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Abstract: The Zagreb indices and the modified Zagreb indices are important
topological indices in mathematical chemistry. In this paper we study the
relationship between the modified Zagreb indices and the reformulated
modified Zagreb indices with respect to trees.

INTRODUCTION

The Zagreb indices are introduced by Gutman and Trinajsti¢. The first
Zagreb index M (G) and the second Zagreb index M,(G) are defined as
follows [1—3]: for a simple connected graph G, let M,(G) =Y e V(G)(d(v))z,
M3(G) = Tuverd(u)d(v), where d(u) and d(v) are the degrees of vertices
u and v respectively.

In [4] A. Mili€evi€, S. Nikoli¢ and N. Trinajsti¢ noted that the contributing
elements to the Zagreb indices give greater weights to the inner (interior)
vertices and edges and smaller weights to the outer (terminal) vertices and
edges of a graph. This opposes intuitive reasoning that the outer atoms and
bonds should have greater weights than inner vertices and bonds, because the
outer vertices and bonds are associated with the larger part of the molecular
surface and consequently are expected to make a greater contribution to
physical, chemical and biological properties [4]. In [2] S. Nikoli¢, G. Kova&evi¢,
A. Mili¢evi¢ and N. Trinajsti¢ pointed that chemical intuition should not be
disregarded even in theoretical research, as some tend to do, because many
crucial discoveries in chemistry, such as the periodic law and the benzene
structural formula, were achieved relying on intuitive rules. Reseacher’s
intuition is a very important guidance in many areas of modern chemistry and
especially in drug design [2).

In [4] A. MiliCevi¢, S. Nikoli¢ and N. Trinajsti¢ pointed that one way to
amend the Zagreb indices is to input in the definitions of the first Zagreb index
and the second Zagreb index inverse values of the vetex-degrees. Hence, they
are amended by A. Mili¢evi¢, S. Nikoli¢ and N. Trinajsti¢ as follows [4]: for a
simple connected graph G, let "M,(G) = ¥, e vi(d(v)) ™ which is called the first
modified Zagreb index, "My(G) = Z.,,,eg(o)(d(u)d(v))" which is called the
second modified Zagreb index.

In [4] A. MiliCevi¢, S. Nikoli¢ and N. Trinajsti¢ pointed that there is an
analogy between the idea of creating the modified Zagreb indices on the basis
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of the original Zagreb indices, and the idea of creating the Harary index on the
basis of the Wiener index [4].

In [5] D. Vukicevié and N. Trinajsti¢ pointed that the discriminatory power of
the second modified Zagreb index surpasses that of the Randi¢ connectivity
index for certain arbitrarily large classes of benzenoid systems. Their main
results are as follows: (1). Let m be any natural number, there is a set of m
benzenoid systems with the same number of vertices such that each of them has
the same Randié connectivity index and no two of them have the same second
modified Zagreb index. (2). Let m be any natural number, there is a set F’ of m
benzenoid systems such that for each pair of benzenoid systems S;, S;EF’ we
have n(S;) = n(S,), and ["Mx(S;) < ™My(S,)] if and only if [%(S,) >x(S;)], where
n(S;) is the number of vertices of S;, i = 1, 2; x(G) is the Randi¢ connectivity
index, which is defined as follows: ¥(G) = zuveg((})(d(ll)d(V))—o's. These results
shows that the second modified Zagreb index differs fundamentally from the
Randi¢ connectivity index [5].

In [4] A. Miligevi¢, S. Nikoli¢ and N. Trinajsti¢ pointed that the Zagreb
indices can be reformulated in terms of the edge — degrees: EM,(G)
=Y e E(G)(d(e))z, EM3(G) = Yad(e)d(f), where d(e) denotes the degree of edge e
in G, and d(e) is equal to the number of adjacent edges of edge e in G, e Af
means that edges e and f share a common vertex in G [4].

In [4) the modified Zagreb indices can be reformulated in terms of edge—

degrees similarly: "EM(G) =Y.ceq)(d(€)) %, "EMy(G) = Teadd(e)d(f))™". The
original and the reformulated Zagreb indices are related as follows:
EM(G) = M,[L(G)], EMx(G) = M[L(G)], "EMi(G) = "M,[L(G)], "EM(G)
= ™M,[L(G)],where L(G) denotes the line graph of G [4]. In [4] A. Milikevié,
S. Nikoli¢ and N. Trinajsti¢ pointed that these reformulated indices are useful in
QSPR study.

Because the concept of line graph has found various applications in chemical
research [6], the reformulated Zagreb indices and the reformulated modified
Zagreb indices are useful in chemical research.

PRELIMINARIES
Definition 2.1[6]. The line graph, L(G), of a graph G has the vertex set V(L(G))
= E(G), and two distinct vertices of the graph L(G) are adjacent if and only if
the corresponding edges of G have a common vertex.
Lemma 2.2[7]. A graph H is the line graph of some graph G if and only if H
can be written as the union of complete subgraphs such that no point of H
belongs to more than two of these complete subgraphs.
Definition 2.3. Let H = L(G). By Lemma 2.2 H can be written as the union of
complete subgraphs H,, Hy, ..., H,. We define H' as follows: we regard H,
Hy, ..., H,as vertices of H', HH;EE(H') if and only if H; and H; share a
common vertex of H. That is, VH) = { H;, H, ..., H;}, EM) = { HHj H;
and H; share a common vertex of H }.

In fact, Lemma 2.4 is clear, Lemma 2.5 is well known.

Lemma 2.4. Let n >2, mMz(KLn.l) =1, mM](K[‘nq) =n —1+ (n— ]) -2,
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MAIN RESULTS
Theorem 3.1. Let G be a tree, n = {V(G)|2 4, we have "My(G) > "EM,(G).
Proof. Claim 1: Let H = L(G). If H, and H; belong to the union of complete
subgraphs of H, then, H, and H, do not share a common edge.

Otherwise, let V(H,) = {e}, €5, ..., &}, V(H2) = {e1, €, €3, ..., & }, {€3, ..., &}
# {es, ..., &}, & €EEH)NE(H,), k>3, 3. Because H, is a complete
subgraph of H, in G edges e), e, ..., e, share a common vertex u€ V(G).
Similarly, in G edges e, e,, e, ..., e share u€V(G). Hence, in G edges e,
€, ..., & €3, ..., & share a common vertex u€ V(G). Thus, vertices ey, e, ...,
€ €, ..., & of H constitute a complete subgraph other than two different
complete subgraphs, which is a contradiction.

Claim 2: Let H = L(G). If G is a tree, |V(G)| 24, H" is a tree, where H' is
defined in Definition 2.3.

Otherwise, without loss of generality, let H* contain a cycle HH,...HH,, H;
and H;,share a common vertex ¢;, i = 1, 2, ..., t. Thus, in G, ¢; is a common
edgeof K,, and K|, ,wheren;=|V(H),i=1,2,..,t Hence, G contains a
cycle, which is a contradiction. Since G is connected, L(G) is connected. Thus,
H' is connected. Claim 2 follows.

When G = P, the theorem follows clearly. In the following let G # P,.

Claim 3: Let T, and T, be two trees, [V(T,)[>2, [V(T,)[>2, we obtain a new tree
T from T, and T, by coinciding one vertex u, of T, with one vertex u, of T, let
the coinciding vertex be u of T. Similarly, we obtain a new tree T  from T, and
T, as follows: connecting u, and u, with one edge. We have "M,(T") > "My(T).

In fact, we have d.(u)=d, (w)+],
d,.(u,)= d.,: () +1, dp(u)= dy (#)+d;, (). For vEV(T)) and v#u,, we

have d; (v)=d,(v)=d,.(v). Similarly, for vEV(T,) and v#u,, we have

d.,.z (v)=d,(v)=d,.(v). Hence, we have d.(u)=d,.(u), d,.(u,)=d;(u).

Thus, we have
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Claim 3 follows.

By Lemma 2.2, let the union of complete subgraphs of L(G) be Hy, Ha, ..., H,.

By Claim 1 we have [V(H)NV(H))I<1, where i # j. In the following let n; =
IVH), i= 1,2, ..., s. Clearly, we have n>2.
Program 4: By Definition 2.3 and Claim 2, when G is a tree we obtain a new
tree T from L(G) as follows: Step 1: whens=1,letT=K,, _, . Step 2: when s
=2, letT= K\ pim-2> where n;= [V(H;)|, i = 1, 2. Step 3: when s>3, without loss
of generality, let dy+(H,) = 1, and let H;., and H; share a common vertex v, in H.
Define H' = H—(V(H,) —v,). Let T" be a tree of H"' constructed as Step 1,
Step 2 and Step 3 ( for s—1 ) recurrently. Let W =K,, _, . We adhere X,, , to
W with the centre of K|, at v;&€V(W), where n, = |V(Hy)|, v; is a pendant
vertex of W. Denote the new tree T.

In the following let a, t and k be natural numbers, a>t>2, k>2. In fact, we can
prove Claims 5, 6, 7 by mathematical induction for t, t, a respectively easily.
Claim 5: Let h(t) = k®—6k> + 8k—4 + 2k’t—4kt + 4t, we have h(t) > 0.

Claim 6: Let g(t) = K’t—k* + K*®— 7Kt + 6k —2kt* + 10kt—8k + 2t*—6t + 4,
we have g(t) >0.

Claim 7: Let f(a) = ak’t—ak® + ak’®—7ak’ + 6ak’—2akt’ + 10akt—8ak + 2at’
—6at + 4a—2K’t + 4k> —2K** + 10Kt — 12k? + 4kt — 14kt + 12k—2¢* + 6t—4,
we have f(a) >0.

Claim8:—a™ + (ka) ' + k—Dk™" =—[a(t—1D]"" + [a(t + k—2)]""
+ (t +k—2)7 +0.5(k—2) k—1"".

In fact, by Claim 7 we have (—2k’ + 4k—2 + k?a—2ka + 2a)(t—1)(t + k—

2)> (at—k—a + 1)(2k*—2Kk).
—2k*+4k—2+k’a—2ka+2a __ at—k—a+]1
2k(k—1)a “—D+k —2)a

1—k 2—k 1 a+1 -
Hence, 12" + 05 + k=1 2 (=Da T (t+k —2)a "1us, —a ¥
(ka)' + 0.5 +0.5k—1)" —k™' =—[a(t—=D]" + [alt +k—2)]7" +
(t + k—2)~". Hence, —a~' + (ka)™' + 1 —k™' =Z—[a(t—1D]17" + [a(t
+k=2)17"+ (¢t + k—2)"' + 0.5—0.5(k—1)"". Claim 8 follows.
Claim 9: "M,(L(G))<"My(T), where [V(L(G))>3, T is obtained by Program 4.

Let H = L(G), where H is the union of complete subgraphs H;, H,, ..., H,. We
prove Claim 9 by mathematical induction for s.

Thus, we have
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When s = 1, by Lemma 2.4 Claim 9 follows. When s = 2, let [V(H))| =,

—1 t—1
IV = 1, we have "MA(LG) = GripeTy) * T 26D ¢

C—)r—2)  @=DE=2) _r+t 11
20—17F " 2017 T Tr+t=2 20— 2a—1)

2.4, we have ™MxT) = 1. Let f(x) = x ', where x > 0. Thus,

.By Lemma

S (x)=2x">0.By Lemma 2.5 we have 2(r +t—2) ~'<<0.5(r—1) "' + 0. 5(t

—1) 7", Thus, when s =2 Claim 9 follows. When s>3, suppose Claim 9 holds
for s—1. In Program 4, let [V(H,)| = k, [V(Hs.))| = t, a;, a,, ..., &, are the
degrees of vertices of V(H,.,)—v, with respect to H"'. Thus, we have ™M,(H) =
1 1 1 1

MM T he T Ta= e * @rk—2m * -t T k=2,
k—1 &k—Dk=2) | R T

P ETR—DR=D T 2G—1p 0 MdD = "MITTY) i

k=1

— .

1 k—1 ]

1
Let a; = a, by Claim 8 we have ~a + ka, tT 2 =g

] 1 1 1 k—2 .
t—Day ~ G+k—2)a T (+k—2am, T trk—2 T 2(k—1) SInce
"My(H ™ )<™M(T™"), Claim 9 follows.

Program 10: When s>2, we change Step 2 of Program 4 as follows: when s = 2,

we use one edge connects the centers of X, , and K|, _,, we denote the new

tree G'. The remaining steps are the same as those in Program 4 except that we

change Tto G".

By Claim 3 the following claim is obvious.

Claim 11: ™My(G") > ™My(T), where T is constructed by Program 4, G’ is
constructed by Program 10.

By Claim 9 and Claim 11 we have
Claim 12: "Mx(G") > "M,(L(G)), where |[V(L(G))]23.

Let G be a tree, n = |[V(G)|>4, from G we obtain L(G) which is the union of
complete subgraphs H, H,, ..., H,. By Program 10 we obtain G'. By Definition
2.1 L(G") is isomorphism to L(G).

Claim 13: Let G and G~ be trees, if L(G) is isomorphism to L(G’), G is
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isomorphism to G'.

In fact, since L(G") is isomorphism to L(G), without loss of generality, let
them be the union of complete subgraphs H,, Hz ..., Hs. By Claim 2, when s>2,
without loss of generahty, let d. (H,)=1, H,,and H, share a common vertex
v.. Letm; = |V(H)|, 1 = Wc prove Claim 13 by mathematical induction
with respect to s.

(1). When s = 1, since L(G) is 1somorph|sm to L(G"), we have [V(L(G))l
[V(L(G"))|. Thus, we have |E(G)| = [E(G")}. Since |[E(G)| = |V(G)| —1, [E(G")] =
[V(G")| —1, we have |[V(G)] = |V(G")| = n. Thus, G is isomorphism to K,_
G is isomorphism to K, , Otherwise, H, is not a complete graph with n
vertices, which is a contradiction. Hence, G is isomorphism to G".

Suppose Claim 13 holds for s = k. In the followmg, let s =k + 1. Since Hy.
and H, share a common vertex v; uniquely, K, and K, must share a
common edge uniquely. Let L(G,) = L(G)— (V(Hs) vs) L(Gz) L(G"— (V(Hs)
—v;). By hypothesis G, is isomorphism to G,. Thus, G is isomorphism to G
Claim 13 follows. Theorem 3.1 follows.

Theorem 3.2. Let G be a tree, n = |V(G)|2 3, we have "M (G) > "EM,(G).
Proof. When G = K| ,.;, by Lemma 2.4 the theorem follows. When G # K, 5.,
by the definition of the first modified Zagreb index we have "M (L(G)) <
"M,(T) <™M,(G") = ™M,(G), where T is constructed by Program 4 contained in
the proof of Theorem 3.1, G is constructed by Program 10 contained in the
proof of Theorem 3.1. Theorem 3.2 follows.
Remark: There exist some graphs such that "Mx(G) < "EM,(G), such as G = K,.
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