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ABSTRACT. In this work, we first prove that every prime number p = 1
{mod 4) can be written of the form P2 —4Q with two positive integers P
and @, and then we define the sequence B, (P,Q) to be Bp = 2,8, = P
and By = PB,_1-QBy_3 for n > 2 and derive some algebraic identities
on it. Also we formulate the limit of cross-ratio for four consecutive
numbers By, Bn41, Bny2 and Bnys.
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1. PRELIMINARIES

Fibonacci, Lucas, Pell and the other special numbers and their generaliza-
tions arise in the examination of various areas of science and art. In fact, these
numbers are special case of a sequence which is defined as a linear combination
as follows:

(1.1) Qnik = C1Gn4k—1 + C2Qnyk—2 + ** * + Cikn,

where ¢, c¢a,- -+, ci are real constants.

Fibonacci numbers (sequence A000045 in OEIS) form a sequence defined by
Fo=0,Fy=1and F,, = F,_; + F,,_5 for n > 2. Lucas numbers (sequence A
000032 in OEIS) form a sequence defined by Ly =2,L; =1and L, = L,_; +
L,_2 for n > 2. The characteristic equation of them is 22 — 2 — 1 = 0 and
hence the roots of it are

(1.2) a1=l+\/ga.ndﬂ1=l_\/g.
2 2
So their Binet’s formulas are hence
Fo= 2P d L =g+ g0
a; — B 1A
forn>0.
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There are a lot of algebraic relations between Fibonacci and Lucas numbers.
For instance, L, = Fo_1 + Fpy1, Fon = FuLln, Fryn = falatlafa . =
V" Fnla-LnFa) gng [2 — 5F2 = 4(—1)" (see [2, 4, 5, 6, 11, 16, 17]).

Recall that the golden ratio [7] is defined as the ratio that results when a
line is divided so that the whole line has the same ratio to the larger segment
as the larger segment has to the smaller segment. Expressed algebraically,
normalizing the larger part to unit length, it is the positive solution of the
equation § = }i_1 < 12 — £ — 1 = 0 which is the characteristic equation of
both Fibonacci and Lucas numbers. Johannes Kepler pointed out that the
ratio of consecutive Fibonacci numbers converges to the golden ratio as the
limit, that is, nli_)nolo pf—’ﬁ =a

The Pell numbers {(sequence AG00129 in OEIS) form a sequence defined by
Pyo=0,P,=1and P, = 2P,_1 + P,—2 for n > 2. Some identities for Pell
numbers can be found in [1, 10, 13]. Pell numbers P, have a close connection
to square triangular numbers, that is,

(Pe=1 + Pe)?[(Pe-1 + Pi)? — (-1)¥]
5 )

(1.3) [(Pk_l + Pk)Pklz =

The left side of (1.3) describes a square number and the right side describes a
triangular number (see [3, 9]), so it is a square triangular number (see [12]).
Pell-Lucas numbers (sequence A002203 in OEIS) form a sequence defined
by Qo = Q: = 2 and @, = 2Qn_1 + @n—2 for n > 2. In [10], Melham
proved that P2 + P,_1Payy = %:l and Q% + Qn-1Qn4+1 = 16P2. Martin [8]
described that the Pell numbers can be used to form Pythagorean triples, that
iS, (2PnPny1, P2, — P2, P2, + P2) is a Pythagorean triple.

2. THE SEQUENCES B = B,(P, Q) WITH PARAMETERS P AND Q.

In this section, our first aim is to define a new integer sequence with two
parameters and then we obtain some algebraic identities on it. Before consider
our main problem, we first give the following result.

Theorem 2.1. Every prime number p = 1(mod 4) can be written of the form
P? — 4Q for positive integers P and Q.

Proof. Let p be a prime number such that p = 1(mod 4), say p = 1 + 4k for
an integer k > 1. Then the quadratic equation p = P? —4Q has a solution for
(P,Q) = (2k + 1,k2). So p can be represented by P? — 4Q. O
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Now let P = 2k + 1 and Q = k2. We define the sequence B = B,(P,Q) as
Byo=2,B; =P and

(2.1) Bp=PBn_1—QBn_2=(2k+1)By_1 — k?Bn_2
for n > 2. The characteristic equation of (2.1) is z2 — Pz + @ = 0. So its roots
are
P++vD P-vD
= 3 and 8 = R

where D = p. Hence Binet formula is B, = o™ + 8" for n > 0.
Now we can give the following theorems.

Theorem 2.2. Let B, denote the n** number. Then

Z Bpy1 —k®Bn +2k—1
(2.2) > Bi= = '
i=0

Proof. Note that B, = (2k + 1)Bn_1 — k2Bp_3. S0 Bny2 = (2k + 1)Bpy1 —
kB, = 2kB,41 + Bny1 — k%B,, and hence
(2.3) Bny2 — Bnyi1 =2kBny — k*B,,.
Applying (2.3), we deduce that

By — B, =2kB; — k*By

By — By =2kBy — k*B;
(2.4)

Bny1 — B, =2kB, —k*B,_,

B4z — Bny1 =2kBn,; — kK2B,,.
If we sum both sides of (2.4), then we obtain
(2.5) Bny2 — By = (2k — k?)(By + B2 + - - - + Bp,) + 2kBp 41 — k?Bo.
Since By = 2 and By = 2k+1, (2.5) becomes B, 2 — (2k+1) = (2k—k?)(B; +
By + -+ + By) + 2kBp 41 — 2k? and hence

(2k +1) — 2kBny1 + 2k2

2k — k2
Taking Bnyz = (2k 4+ 1)Bpyy — k2B, and By = 2 in (2.6), we conclude that
By+B,+By;+ -+ B, = E"—*‘—_kk—Bk!'!i%—l as we wanted (Here we note that
k#2, fork= 2wehavep—1+4 2 =9 it not a prime). O

(2.6) Bi+By+-- 4 By = Dn¥2=

Now we want to derive a recurrence relations on B, numbers. To get this
we can give the following theorem.
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Theorem 2.3. Let B, denote the n** number. Then
Ban = (P? —2Q)Ban-2 — @*Bzn-4
Bans1 = (P? —2Q)B3n_1 — @Q°Ban-3
forn > 2.
Proof. Since By, = (2k + 1)Ban-1 — k?>Bap—_2, we easily get
Ban = (2k +1)Ban_1 — k*Ban—2
= (2k +1) [(2k + 1)Bon—2 — k*Ban—3) — k*Ban_2
= Bon_2 [(2k + 1)2 — k%] — k*(2k + 1) [(2k + 1)Bzn—q — k* Ban—s)
= Ban-2 [(2k + 1)2 — k?] — k*(2k + 1)*Bzn—a + k*(2k + 1)Ban-s
= Bon—2 [(2k + 1) — 2k*] + k? [(2k + 1)B2n—3 — k* B2 _4)
— k%(2k +1)2Ban_s + k*(2k + 1) Bans
= [(2k + 1)% — 2k?] Bop_2 — k*B2n_4
= (P?-2Q)B3n_2 — @*Ban_4.
The other case is similar.

Theorem 2.4. The n** term of B,, is

3 o
Y (3)Pm"%p' ifnis even
l 1=0

Bn:z—n:f

n-=1

g -
> ()P %P ifn is odd

=

forn > 1.

Proof. Let n be even. Then applying Binet’s formula, we easily get

s (252)"+(552)

2
- [g (3)Pvmr + g(';)P"“(—\/i)‘]

=L (™Mpr s (M\Poos- 4 ()2
= |(6)7 ()P ()]

as we wanted.
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Example 2.1. Let p = 17. Then B, = 9B,_; — 16B,.3. In this case the
first few terms of B, are

2,9,49,297,1889, 12249, 80017, 524169, 3437249, 22548537, - - .
Letn=8. Then

4
éz( )93 217" = 3437249
i=0

and let n =9, then

4
_ 1 9\ qo-2iqmi _
By = 55 'Zo: (2i)9 17 = 22548537,

Now we can give the following theorem related to powers of o and 8.

Theorem 2.5. Let B, denote the n't number. Then

1 n+l QB -
a"—pr=—1{ 2B, - PB

vP | PB,.-20B._,

forn>1.

Proof. Recall that B, = PB, — QB,_;. Hence
Bni1 —@Bn_y = P(a™ + ") - 2Q(a™"! - g*71)
= P(a™ + ") - 2(Ba™ + af™)
=a"(P—-28) + 8™ (P - 2a)
= \/z—)(an _ Bn)

So —"‘\_/_& = a™ — B". The other cases can be proved similarly. O

From above theorem we can give the following result.

Corollary 2.6. Let B, denote the n** number. Then
n-2

25 .
D )PP%-1pi ifn ds even
S 2i+1

Buy1 = QBuot = 3

n=1

Z o
> (2;’11)1)"_2'_11?' if n is odd.
=0
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Now we set the following identities
W PZE y_p gy g PRI
I- P—22+\/,z'2’ K= 8Q + PQ+4P—22+(3Q+2P)\/;‘;'
Then we can give the following theorem.

Theorem 2.7. Let B, denote the n** number. Then
) )
S B = ~[Ma" - MB" + P -2
1=0 N
(2) B + Bpyy = Ha"™ + HB™ forn > 0.
(3) Buy1 + Buot = Ka™2 + K82 forn > 2.
(4) B, — By =La™ ! + LA™ ! forn > 1.

Proof. (1) We proved in Theorem 2.5 that M&-ﬁ,&‘- =a"—B". So a™t! -

k2 k2
pfrl = Barizk B""jﬁ‘B"“ ¥ Bx and hence

P
Bny1 — k2B, = /p(a™*! — B"+) — 2kB,4 + kB,
= a" (ayp - 2ka + k?) + B" (-By/P — 2kB + k*)
2k + 1 — 2k? 2k +1—2k% —
s (B ) e ()

2 2
o (P-2622+\/5) o (P—ZCZJ—\/;‘;)
= Ma™ + Mp".

Applying Theorem 2.2, the result is clear.

(2) Recall that o™ — g = 282212P82 S0 (B, + Bny1) — (2k + 3)B, =
(a™ - B"),/p and hence
(2k + 3)Bn + (o™ - 8") /P

Bn + Bn+1 = 2
_ @E+3)(e"+ ") + (@~ B7)yP
2
—an (2’“_+22i_~/2) LB (WT‘\/T’)
—an (i”:?;_\/ﬁ) iy (ﬂé:_\/_f’)
= Ho" + HB™.
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(3) Note that &-%;ﬂ = a” — f". So we get (" — ") /P = 2(Bns1 +
Bn_1) — (4k® + 4k + 3)B_1 + k*(2k + 1)B,_, and hence
Bn+1 + Bn—l
_ (@ =B")/P+ (4k® + 4k + 3)Bn_1 — k?(2k + 1)Bn_2
- 2
" k2 3 k(2%
—g—(\/ﬁ+4 +4k+3 k¥ +1))

= S —

2
s" 4k? + 4k +3  K*(2k+1)
5 (_‘/i-}- B T B2 )
- on-2 (%2 + 2k% + 8k + 2 + (3k2 + 4k + 2)\/5)

2
4 g2 (9k2 + 2k + 8k + 2 — (3k® + 4k + 2)\/5)

2
=Ko"2 4+ Kpn2.

(4) Since 2—%\’/-%’)3" =o" — A", we get 2B, — PB,_; = \/p(a™"! — p"~1)
and hence 2(Bp — Bn_1) + (1 — 2k)Bn-y = /p(a™~! — "~1). So

Bpn— By, = (2k —1)Bp_y + /p(a™! - gn1)

2
— (2k - 1)(0"_1 + ﬂ"_l) + \/z‘,(an—l _ Bn—l)
2
—an- (%_-12_1@) Lt (% -1 ﬁ)
=a"! (—_P _ 22+ \/ﬁ) + gl (P - 22_ \/77)
= La™ ' + L™ 1.

This completes the proof.
Theorem 2.8. Let B, denote the nt* number. If n > 2 is even, then

B...-B =1 lf-z n Pr-%-1pi 4 (p _2 LI pr—2i
n+1 n=1on [P 2%+ 1 P _)é o P

=0
and if n > 1 is odd, then

n=1

n=1
Bn41— B, = 1 pf n pr-2i-lpi L (p_ 2)§ n pr-2iy
n+1 n on 2% +1 % .

i=0 i=0

193



Proof. We proved in above theorem that B, — B,-1 = La™! + Lf"~1. So
Bny1 — B, = La™ + LB™. Note that L+L=P-2andL-T = VP Let n
be even. Then we deduce that

Bnyy — B, = La™ + Ig"

() (et

=23 ()P + n,_o(:‘l)P"-i("/’_’)i
- v -]

2
(D) (e (7 )romr]

() (rnre i
22 o]

=2i"[p£§(2z+1>’°"_2'_ f (P - 2)2( )P"‘2"

The second assertion can be proved similarly. O

Now we can also formulate the sum of even and odd B,, numbers by using
the powers of o and 3 as follows.

Theorem 2.9. Let B, denote the nt* number. Then
4

KZ&““3 + KZﬂ""‘ if n is even
i=1

P ER

i=1 n—l

o 4 B2+ K Z adi-3 +R’Z B3 ifn is odd

\ i=1 i=1

and
3 3 .
KEa"““ + Kzﬂ4:—4 if n is even

Zn:Bzi-l = j

i=1 n=1 n=-1

b —a. ..
a1 4 g1 4 K3 o441 K S BY4  ifnis odd.
t=1 i=1

\
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Proof. From (3) of Theorem 2.7, we get

n
ZBQ.‘ = (Bz + B4) + (Bs + Bs) + 4+ (Ban-2 + Bs,)
i=1

= (Ka+KB) + (Ko® + KB%) + - + (Ko~ + K*"~%)
=K(a+a5+...+a2"*3)+—ﬁ(ﬂ+ﬁ5+_'_+’32n—3)

3 2
= Kzaﬁ—a +I_{Zﬂ4i—3
i=1 =1
and let n be odd, then
D Bai=(Bz2+By)+-- + (Ban-s + Ban-2) + Bon
i=1

= (Ka +Fﬂ)+"'+(Ka2"‘5+7/32"‘5)+a2"+,82"
=K(a+o®+- +0™ )+ K(B+ 8+ + f5) + o + g2

n-1 n—1

-z . I .
1 +'B2n +Kza4z—3 +?ZB41—3'

i=1 i=1

The other assertion can be proved similarly. O

Theorem 2.10. Let B,, denote the n* number. Then

(e}
ZB"Z“: 2-(2k+1)2 '
1—(2k + 1)z + k222

n=0
Proof. Since 22 — Pz + Q =0, we get
(1-Pz+Q2%)B(2)=(1 - P2+ Q2*)(Bo+ Biz+---+ Bp2" +---)
=Bo+(Bl—PBo)Z+~--
+ (Byp — PBp_1 +QBp3)z" + - -

=2 - Pz.
So we get the desired result since By = 2,B; = P,P = 2k +1,Q = k2 and
Bn = PBn—l - QBn—2- O
For B, numbers, we set the matrices M (B,) and W(B,) to be
_ 2k+1 -—k2 _ B, B
M(B,,)-[ ) 0 ] and W(B,,)_[B1 B |’

Then we have the following theorem.
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Theorem 2.11. Let B,, denote the nt* number. Then
[ B, ] = M(B,)"! [ 2k+1 ]

B, 2
and
Bn+l Bn _ n-1
(2.7) { B. B ] = M(B,)""'W(B,)
forn > 1.

Proof. Note that this relation is true for n = 1 since By = 2, B; =2k +1. Let
us assume that this relation is satisfied for n — 1, that is,

12w [ %]

Then we deduce that

[ Ba ] — M(BM(B.)? [ 2% +1 ] _ [ (2k +1)Bn_; — k?Bn_»

B, 2 B,
Hence it is true for every n > 1 since B,, = (2k+1)B,—1 —k2B,,_2. The second
assertion can be proved similarly. O

Theorem 2.12. Let B,, denote the n* number. Then
(1) Bp41Bn-1 — B2 = pQ™! forn > 1.
(2) B2, — PBny1Bn + QB2 = ~pQ" forn > 0.

Proof. (1) Note that det(W(B,)) = 4k + 1 = p and det(M(B,)) = k? = Q.
So taking the determinant of both sides of (2.7) yields that B4 1Bn—1 — B2 =
pQ™.

(2) Recall that B, = (2k + 1)B, — k*B,,_;. So

B%,, - PB,,1B, +QB?
= [(2k + 1)B, — k®Bp_1]? — (2k + 1)[(2k + 1) B, — k*B,_1|B,, + k*B2
= (2k + 1)2B2 — 2k%(2k + 1)B,Bp—1 + k*B2_, — (2k + 1)°B?
+ k*(2k + 1)B,_1 B, + k*B2
= BaBn_1[—k*(2k + 1) + k*B2_, + k*B2
= —k?Bn_; [(2k +1)B,, — k?B,_1] + k*B2
= —k*(Ba41Ba-1 — BY)
= -pQ"

as we claimed. O
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From above theorem, we can give the following result.

Corollary 2.13. Let B, denote the n* number. Then

(1) Bp+1Bn-y — B;‘: = 421 4 f2n-2 forn 2> 1.
(2) B2,, — PBpy1Bn + QB2 = —4k2™*1 _ k21 for > 0,

We can also give the following theorem which can be proved similarly.
Theorem 2.14. Let B,, denote the nt* number. Then
Britn = B Bn — Q" Bpon
for integers m and n such that m > n.
From above theorem we can give the following result.

Corollary 2.15. Let B, denote the n** number. Then Bz, = B2 — 2Q™ and
B3, = B3 - 3B,Q" forn >0.

Proof. We proved in above theorem that B,,;, = BB, — @*Bpn_n. So
we obtain Ba, = B2 — 2Q" since By = 2. Similarly we deduce that B, =
B2n+n = BQan - Q"Bn = (B,z,, - 2Q”)Bn - QnB = Bﬁ —3BnQ". O

By virtue of Corollary 2.15, we can deduce the (sn)** terms (s > 2 is an
integer) of B,, numbers by terms of B, and Q", for instance we have By, =
B — 4B2Q" +2Q?", Bs,, = B? - 5B3Q" + 5B,Q*", and etc.

For a and 8, we define

o8\ | (B) ifptD
28) (T)‘{ 0 ifplD

for primes p > 3, where (;) denotes the Legendre symbol. Then the generali-
zed Euler function ¥, g(B,) for B, (when B, is prime) is defined as

Q,
(29) Vos(Br) = Bn - (52).
n
Then we can give the following theorem.
Theorem 2.16. Let B, denote the n* number. If B, is prime, then
(2.10) V. p5(B) =B,
for every prime p > 5.

Proof. We know that every prime number p = 1(mod 4) can be written of the
for P2 — 4Q for positive integers P and Q. Since D = p = P2 — 4Q, we get
(2£) = 0 by (2.8) and hence ¥4, 5(B,) = Ba. a
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3. Cross-RATIO OF Four CONSECUTIVE B,, NUMBERS.

Recall that the cross-ratio is also an important quantity in complex analy-
sis and also in the theory of discrete groups. Given four different complex
numbers 2;, 22, z3 and z4, the cross-ratio defined as

(21 — z3)(22 — 24)

(22 = 2z3)(z1 — 24)

is invariant under arbitrary Mobius (i.e., linear fractional) transformations.
This definition can be extended to the entire Riemann sphere (i.e. CU {o0})
by continuity. More generally, the cross-ratio can be defined on any projective
line (The Riemann Sphere is just the complex projective line). It is given by
the above expression in any affine coordinate chart. Cross-ratios are invari-
ant of projective geometry in the sense that they are preserved by projective
transformations. The cross-ratio of four complex numbers is real if and only
if the four numbers are either collinear or noncyclic.

(3~1) [21,22;23, 24] =

In {14}, the authors considered the cross-ratio of four consecutive Lucas num-
bers. They defined the cross-ratio of four consecutive Lucas numbers L,,
Lpy1,Lpnyo and Ly, y3 to be

(Ln = Lnt1)(Lny2 = Lnta)

3.2 L,Ln ;Ln ,Ln =
(2 U LnstiLosz Lngsl = (7 ST e — 1)

and proved that

-1

207

and in [15], the authors considered same problem for Fibonacci numbers and
using (3.2), they proved that

nli—bnolo[Ln; Ln+1; Ln+2y Ln+3] =

. -1
nll,ngo{Fm Foy1i Faga, Fugs) = 2a;
where o) is defined in (1.2).

Similarly we can give the following theorem by using (3.1).

Theorem 3.1. Let B,,, By1, B2 and B, 43 be four consecutive B,, numbers.

Then
. o?+2a+1
nlglgo[Bm Bnt1; Bny2, Bnya] = Zratl
Proof. Let B,,, Bniy, Bny2 and B3 be four consecutive B, numbers. Then
we get

(Bn — Bn+2)(Bni1 — Bn43)

3.3 Bn,Bni1;Brnia,Bnyal = .
(33) [ +1 Bni2, Basal (Bn+1 = Bn42)(Bn — Bnya)
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Since B, = (2k+1)B,,—1 — k?Bp_2, we get B, 2 = (2k+1)B,41 — k2B, and
Boys = (32 + 4k + 1)Boy1 — (2k° + k2)B,.. Hence

B, — Bnia = —(2k + 1)Bpy + (K2 + 1)B,
Bni1 — Bpys = (—3k® — 4k)Bpyy + (2k% + k2)B,
Bn41 — Bnya = —2kBnyy + k?B,
Bp — Bpys = —(3k% + 4k + 1) B,y + (2k% + k%2 + 1)B,,.
So (3.3) becomes
(3.4) [Bn,Bn+1; Bnt2, Bnyg)
_ [=(2k +1)Bp iy + (k + 1) B,)[(—=3k? — 4k)Boy1 + (2k% + k%) By)
T T[~2kBn41 + k2B, |[-(3K2 + 4k + 1)Bny; + (2k° + k2 + 1)B,)]

_ [=(2k +1)Bpy1 + (k2 + 1) B,)[(=3k — 4) Bpy1 + (2k2 + k) B]
"~ [-2Bpy1 + kB,)[-(3k2 + 4k + 1)Bpyy + (2k3 + k2 + 1)B,]

Note that
(3.5) B, =a"™ + 8" and B4y = a™! 4 gntL,

Combining (3.4) and (3.5) and taking the limit of both sides of (3.4), we deduce
that

. a?+2a+1
5ge B Bt Bz, Busl = G tmT
This completes the proof. O

By symmetry, can give the following result.

Corollary 3.2. Let B,,Bry1, Bny2 and Bny3 be four consecutive B, num-
bers. Then

) a?+a+1
Ao [Be Bot1 Buss, Brsal = gy
) a?+a+1
nlLrI;o[Bn, B2, Bry3, Bag) = = "y

lim [Bn, Bn2; Bat1, Bata] = ———
il 15n) Bnt2; Batl; Onts] = at+a+1l

] o?+2a+1
nllb"olo[Bn’ Bn+3s Bn+2’ B"+l] - —(;_
lim (Bn, Bn43; But1, Bus2] = —a—
Aol T Und Bt a2 e+ 1
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