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Abstract An cdge set F is called a restricted edge-cut if G — F is
disconncected and contains no isolated vertices. The minimum cardinality
over all restricted edge-cuts is called restricted edge-connectivity of G, and
denoted by M(G). A graph G is called N-optimal if X(G) = £(G), where
£(G) = min{dg(u) + dg(v) — 2 : uwv € E(G)}. In this note, we obtain a
sufficient condition for a k(> 3)-regular connected graph with two orbits
to be M-optimal.
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1 Introduction

For graph-thcorctical terminology and notation not given here, we follow
Bondy [1}. We consider finite, undirected and simple connected graphs
with vertex set V(G) and edge set E(G). We use de(v) and 6(G) to denote
the degree of vertex v € V(G) and the minimum degree of G, respectively.
For X c V(G), we use G[X] to denote the subgraph induced by X. Let G,
and Gu be two graphs. The union G, UG: of G, and G, is the graph with
vertex set V(G )UV(Gy) and edge set E(G1)U E(G2). An edge set F of G
is called an edge-cut if G — F is disconnected. The edge-connectivity A(G)
of a graph G is the minimum cardinality over all edge-cuts of G. A graph G
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is called mazimally edge connected or simply maz-A if A(G) = 6(G), see [5]
for the details. Furthermore, we call a graph G is super edge connected or
simply super-A if G is max-A and every minimum edge-cut set of G isolates
onc vertex. For the studies of super-A graphs, we suggest readers to refer
to [5, 11].

Esfahanian and Hakimi [3] introduced the concept of restricted edge-
connectivity. The concept of restricted edge-connectivity is also one kind
of conditional edge-connectivity proposed by Harary in [4]. Call an edge
sct F' a restricted edge-cut of G if G — F is disconnected and contains no
isolated vertices. The minimum cardinality over all restricted edge-cuts is
the restricted edge-connectivity of G, denoted by A (G). Esfahanian in (3]
proved that if a connected graph G with |V(G)| = 4 is not a star K 1,
then M(G) exists and A(G) < N(G) < &(G), where §(G) = min{dg(u) +
dg(v)—2: uv € E(G)} is the minimum edge degree of G(for uv € E(G), we
call dg(u) +dg(v) — 2 the edge degree of uv). A graph G with X'(G) = £(G)
is called M-optimal. For the studies of X'-optimal graphs, see [8, 11, 15, 14]
for examples.

A graph G is said to be vertez transitive if for every two vertices u and
v of G, therc exists an automorphism g € Aut(G), such that g(u) = v.
For the studies of the connectedness of vertex transitive graphs, we suggest
readers to refer to [10, 12, 13]. Let € G, we call the set {z9 : g € Aut(G)}
an orbit of Aut(G). If no confusion, we directly call an orbit of Aut(G) an
orbit of G. Let W be a subgroup of the symmetric group over a set S. We
say that W acts transitively on a subset T of S if for any h,l € T, there
cxists a permutation ¢ € W with ¢(h) = . Clearly, the automorphism
group Aut(G) acts transitively on each orbit of G.

Let H be a connccted graph with vertex set {vy,v2, - ,vm}, d(v1) =
-oo=d(y) =k-1land d(vi41) = -+ = d(vi,) = k. The graph Gy(H) is con-
structed by taking two copies of H, H,, Hs, and placing edges {vijviz|vi €
V(Hy),vi2 € V(Hg),i = 1,2,---,1} between H; and Hj. Clearly, G2(H)
is a k-regular l-cdge-connected graph. In Fig. 1, we give seven graphs, and
they arc uscful in the rest of the paper. For i = 2,3,4,5, the connected
3-regular graph G, (N;) is constructed by taking n copies of N; and join
these N;'s by adding edges on the vertices of degree 2. For simplicity, only
G, (Ny) is shown in Fig. 2.

Mader [10] proved that the edge-connectivity of a vertex transitive graph
attains its regular degree. It is then natural to consider the relation between
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Figure. 1

Figure. 2
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the edge connectivity and the number of orbits. In [6], Liu and Meng
characterized the max-A 3-regular and 4-regular double-orbit graphs and
also reported a sufficient condition for k-regular double-orbit graphs to be
max-A, k > 4. In this note, we study the N-optimality of k-regular double-
orbit graphs in this note for & > 3.

2 Main results

We usc w(A) to denote the set of edges with exactly one end vertex in
A and the other end vertex in V\A. A restricted edge-cut F of G is called
a N-cut if |F| = M(G). 1t is easy to see that for any X'-cut F, G — F has
cxactly two connccted non-trivial components. Let A be a proper subset of
V(G). If w(A) is a M-cut of G, then A is called a restricted edge fragment
of G. or simply X-fragment of G. It is clear that if A is a restricted edge
fragment of G, then so is V' \ A. A restricted cdge fragment with the least
cardinality is called a restricted edge atom, or simply M-atom of G. By
the minimality of w(A), G[A] is connected. Note that M (G) < §(G), then
X(G) < &(G) if G is not XN-optimal.

J. Xu and K. Xu in [15] reported the following uscful lemma.

Lemma 2.1. If G is not X -optimal, then any two distinct N -atoms of G
are disjoint.

Let G be a k-regular connected double-orbit graph with two orbits V3, V5,
A be an edge atom of G and Ay = ANV) and As = ANV,

Lemma 2.2. Let G be a connected non-X -optimal graph with two orbits.
Assume that A is a N-atom of G, Y = G[A] and Y; = G[A;] fori = 1,2.
Then G|A] is a double-orbit graph and G[A;], i = 1,2 are vertez transitive.

Proof. Given u,v € A, there is an automorphism ¢ of G with p(u) = v,
and so p(A) N A # @. It is clear that ¢(A) is a A-atom of G, then by
Lemma 2.1, o(A) = A. The automorphism ¢ induces an automorphism of
G|A]. Note that G is a double-orbit graph. Thus, the automorphism group
Aut(Y) acts transitively on A;. Similarly, Aut(Y) acts transitively on As.
Since A; and As are contained in different orbits, we have ¢(A;) = A; and
©(A2) = A, for any automorphism ¢ of Y. That is, the automorphism ¢ in-
duces an automorphisin of G[A4;]. Thus, the automorphism group Aut(Y;)
acts transitively on A,. Similarly, the automorphism group Aut(Y2) acts
transitively on As. The result follows. ]
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We use E(z, A) to denote the set of edges which have one end vertex = and
the other in A. In the following, we can assume that G[A;] is a r;-regular
graph by Lemma 2.2, and k; = |E(z, A3—;)| for £ € A;. Thus, k; < |A3_;|,
r; < |Ail. |E(x, VA\AY| =k -k;—7; 20,2=1,2 and klIAll = k2|A2|

Lemma 2.3. Let G be a k-regular connected non-\ -optimal double-orbit
graph, k > 3. Then XN(G) 2 2.

Proof. By contradiction. Assume that M'(G) = 1. Let A= A, UA; bea
M-atom of G. Then

0< XN =|A|(k—ky —71) +|A2|(k — ky —72) = L.

It implics that |A;|(k—ky —7)) = 1 or |A2|(k— k2 —12) = 1. Without loss of
generality, we assume that |A;|(k—k;—71) = 1, then |4;| = 1, k—k;—71 =1
and k—ky—1r2=0. Wehavethatr) =0,kp =1,k =k—-1andro = k—1.
Since ky|A;1| = k2|Az|, we have |[A3| = k; = k — 1. On the other hand,
[A2]l > ro + 1 = k > | Az, a contradiction. O

Lemma 2.4. Let G be a 3-regular connected non-\ -optimal double-orbit
graph and A = A U Ay be a N-atom of G. Then the N-atom of G is
isomnorphic to a graph of N;,i =1,2,---,7 (see Figure 1).

Proof. Since G is not A'-optimal, we have |A| > 3 and either M'(G) = 2 or
M(G) = 3 by Lemma 2.3. If A is contained in an orbit of G, then G[4] is
vertex transitive by Lemma 2.2. It is not difficult to see that |A] = 3 and
thus G[A] = K3 = N;. We next assume that A; # 0,7 = 1,2. Note that
N = |w(A)] = |A1|(8 =k — )| + |A2](3 — k2 — r3), then cither [A;]| < 3 or
[A2] < 3. Without loss of generality, assume that |A;| < |As|.

Case 1. |A|=1.

Since G[A;] is vertex transitive, we can see that 7y = 0, ko = 1, k; = |Ag|.
Note that |A| > 3 and G is 3-regular, then we have 2 < k; < 3. If k; = 2,
then 3—k; — 7 = 1,3— ks —r9 = 1 and thus A = N;. If k; = 3, then
3 — ko — 7o =1, that is, G|Ay] is vertex transitive with 3 vertices and the
sum of degrec of all vertices is 3, which is impossible.

Case 2. |A)|=2.
We first assume that [A)| = |Ag| = 2, then k) = ky. If 3 —k; — 71 =0,
then 3—ko—r9g =landr;—ry =1, thatis, 7y = 1,70 =0, and k) = ko = 2.
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Thus, A= Ny. If3—k; —r; = 1,3 — ko — 1y =0, then we can deduce that
A = N, similarly.

If !A]I = 2,|A2| = 3, then k& = 3,k; = 2 and thus 3 ~kyj—11 =0,
3 - k‘z — T = l,ry=ry= 0. Clearly, Az Ng.

If [All =2, lAzl > 4, then 3-kj—-r1=1,3=ky—ry =0, k1 =2,ky =1,
|Ag| = 4, and | = 0,7, = 2. Thus, we have either A= Ny or A= Ns.

Case 3. |A;| =3.

If |[Aa] = 3, then k) = kg, 3 -k -1y =1,3—ka—12=0,72—711 =1,
that is, 7y = 1 or 7o = 1 which is impossible. If |A2| > 3, then 3—k) —71; =
1,3 — ko — 79 = 0. It is easy to see that 7; = 0 and k; = 2. Thus, k; = 1
or 2. Note that |As| > 3, then ko = 2 is impossible. As k; = 1, we have
IAgl = 6 and T = 0,7‘2 = 2. Thus, A N6 or N7. ]

An imprimitive block of G is a proper nonempty subset A of V(G) such
that for any automorphism ¢ € Aut(G), cither ¢(A) = A or ¢(A)N A =0.
The following lemma is well-known (see {12]):

Lemma 2.5. Let G be a graph with two orbits V| and Va. Suppose that A
is a XN -atom of G. Then we have
(i) If A C V| (or Va), then Vi (or V,) is a disjoint union of distinct
N -atoms;
(ii) If Ay = ANV, # 0 fori = 1,2, then V(G) is a disjoint union of
distinct X -atoms.

Proof. Clearly, A is an imprimitive block of G by Lemma 2.1.

(i) If A C V) (or V3), then Vi (or V3) is a disjoint union of distinct
A’-atoms by Theorem 2.1.

(i) Assume A; = ANV; and A, = ANV,. By Lemma 2.1, A; and A,
arc imprimitive blocks of G[V;] and G[V3], respectively. By the property
of imprimitive blocks, we have that V(G) is a disjoint union of distinct
Al-atoms, 0

From the above lemma, we have the following theorem:

Theorem 2.1. Let G be a 3-regular connected graph with two orbits. We

have:

(1) I’f /\’(G) = 2, then G = G1L(N2)l G7I(N3), G1I(N4) or Gn(N5);
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(2) if N(G) = 3, then the 3-regular graph G is constructed based on some
disjoint copies of N;, i.e. V(G) is the disjoint union of the vertez sets of
these copies, i = 1,6,7;

(3) otherwise G is X -optimal.

To prove another main result, a known result is needed:

Lemma 2.6 ([7]). If G is a k-regular graph with girth g, then

l+k+k(k=1)+ - +k(k—1)% ifg is odd,

V(G| 2 n(k,g) = { 21+k—14---+4 (k- 1)"21"1) if g is even.

Clearly, if the degree of every vertex of graph G is at least k, and the
girth of G is g, then |V(G)| > n(k, g). If G is a k-regular connected graph
and |V(G)| < n(k, go), then g(G) < go.

Lemma 2.7. Let G be a k-regular connected graph with two orbits Vy, Vs,
k>3, girth g(G) 26 and N (G) < 2k—2. If A= A, U Ay is a N -atom of
G, A; CV,,i=1,2, then |A;]| > 2.

Proof. Without loss of generality, we assume that |A;| < |Az].

Case 1. |A(|=0.
If |[A}} =0, then ky =0, k — 72 > 1 and |43} > 3. Thus,

N(G) = w(G) = |Ag|(k — kg — T9) = |Ao|(k — r2) < 2k — 2.

Thus, |As|(k - 72) < 2(k — 72) 4+ 2(r2 — 1). Note that |42| > 3 and
|A2| > 72 + 1, then we have k — ry < 2;22__12 < 2. Hence k — ro = 1, that
is, Az is (k — 1)-rcgular. By Lemma 2.5, |A2| > n(k — 1,6) > 2(1 + (k —
2) + (k — 2)®) > 2k — 2, contradicting the fact that |As| < X < 2k — 2.

Case 2. |A|=1.
If |A1] = 1, then ky = 1,7 = 0 and ky = |A3| > 2. Note that g(G) > 6,
then 7 = 0 (otherwise, G[A] must contain a 3-cycle).

N = Jw(A)] = [Ar](k — k) + [ Asl(k — kg) > k — ky + 2(k — 1),

It can be seen that X' > 2(k — 1), a contradiction. Therefore, we have
|A:] > 2. O

Now, we give our main result.
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Theorem 2.2. Let G be a k-regular connected graph with two orbits, k > 3
and girth ¢(G) > 6. Then G is X -optimal.

Proof. We first note by Theorem 2.1 that the girth of the the non-\-optimal
3-regular graphs arc at most 5, then we may assume & > 4 in the following.

By contradiction, suppose M'(G) < 2k—2. Let A = A; UA; be a M-atom
of G.

N = |w(A)| = |Ay|(k = ky — )| + | A2l(k — k3 — m2) < 2k — 2.

By Lemma 2.6, we know that |A;| > 2. Note that Aut(G[A]) acts tran-
sitively on A;, the number of neighbors in V\A of each vertex in A; is
constant k — k; —r;. Thus, if one of the vertices in A; is adjacent to vertices
in V\ A, then every vertex in A; is adjacent to vertices in V\A. We consider
two cascs:

Case 1. Each vertex in A; and A, is adjacent to some vertices of V\ A.
In this case, |A;| + |A2] < N(G).

Subcase 1.1. If|A1|+|A2| = /\I(G) < 2k"’2, then k—kl—rl = k—kg-'f’g =
1, that is k; +7, = ko419 = k—1. By Lemma 2.5, |V(G[A])| > n(k-1,6) =
2(1 + (k —2) + (k — 2)?) > 2k > 2k — 2, a contradiction.

Subcase 1.2. |Aq| + |42 < M(G) < 2k - 2.

Claim 1. k- k; —r; >3, fori=1,2.

Note that |A;| + |A2| < M(G) < 2k — 2, then at least one of k — k; — 71
and k — k9 — ro more than 2. Without loss of generality we assume that
k’—kl -7 Sk—kg—-’l‘g.

Ifk—k —ri=1and k—k; —r9 >2. Let v € A; and {v1,--- ,v5,} C
Ngia,j(v). Note that g(G) > 6 and then the neighbors of the vertices of
Ngia,j(v)U{v} arc distinct, thus |Az| > (1471)k;. We have X' = |w(4)| =
[A1|(k=ki—r))+]|As|(k—ko—72) > 1471 +2|A2| 2 1+ +2(1+71)k =
14+ry+2mk+2k 2 1+7r +2(ky +71) 2 1+ 2(k - 1), a contradiction.

Ifk -k —7 =2and k—ky — 7o > 2, then M(G) > 2|A;| + 2{42| >
2L+ 7y + k(1 + 7)) > 2+ 2(k — 2) = 2k — 2, a contradiction. Therefore
k—ki-r; >3, fori=1,2.

Now. we assume that 2 < |A;| < |A2|. Since N = |A|(k — k1 — 1) +
|Agl(k — ko — 72) > 3(JAy| + |A2]), we have |A;] + |4q| < & < %52, By
ki+r <|Al+]421-1< 2"—'3‘§, wec have k — k; —1m; > %ﬁ. Thus,

' k+6
N = |w(A)| = A1k — ky = 71) + |A2|(k — kg —72) 2 —3—“(|A1| + [Az2))
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Since X' < 2k — 2, we have |A;] + |Az] < 6.

Note that g(G) > 6, then if |A;| = 2,]A3| = 2, then A = P; and we have
X = |w(A)| = 2(k - 2) + 2(k — 1) > 2k — 2, a contradiction. Similarly, the
casc |A| = 2,|A2| = 3 is not difficult to obtain a contradiction.

The argument of the case |A;| > |A2| is similar to that above mentioned.

Case 2. Onc of A; and A; has neighbors in V\ A.
Without loss of generality, assume that the vertices in A; has neighbors
in VAA, then N = |A1|[(k —k; — 7)) and ko + 15 = k.

Subcase 2.1. If |A)| = N < 2k -2, then ¥ — k; —r; = 1 and thus
k] +7r = k—1.

Subcase 2.1.1. 1f ky =1 and 7 # 0, then A, is (k—1)-regular. By Lemma
2.6, we have |Ag| > n(k — 1,6) = 2(k? — 3k + 3) = 2k%2 — 6k + 6. On the
other hand, we have k;|A;| = kz|A2| and ky = k-1 -7, < k—2, then
|Az| = %IAII = k1|A1]| < (2k — 3)(k — 2) = 2k? — 7k + 6, a contradiction.

Subcase 2.1.2. Ifky=1andr) =0,thenry =k—1and k; =k —1. By
Lemma 2.6, we have |A;| > n(k—1,6) = 2k?—6k+6. Since k;1]A41| = k2|42,
|A2| = (k=1)|A1], |Ai| = g2y|A2] > 2528546 — 9k 44 .2 On the other
hand, |A;| < 2k — 3 by the assumption. Note that 25 < 1 for k > 3, then
|Ar| = 2k-3, |A2| = (2k—3)(k—1). It is easy to see that G[A] is the union of
2k —3 Ky k-1's. Pick an edge (z,y) of G[Az] and assume that Nga,)(z) =
{y.x1,-- - ,wr-2} and Ngpa,)(y) = {z,v1, -+ ,yk-2}. Note that g(A4) > 6,
it can be scen that any two vertices of Ngja,)(2) U Nga,)(y) are in two
distinct stars. But there only has 2k — 3 stars, thus, 2k —3 > 2k —2, a
contradiction.

Subcase 2.1.8. Assumc ko = 2. Note that the degree of vertices of A;
in G[A] is k — 1, and vertex of A, in G[A] is k. By Lemma 2.5, we have
[V(G[A])| = n(k — 1,6) = 2k% — 6k + 6. On the other hand, |A| = |4;| +
|As| = Bitt2| 4| < 2£k=1(2k — 3) = k2 — Lk — 3 < 2k% — 6k + 6 < |A| for
k > 4, a contradiction.

Subcase 2.1.4. Assume k2 > 3. Note that the degree of vertices of A;
in G[A] is k — 1, and vertex of Ay in G[A] is k. By Lemma 2.6, we have
[V(G[A])| = n(k —1,6) = 2k? — 6k + 6. On the other hand, since 3 < ky <
k—1,ky =k—1-7r < k-1, we have |A| = V(G[A]) = |A1| + |42] =
Bk214,) < (Ee-2@h-3) - 4"2‘;0’”‘6 < 2k%—6k+6 < |A|, a contradiction.
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Figure.3

Subcase 2.2. If |A)| < M, then k—ky -7 22, ]41] £ 5§ <k—-1and
My <k-=2.

Claim 2. k > 3.

If ko = 1, then 7o = k—1 and Ay is (k—1)-regular and |Az| > 2k —6k+6.
Ou the other hand, |Ag] = ki|A;] < (k= 2)(k-1) = k2 -3k +2 <
2% — 6k + 6 < | Az, a contradiction.

If ky = 2 . then 7o = k—2. We have |As| > n(k—2,6) = 2(k®>-5k+7) =
2k — 10k + 14 by Lemma 2.5. On the other hand, |4s] = %|A1| <
%(k: —1) < 2k% — 10k + 14 < |A3|, a contradiction. Therefore k; > 3.

Claim 3. k- k) —»; > 3.

It k—ky =11 = 2, kp+72 = k, then |A] > n(k—2,6) = 2k2—10k+14. On the
other hand, |A] = |4,]+|A42| = L‘ufz—kz|A1| < k=2iholp 1) = 2’9;35’“—3 <
2k% — 10k + 14 < |A|, a contradiction. Therefore, k — ky — 71 > 3.

Since |A)|(k — k1 — 1) < A < 2k — 3, we have 3 < ky < |Ay] < 24
and 1o = k — ky > k — 274 = B By Lemma 2.6, |4,| > n(&H,6) =
21 + At 4 (=D7) 2’~2+‘°’~+2‘> and ky < k-7 —3 < k—3. On the
other lmnd |As| = %L A1l < e J2k3 4 _ 2k2—-10k+12 < 2k2+10k+26 < |Aal,

a contradiction.

We complete the proof. ]

Remark 2.1. Note that the graph of Figure.3 is a 3-regular double orbits
connected graph with grith g(G) = 5. By Theorem 2.1, the graph is non-
X -optimal. So the girth condition of Theorem 2.2 is sharp.

A k-regular graph G is called super-A if A(G) = k and every minimum
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edge-cut of G isolates one vertex. Note that 2k — 2 > k for k£ > 3, then we

have:

Corollary 2.1. A k-regular connected double-orbit graph with girth k >
3.9 > 6 is super-A.
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