v. More generally for
SCV,Ng(S)={z|ze€V\S, zis adjacent to a vertex in S}
denotes the neighbor set of S in G. We denote the diameter of
G by d(G), and write G — v for G — {v}.

A network can be conveniently modelled as a graph G. A
classic measure of the fault tolerance of a network is the edge-
connectivity A(G). In general, the larger A(G) is, the more reli-
able the network is. It is known that A(G) < §(G). If G satisfies
MG) = 6(G), then it is said to be mazimally edge connected,
or A-optimal for simplicity.

In the definitions of A(G), no restrictions are imposed on the
components of G — S, where S is an edge cut. To compensate
for this shortcoming, it would seem natural to generalize the no-
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tion of the classical connectivity by imposing some conditions
or restrictions on the components of G — S. Hence, k-restricted
edge connectivity were proposed [3]. An edge set S C E is
said to be a k-restricted edge cut, if G — S is disconnected
and every component of G — S has at least k vertices. The
k-restricted edge connectivity Ae(G) of G is the cardinality of a
minimum k-restricted edge cut of G. If S is a k-restricted edge
cut and |S| = Ax(G), then we call S a A-cut. Not all graphs
have k-restricted edge cuts. A connected graph G is called Ax-
connected, if it has a k-restricted edge cut. If S is a Ax-cut, then
G — S has only two connected components. We can see that if
G is Ai-connected (k > 2), then it is also A\;x_;-connected and
Me-1(G) £ M(G). It seems that the larger A\i(G) is, the more
reliable the network is [5, 6, 10]. So, we expect A\x(G) to be as
large as possible. Let

&(G) = min{|[X,Y]] : X C V,|X| = k,G[X] is connected},

where [X,Y] the set of edges of G with one end in X and
the other in ¥ and Y = V — X. It has been shown that
M(G) < &(G) holds for many graphs [7, 11]. G is said to be
Ax-optimal, if A\(G) = &(G). Furthermore, G is called super
k-restricted edge connected or super-)y, if every Ap-cut of G
isolates one connected subgraph of order k, that is, every Ai-cut
is a set of edges adjacent to a certain connected subgraph of
order k. Clearly, \y = A\, Ao = XN, £ = § and & = € is the
minimum edge degree. If G is super-), then it is Ai-optimal.
However, the converse is not true. The cycle of length n > 2k+2
is a counterexample.

Esfahanian and Hakimi proved the existence of 2-restricted
edge cuts and upper bound for the 2-restricted edge connectiv-
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ity:

Theorem 1.1. [2] For any connected graph G with at least four
vertices which is not isomorphic to the star Ky ,—1, N'(G) is well
defined. Furthermore, N(G) < &(G).

For A3(G), It has been shown by Meng et al. that

Theorem 1.2. (Meng, Ji [5]) If G is a A3-connected graph, then
A3(G) £ &(G).

If a graph G is triangle-free, then a connected subgraph of G
with three vertices is a path zyz of length two. Thus,

£3(G) = min{d(z) + d(y) + d(z) — 4 : zyz is a path of length
two in G}.

In this paper, we give some sufficient conditions for graphs to
be super-A;.

2 Sufficient conditions for graphs to
be super-);
We start this section with the following lemma.

Lemma 2.1. [8/ Let G be a A3-connected graph. G is super-As
if and only if G is not A\y-connected, or G is Ay-connected and

M(G) > 6(G).

Lemma 2.2. Let G be a )\s-connected triangle-free graph. If
there is a Aq-cut S = [X, Y| with the vertez sets X andY of the
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two components of G — S such that there exists a path Tyz in
G|X] with the property that
(X\{z,9, 2}, Y]l > [(N(z) N X)\N(2)| + |(N(z) N X)\N(z)| +
2|(N(z) N N(z) N X)\{y}| +
|(N(y) 0 X)\{z, 2},
then G is super-)s.
Proof. Suppose G is not super-A3. The hypotheses imply

MG) =X Y]] = |{=z9, 2}, Y] +[[X\{z,9,2}, Y]l

> |[{=,9, 2}, Y] + [(N(y) N X)\{z, 2}| +
[(N(z) N X\N(2)| + [(N(z) N X)\N(z)| +
2|(N(z) N N(z) n X)\{y}|

= |[(N@) N X\ {gH + [N(z)nY|+
|((N(y) N X)\{z, 2}/ + [N(y) NY| +
(N (2) N XO\{y}| +|N(z) NY]|

= [N@)\{y}H + IN)\{z, 2}| + [N()\{y}|

= d(z) +d(y) + d(2) — 4 > &(G)

By Lemma 2.1, we deduce a contradiction, and thus G is super-
As. a

Corollary 2.3. Let G be a M\;-connected triangle-free graph.
If there is a As-cut S with the verter sets X and Y of the
two components of G — S with the property that each vertezr in

(N (@) N XN\ {}HUI(N ()N X)\{z, 2} U[(N () N X)\{}](# 2)

has at least two neighbor in'Y, then G is super-As.

Corollary 2.4. Let G be a Ay-connected triangle-free graph. If
there is a Ag-cut S with the vertex sets X and Y of the two
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components of G — S such that each vertexr in X has at least
three neighbors in'Y, then G is super-As.

Let G be a A3-connected triangle-free graph and let S = [X, Y]
be an arbitrary As-cut, where X and Y are the vertex sets of the
two components of G — S. We assume that S(z) is the number
of edges of S incident to z. Set X; = {z: z € X,S(z) =¢},i =
0,1,2; Xs={z:z€ X,S()>3},andY;={z:2€Y,S(z) =
i},i =0,1,2; Y3 = {z: z € Y,S(z) > 3}. We will study the
property of X and Y. By symmetry, we will consider X.

Lemma 2.5. If | X| > 4, then there is a vertez x € X such that
S(z) < 3.

Proof. Suppose that for any z € X, S(z) > 4. Take a path zyz
in G[X], we have

&(G) < d(z) +d(y) +d(z) — 4
= S(z)+ S(y) + S(2) + INx(@)\{y} + INx(¥)\{z, 2}|
+Nx (2)\{y}
S(z) + S(y) + 8(z) +
3|Nx(z) U Nx(y) U Nx(2)\{z, 9, 2}|
S(z) + S(y) + S(z) + 3|X\{z,y, z}|
S(z) + S(y) + S(2) + 4|1 X\{z, y, 2}|
S

+5(
(@) +S@W) +S()+ D, S) =S| =x(G),
uveX\{z,y,z}

IA IN

IN A

which is a contradiction. O

Lemma 2.6. If |X| > 4 and X; = @,i =0, 1,2, then for any
ze X, S(z)=3.
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Proof. Since X; = @,i = 0,1,2, for any z € X, S(z) > 3.
Assume that there is a vertex u € X with S(u) > 4. We claim
that there is a path zyz in G[X] such that = # u,y # u, z # u.
If not, because G[X] is connected, we have G[X] is a star or is
isomorphic to the following graph

Fig. 1
The isomorphic graph of G[X]

If G[X] is a star, and | X| > 4, then there is a vertex z € X —~u
and G[X —z] is connected, V(G[X —z]) > 3. Because S(z) # 0
and G[Y U {z}] is connected. Hence ' = [X — z,Y U {z}] is a
3-restricted edge cut with || =|S| - S(z)+1<|S|-3+1=
|S| — 2, contradicting to the minimum of S.

If G[X] is is isomorphic to Fig.1, then G has a triangle, a
contradiction.

Hence there is a path zyz in G[X] such that z # u,y # u,z #
u. We have

&(G) < d(z)+d(y) +d(z) — 4
= S(z) + S(y) + S(2) + [Nx(@)\{g} + |Nx()\{z, 2}|
+|Nx(2)\{y}|
S(z) + S(y) + S(z) +
3|Nx(z) U Nx(y) U Nx(2)\{z,y, z}|
S(z) + S(y) + S(2) + 3| X\{z,y, 2}|

IA

INA
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< S@)+SW+S8()+ >, Sw) (Sk) =4)
veX\{z,y,2}
= |S]=X(G),

which is a contradiction. a

Lemma 2.7. If|X|,|Y| > 4 and |[N(u)NN(v)| > 4 for all pairs
u,v of nonadjacent vertices, then Xo, Yo = @.

Proof. Since |N(u) N N(v)| 2 4 for all pairs u, v of nonadjacent
vertices, d(G) < 2. So Xo = @ or Yy = &, assume Xy = .
Take a vertex y € Yy. If X; # &, then |[N(z) N N(y)| < 1 for
some z € X;. Hence X; = &. Similarly, X = @. By Lemma
2.6 for any z € X, S(z) = 3. Then |N(z) N N(y)| < 3 for any
z € X, which is a contradiction. O

Lemma 2.8. [/ Let G be a A3-connected triangle-free graph.
If IN(u) N N(v)| > 3 for all pairs u,v of nonadjacent vertices,
then G is A3-optimal.

Theorem 2.9. Let G be a A3-connected triangle-free graph. If
|N(u)NN(v)| > 4 for all pairs u,v of nonadjacent vertices, then
G is super-)3.

Proof. By Lemma 2.8 G is Az-optimal. Suppose that G is not
super-A;. Let S = [X,Y] be an arbitrary A3-cut and | X|,|Y| >
4. By Lemma 2.7, Xo, Yy = @.

Case 1. X,,Y1 #@.

Let z € X,y € Y1, then S(z) = S(y) = 1, that is |[N(z) N
N(y)| < 2. Hence we can get zy € E(G) and X, = {z},Y; =
{y}. For any u € X — z, [N(u) NY| > 2. Take a path zuv in



G|[X]. We have

&(G) d(z) + d(u) + d(v) — 4

|N(@)\{u}| + [N(w)\{z, v}| + [N()\{u}|

[(N(z) 0 X)\{u}| + [N(z) N Y|+ [(N(u) N X)\{z, v}|
+N@w) NY |+ [(N(w) N X)\{u}| + [N(v) Y]

{2, u, v}, Y] + [(N(u) N X)\{z,v}] +

I(N(z) N X)\N(w)| + [(N(v) N X)\N(z)| +

2|(N(z) N N(v) N X)\{u}|

[[{z, v, 0}, Y]| +|[[X\{z,v,v},Y]|

(X, Y]l = A(G).

o IA

IIA

Since £3(G) = A3(G), we have [(N(z) N X)\N(v)] U [(N(u) N
XN\ {z,v}JU[(N(@)NX)\N(z)] = @, then we can get N(z)NX =
N@)NX,Nu)NX = {z,v} and X = (N(z)UN(u)UN(v))NX.
For any w € N(z) N X, wy€F, then |N(w) N N(y)| > 3, that is
IN(w)NY| > 3. Hence

[X\{z,u,v}, Y]] = 3|(N(z)nN(w)nX)\{u}|
> 2|(N(z) N N(v) 0 X)\{u}].

By Lemma 2.2, G is super-\s3, a contradiction.

Case 2. XyorY) =@. Set Y] = 2.

Let u € X; and N(u)NY = {z}. Choose a path zyz in G[Y].
It is analogous to Case 1, we can get G is super-A3, which is a
contradiction.

Case 3. X, =Y, =0.

If Xy # &, then take u € X3, N(u) NY = {z,2'}. Choose
a path zyz in G[Y]. It is analogous to Case 1, we can get
NEz)nY = Nz)NY,Ny)NX = {z,z} and Y = (N(z) U
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N(y)UN(2))NY. Hence ' € N(z) and uzz’ is a K3, which is
a contradiction again.

Hence X, = @, by Corollary 2.4 G is super-)s, again a con-
tradiction. a

Using Turan’s bound 2m(G) < ﬂ%‘ﬁ for triangle-free graphs
G [9], we obtain the following theroem.

Theorem 2.10. Let G be a A3-connected triangle-free graph of
order n > 6 and degree sequence dy > do > ... > d, =06. If

maz{1,6—4} 9

Z dn—; 2 maz{1,6 - 4}5 {J+3———5)+1

then G is super-Az.

Proof. If G is not A\s-connected, then we are done. Assume
that G is A\s-connected. Let S = [X,Y] be an arbitrary As-
cut. Assume, without loss of generality that |X| < |Y|, then
|X| < [n/2] and | X|,]Y| > 4. If | X| < 6 — 2, then every vertex
in X has at least three neighbors in Y, Corollary 2.4 leads to
the desired result in this case. For |X| > 6 — 1, let x € X such
that d(z) = min{d(u) : u € X}. Choose a path zyz in G[X],
using Turdn’s bound and the inequality max{1,6—4} < | X|—
the hypothesis yields

X2
) > Y dw - 2F
ueX
X ?
= d(z)+d(y) +d(z) —4+4+ D du) - S-
ueX\{z,y,2}
max{1,6—4} 1X|-3
> &G)+4+ D doit Y duim
i=1 i=maz{2,6—3}
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(X{+3)(x1-3) 9

2 2
1 1 2

> 6(6) - 5+50X1-9)(|5]+3- =~ IX|-9) +1
1| X[ -

> &(0) -G+ 20 1

Since A\y(G) and &3(G) are integers and 1/2+ (|X|-3)/(n—5) <
1, it follows that A\y(G) > &(G) + 1. By Lemma 2.1 G is super-
As. O

Theorem 2.11. Let G be triangle-free graph of order n > 10.
If d(z) + d(y) > n — 1 for all nonadjacent vertices z,y in G,
then G is super-)s.

Proof. If there is a vertex v with d(v) = 1, then let N(v) = w.
For any w € V'\ {u, v}, w is not adjacent to v and d(w) > n—2.
Hence G contains a clique of order n — 2 > 3, contradicting
G is triangle-free. Then 6(G) > 2. Suppose G is not super-
A3. Let § = [X,Y] be an As-cut with |X|,|Y| > 4. If for any
z € X,S(z) > 1, then we say S saturates X. The hypotheses
imply d(G) < 2.

Claim 1. S saturates X or Y. If not, therearez € X,y €Y
such that S(z) = 0,S(y) = 0. Hence d(G) > 3, a contradiction.

Let S saturate X.

Claim 2. There is a vertex z € X such that S(z) = 1.
Otherwise, for any u € X such that S(u) > 2. Take a path zyz
in G[X], then X — {z,y,2} # @.

£(G) < d(z) +d(y) +d(z) — 4
= S5(z) + 5(y) + S(2) + [Nx(2)\Nx (2)| + [Nx (¥)\
{z, 2} + [Nx (2)\Nx(2)| + 2|Nx(z) N Nx(z) — y|.
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If (Nx (2)\Nx (2))U(Nx (¥)\{z, 2})U(Nx (2)\Nx(z)) # &, then

&(G) < S@+SW+S=)+ D, Sw)
veX\{z,y,2}

which is a contradiction.
If (Nx(z)\Nx(2)) U (Nx(y)\{z,2}) U (Nx(2)\Nx(z)) = 2,
then

S(z) + S(y) + S(2) + 2|Nx(2) N Nx(z) — y]
S(z) +S) + S+ >, S()

”GX\{Iayaz}

£3(G)

IN A

1S] = As(G).

Hence each vertex of X — {z,y, z} has two neighbors in Y and
X = Nx(z) U Nx(y) U Nx(z). Take u € Nx(z) N Nx(z) — v,
for the path yzu, we use the similar methods as above. We can
get z also has two neighbors in Y. Similarly, z and y have two
neighbors in Y, respectively. Hence d(y)+d(u) < 4+4<n-1,
a contradiction.

Claim 3. S saturates Y. If not, there is y € Y such that
S(y) = 0. And y is not adjacent to x of the vertex in Claim 2.
Thenn—-1<d(z)+dy) <(X|-1)+1+(Y|-1)<n-1,
that is z is adjacent to each vertex of X and y is adjacent to
each vertex of Y. Let y; = N(z)NY, then d(y;) = 2. Take
z; € X — z, then z; is not adjacent to y;,y and each vertex of
X — z. Hence we have d(z;) +d(y1) S (n—4)+2<n—-2,a
contradiction.

Claim 4. There is a vertex y € Y such that S(y) = 1. The
proof is similar to Claim 2.
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Claim 5. The vertex z in Claim 2 is adjacent to the vertex
y in Claim 4. Otherwise, n—1 < d(z)+d(y) < (| X|-1)+1+
(IY]-1)+1 < n, we have d(z) +d(y) = n or d(z) +d(y) = n—1.

If d(z) + d(y) = n, then z is adjacent to each vertex of X
and y is adjacent to each vertex of Y. Let y; = N(z)NY,z, =
N(y)nX, then d(y;) = d(z;) = 2. Hence we have d(z1)+d(y;) =
4 < n — 1, a contradiction.

If d(z) + d(y) = n — 1, then d(z) = (|X| - 1) + 1,d(y) =
(IY|-2)+1ord(z) = (JX|-2)+1,d(y) = (JY|-1)+1. Without
loss of generality, let d(z) = (| X| - 1)+ 1,d(y) = (Y| —-2) + 1.
Hence z is adjacent to each vertex of X and y is adjacent to each
vertex of Y —u for some u. If u = y;, then z,4,€F and d(z;) = 2.
We have d(y1)+d(z,) < 2+(|]Y|-2)+1 <n-|X|+1<n-3,a
contradiction. If u # y; and z,y,€FE, then d(z;) < 3,d(y1) < 3.
We have d(y;) + d(z1) < 6 < n — 1, a contradiction.

Claim 6. There is only one z € X such that S(z) = 1.
Otherwise, there is a vertex z/(# =) € X such that S(z') = 1.
Then z' is adjacent to y of the vertex in Claim 4, that is S(y) >
2, a contradiction. Hence for any u € X — z, S(u) > 2. Choose
a path zyz in G[X], and X \{z,y, 2} # @. it is similar to Claim
2, we can get a contradiction. a

Remark . The bound is sharp. Let H = Q3, z,y be two ver-
tices, and G be the union of H and z,y. V(G) = V(Q3)U{z,y},
E(G) = E(Q3)u{z(011), z(110), z(000), z(101) }u{y(100), y(001),
¥(010), y(111)}. For all nonadjacent vertices u, v, d(u)+d(v) > 8
but G is not super-A;. G is the following graph.
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Fig.2 The counterexample G
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