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Abstract

The classification of all dihedral f-tilings of the Riemannian sphere $2,
whose prototiles are two right triangles with at least one isosceles, is given.
The combinatorial structure and the symmetry group of each tiling is also
achieved.
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1. Introduction

Let S? be the sphere of radius 1. By a folding tiling (f-tiling, for short) of
the sphere S? we mean an edge-to-edge decomposition 7 of $2 by geodesic
polygons, such that all the vertices of 7 satisfy the angle-folding relation,
i.e., each vertex of 7 is of even valency 2n, n > 2, and the sums of alternate
angles are equal; that is,

n n
2921' = Zezi—x =T,
i=1 i=1

where the angles 6; around any vertex of 7 are ordered cyclically.

Folding tilings are intrinsically related to the theory of isometric foldings
of Riemannian manifolds, introduced by S. A. Robertson [5] in 1977. In fact,
the edge-complex associated to a spherical f-tiling is the set of singularities
of some spherical isometric folding.
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A spherical f-tiling 7 is called monohedral if every tile of T is congruent
to one fixed set X; it is called dihedral if every tile of T is congruent to
either two fixed sets X and Y.

The classification of f-tilings was initiated by Ana Breda [1], with a com-
plete classification of all spherical monohedral (triangular) f-tilings. Later
on, in 2002, Y. Ueno and Y. Agaoka [9] have established the complete clas-
sification of all triangular monohedral tilings of the sphere (without any
restrictions on angles).

The study of all dihedral spherical f-tilings whose prototiles are an equi-
lateral triangle and an isosceles triangle was presented in [3]. For a list of
all dihedral f-tilings of the sphere by equilateral and scalene triangles see
{2].

Robert Dawson has also been interested in special classes of spherical
tilings, see [6,7,8] for instance.

In this paper we shall discuss dihedral f-tilings by spherical right triangles
with at least one isosceles triangle.

2. Main Result

From now on T} is a spherical right triangle of internal angles %, o and
B, with edge lengths a (opposite to 3), b (opposite to &) and ¢ (opposite to
%), and T is a spherical isosceles right triangle of internal angles 7, v and
7, with edge lengths d (opposite to y) and e (opposite to ) (see Figure 1).
We will assume throughout the text that Ty and T» are distinct triangles,

ie, (&, B) # (1,7):

b

Figure 1. Prototiles: spherical right triangles 71 and T»

We shall denote by (T3, T2) the set, up to an isomorphism, of all dihe-
dral f-tilings of S2 whose prototiles are T} and T5.

Relations between faces, edges, vertices and angles of any dihedral f-tiling
of $2, with prototiles T} and T3, are stated in proposition 1.

Proposition 1 (3, Proposition 2.1] Let v € Q(T1,T2). If Ny > 0 and
N > 0 denote the number of spherical right triangles of T congruent to T}
and Ty, respectively, and E and V denote the number of edges and vertices
of T, respectively, then:

228



(i) Ny + No=2V - 4= %EZ&‘
(ii) 3V =6 + E;
(iii) there are, at least, siz vertices of valency four;
(iv) the cases (a + B> 7 and v > §) and (a + > and vy > §) cannot
occur.

It follows straightaway that

™ w
a+6>§ and 'y>z. (1)

In order to get any dihedral f-tiling 7 € Q (T}, T2), we find useful to start
by considering one of its local configurations, beginning with a common
vertex to two tiles of 7 in adjacent positions.

In the diagrams of the following sections it is convenient to label the tiles
according to the following procedures:

(i) We begin the configuration of a tiling v € Q(T1,T:) with a right
triangle T1, labelled by 1; then we label with 2 a right triangle 15,
adjacent to T;

(ii) For j > 3, the location of tile j can be deduced from the configuration
of tiles (1,2,3,...,7 — 1) and from the hypothesis that the configura-
tion is part of a complete f-tiling (except in the cases indicated).

Theorem 2 (Main Result) Let Ty and Ty be two spherical right triangles

as described before. Then, Q(Th,Tz) consists of:

- a continuous family of tilings T,, where a € (§,3%);

- a sporadic f-tiling C in which the prototiles are the right triangles (28,8, §)
and (1 — 48,7 — 43, F), with B ~ 32.6°;

- a sporadic f-tiling N in which the prototiles are the right triangles (m — 2,
7 —3v,3) and (7,7, F), with vy~ 52.2°;

- a continuous family, with two free parameters, of tilings Gog, where a +
Be(5.3), a>8;

- a sporadic f-tiling G in which the prototiles are the right triangles (—:,f, B, %)
and (3 - 26, % - 28, %), with B ~ 35.9°;

- a family of a discrete parameter G*, with k > 2, in which the prototiles
are the right triangles (”—;E, B, 12’-) and (z—_@:-l)ﬁ R "‘(2’2"1)” , %), where
B is completely determined for each k; for instance, if k=2 and k = 3,
then B =~ 23.1° and B = 14°, respectively;

- twelve f-tilings F;, 1 < i < 12, in which the prototiles are the right
triangles (5,%,%) and (3,5, %)

- a sporadic f-tiling D in which the prototiles are the right triangles (%, 05, 5)
and (7 — 28,7 — 28, F), with B = arctan V1 + 2v/3;

- a sporadic f-tiling M in which the prototiles are the right triangles (¥, 5—
v,%) and (7,7, §), with v~ 48.9°;
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- a sporadic f-tiling H in which the prototiles are the right triangles (%, %", z)
and (3, 5,5);

- a sporadic f-tiling J in which the prototiles are the right triangles ( =
3v,%) and (v,7, %), with v ~ 48.5°;

— for each k > 4, a single f-tiling R* with prototiles (¥,m —2v,%) and

(7,7, 3), with v = arccos y/4 cos T.

Planar representations, as well as a detailed study of these f-tilings, are
included in the following sections. The type of vertices involved in each
tiling is also presented. 3D representations of the f-tilings are illustrated in

Figure 2.
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RY (k=5

Figure 2. Dihedral f-tilings of the sphere by right triangles (a,ﬁ, 12'-) and ('7, ¥, %)

Note that the construction of some of these 3D representations, namely C,
N, G, M and 7, presented several difficulties inherent to their complexity
and absence of symmetries and also great circles of edges contained in these
tilings.

In Table 1 is shown the combinatorial structure of the spherical dihedral
f-tilings whose prototiles are spherical right triangles (a, 8, ) and (v,7, 5).
Our notation is as follows:

- PBp = 32.6° is the solution of (2), with & = 23 and v = 7 — 4;

- 70 = 52.2° is the solution of (2), with a = 7 — 2y and B =m — 3v;

= fBo ~ 35.9° is the solution of (2), with @ = T and vy = 2% — 283;

- for each k > 3, 3§ is the solution of (2), with a = 252 and y = "—_@-;-19—@;
~ fBo is the solution of (3), with a = Fand y=m - 2f;

~ %o = 48.9° is the solution of (4), witha = % and = § - §3;

- %o is the solution of (6), with a = § and 3 =7 — 3;

- |V is the number of distinct classes of congruent vertices;

— Nj and Nj are, respectively, the number of triangles congruent to T; and

Ty, respectively, used in the dihedral f-tilings.

- G(7) is the symmetry group of each tiling 7 € Q (T1, T2); C,, is the cyclic
group of order n; by D,, we mean the dihedral group of order 2n; V is
the Klein 4-group, isomorphic to Cy x Ca; Sy is the symmetry group of
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order 24, i.e., the group of orientation preserving symmetries (rotations)
of the cube.

f-tiling a B ¥ V| Ny Nz G(r)
Ta (’]"-, %’5 a T-a 2 4 4 Dy
c 28 Bo - 48 5 64 24 Cy
N T -2y -3y Yo 4 16 40 c)
Sap. > B a (;-a,iiiz-u) ({-,g) 3 16 8 Ca
g % Bo 2z — 28 4 96 24 Dy
oF k>3 | ZZ£ & TCETE | 4 [1e(2k-1)] 8 Dy
F1 Fd % b1 5 24 12 \4
Fa z z 5 6 20 14 Ca
Fs z z £ 7 32 8 v
Fa z z i 7 28 10 Ca
Fs z z i 7 24 12 4
Fe z % 3 6 36 6 Dy
Fr z 3 3 4 24 12 D
Fs z % R 6 16 16 v
Fo z k3 % 5 12 18 D3
Fi0 2 z i 4 32 8 | CaxDq
Fu i X K] 3 16 16 | Ca2 x Dg
Fi3 = Z Z 4 24 12 Dg
D 3 Bo w—28 4 96 24 D2
M % Z -~ 5o 3 48 24 Sq
H 'g j 3 6 4 D3
J 3 7w — 3y %o 4 48 72 Dy
Re k>4 x -2y arccos \/i- cos £} 3 4k 4k Do

Table 1. Combinatorial structure of the dihedral f-tilings of S? by right triangles

(2.8.3) and (1.7, 3)

Note that the angles of each triangular prototile of the monohedral tilings,
enumerated by Y. Ueno and Y. Agaoka [9], for instance, are all rationals
(except within continuous families). In the dihedral tilings the relation of
adjacency obtained by two distinct prototiles Ty and T3, in adjacent po-
sitions, induces a certain condition on the angles of T and T, (see e.g.
condition (2)). The relation of adjacency does not appear in the case of
monohedral tilings, where the determination of the angles is based only on
the vertices of the tiling. Such an adjacency relation is behind the appear-
ance of irrational angles in the prototiles of some dihedral f-tilings (Table
1).

3. Casea=p

In this section, we consider = B, with @ # v, « # § and v # §

(the cases @ = 7 and y = § were studied in [3]). We will assume further,
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without loss of generality, that o > «. By Proposition 1—(iv) and (1), we
must have vy € (§,3). Wealsohaved <a=b,0<d<e< f anda #ec.
Moreover, if a vertex v of 7 € (T3, T2) is surrounded by an angle J, then
v is necessarily a vertex of valency four.

Under these assumptions, any element of Q (T}, T>) has at least two cells
such that they are in adjacent positions and in one of the situations illus-

trated in Figure 3.
-
: d
a B @ c

Figure 3. Distinct cases of adjacency when a =

Proposition 3 If a« = 3, then Q(T1,T2) is composed by e continuous
family of tilings, denoted by T, a € (5,3), wherea+y =7 (a # ).
For a planar representation see Figure 6(b). Its 3D representation is given
in Figure 2.

Proof.

1. Suppose firstly that we have two cells in adjacent positions as illustrated
in Figure 3 —A. With the labelling of Figure 4(a), we must have 6; = %.

<

(d

Figure 4. Local configurations

Consequently, a = e and d = ¢ (Figure 4(b)). Using spherical trigonome-
try, we obtain cot a = cot? y and cot~y = cot? a. But there is no~y € (§, 3)
satisfying simultaneously these conditions.

2. Suppose now that we have two cells in adjacent positions as illustrated
in Figure 3 —B. Analogously to the previous case, we have 8; = § (Fig-
ure 5(a)) and consequently a = e and d = ¢ (Figure 5(b)), which is a
contradiction (observe that v < § < a, which leads simultaneously to
c<aanda<c)

3. Suppose finally that we have two cells in adjacent positions as illustrated
in Figure 3 —C. As ¢ = e, we have cot’a = cot?y, and so a + 7 =
w. With the labelling of Figure 6(a), we have necessarily §; = 7. The
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Figure 5. Local configurations

last configuration is then extended in a unique way to the one given in
Figure 6(b). We shall denote such f-tiling by 7, where a € (%, 34—") Its 3D

¥

(a) (b) Planar representa-
tion of T

Figure 6. Local configurations

representation is shown in Figure 2. O

4. Case a # 3

Now, we consider a # §, witha+ 3 > 5,7 > § and v # § (the
case v = 4 was studied in [3]). Recall that we must have o + 8 < 7 or
7 < 5 (Proposition 1—(iv)). We also have @ # b and d # e. Under these
assumptions, any element of 2 (T}, T2) has at least two cells such that they
are in adjacent positions and in one of the situations illustrated in Figure 7.
In the following subsections we will consider separately these distinct cases
of adjacency.

4.1. Case of Adjacency A

We begin with the following result that states some conditions on the
angles and lengths of the sides of T} and T in the considered case of
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Figure 7. Distinct cases of adjacency when a # 8
adjacency.

Lemma 4 Suppose that there are two cells in adjacent positions as illus-
trated in Figure 7-A. Then,
()

cotacot 8 = cot?; (2)

(ii) a,b0, B # %;

(iii) a,b,c #d.

(iv) the three edges of Ty must have different lengths.
Proof.

(i) It follows immediately observing that cosc = cotacotB and cose =
cot?y (with c =e).

(i) As cosa = $2£ and cosb = 28, ifa = 3, b= 3, a=For
B = %, we obtain cosc = cosacosb = 0, ie., ¢ = 7. Using the condition of
adjacency ¢ = e, we get cose = cot?y = 0, which implies vy = %, that is an
impossibility.

(iii) If @ = d (note that ¢ = €), we have 8 = v or 8+ v = 7 (using sine
rule). On the other hand, from (i) and using the fact that coty = -:%g, we
obtain sin(2a) = sin(28), and so a + 8 = ¥. By Proposition 1-(iv), we
must have v < . Hence, we conclude that § + v = m (otherwise o > =).
Replacing this equality in (i), we get @ + v = « and consequently a = S,
which is an impossibility. Analogously we prove that b # d. ¢ = d implies
d = ¢, and so T3 is equilateral, which is also an impossibility.

(iv) If @ = b, then o« = (8, which is an absurdity. On the other hand,
we have a # ¢ and b # c, otherwise we obtain 8 = § and o = I,

respectively. O

S|
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Suppose that any element of 2 (T, 7%) has at least two cells congruent,
respectively, to T1 and T3, such that they are in adjacent positions as illus-
trated in Figure 8. Taking into account the results of Lemma 4 and with

Figure 8. Local configuration
the labelling of this figure, we have
T ~ T
0, € {5,7} and 6, € {5,7}.
These possibilities for 8; and 8, will be now analyzed.

Proposition 5 With the above terminology, if Q(T1,T2) # 0, then 61 = v
and 6 =~.

Proof. Suppose that we have two cells in adjacent positions as illustrated
in Figure 8 and 6, = § (Figure 9).

Figure 9. Local configuration
We have § # 3 (Lemma 4(ii)) and so 8+ § < 7. Consequently, we have
B < & < a (recall that a + 8 > %). Now, 62 must be y or 3.
1. If §2 = -y, we obtain the configuration illustrated in Figure 10(a). Vertex v

Figure 10. Local configurations

cannot have valency six (see edge lengths), and so we must have 5 +5+k8 =

237



7, k2> 1,0r Z+B+v+kB =, k > 0. But in both cases an incompatibility
between sides takes place at this vertex.
2. Suppose now that §; =  (Figure 10(b)). At vertex v we must have
3 +v+kB =m, with k£ > 1, which implies < § <y < e.

If o+~ = =, it follows that £ = 1 and we get the configuration illustrated
in Figure 11(a). Although a complete planar representation was possible to

Y A 3
8 /I 12
2 3

. 6 1 ,n.w& 4 5 13

() HE PNJ/ort W, a
: 4+ [V Y747 (744

v 7 5 9 €3

alay

Figure 11. Local configurations

draw, we may conclude that such a configuration cannot be realized by a
f-tiling since there is no spherical triangles satisfying simultaneously the
relations that come from Figure 11(a) and relation (2).

If @ 4 v < , the last configuration is extended in a unique way to the
one illustrated in Figure 11(b). Note that, at vertex v, we have necessarily
a+a+y =, implying that k = 1 (§+7+8 = 7). We also have k§ =, for
some k > 5. Using (2), we conclude that there is no integer k satisfying such
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condition, and so we reach a contradiction. Therefore, §; = v (Figure 8).
Similarly we prove that 6; = ~. O

By proposition 5, the configuration illustrated in Figure 8 extends to the
one that follows.

Figure 12. Local configuration

Now, we must obtain all the f-tilings with prototiles 77 and T: that
follows from this configuration. Without loss of generality, we may suppose
that o > 3.

Proposition 6 If there are five cells in adjacent positions as illustrated in
Figure 12, then Q(T1,T2) # 0 iff

(i) 2a+y=7mandy+28+a=m or

(ii)) a+2y=wand3y+B8=m, or

(i) a+y+B=m, witha+B € (5,%), 0,8#Z, or

(iv) a+y+28=7mand3a=m, or

(v) a+y+kB==,k>2, and 20+ 8 = 7.
The first case leads to a unique dihedral f-tiling, denoted by C. A planar
representation is given in Figure 18. For its 3D representation see Figure 2.

The case (ii) leads also to a unique f-tiling, denoted by N'. A planar rep-
resentation is given in Figure 27. A 8D representation is given in Figure 2.

In the case (i) there is a family of f-tilings, with two continuous pa-
rameters, denoted by G.p, with a + 8 € (-;5, 37") In Figure 28 is given
the corresponding planar representation. A 3D representation is given in
Figure 2.

The fourth case leads to a unique f-tiling, denoted by G. A planar repre-
sentation is given in Figure 30. A 3D representation is given in Figure 2.
In the last situation, for each k > 2 there is an f-tiling, denoted by G*. A
planar representation is given in Figure 84. For theirk=2 eand k =3 3D
representations see Figure 2.

Proof. Suppose that we have five cells in adjacent positions as illustrated
in Figure 12.

If B+~ = 7, we obtain the configuration illustrated in Figure 13(a).

Observing that the vertices v; and v, at the dark line are in antipodal
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positions, we conclude that the distance between v; and vs is 2d =7, i. e.,
= %, and so v = §, which is an impossibility.

Y|y
(10
4 ‘5
e 4'}{.5 N, no:l-r i; I 4
N Eik3 Y
‘213 L
1 0-1,
1 - Y
2 BYu 6 2 g
] 8,

Figure 13. Local configurations

Thus 8 + v < « and similarly & + v < #. Now, we consider separately
thecasesa+ 8 >mand a+ B < 7.
1. Suppose firstly that o+ 8 > 7. If > § and 8 > 7 (by Lemma 4(ii),
@,B # %), then the local configuration illustrated in Figure 8 cannot be
extended. Thus, we shall suppose without loss of generality, that o > § > 8.
cosacos 3
sin asin 3
It follows an incompatibility at the vertex surrounded by a and ~.
2. Suppose now that a+ 8 < w. With the labelling of Figure 13(b), we have

Z2r- or 6;3=20.
2.11f 03 = &, then § + v+ kB = m, for some k > 1, and hence 8 < § <
v < a. We get the configuration illustrated in Figure 14(a). At vertex v we

Now, one has cose = cosc = < 0. Hence e > 3, and so v > 3.

03 =

ala’
5 13,5 15
F %A TN
+ 14 7
10 1973
4 5 16
9 vl kb3 e p—.?ﬁ
ala’ HE 4 p
2 13 y ¥
3 17 @
1" 1 0y,
I IR\ /4 8
B Fy
2V N ¢ /F ¥
a, 8 -?

(a) (b)

Figure 14. Local configurations
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have
a+y+a=m or a+y+y=7 o a+y+kB=m k>1

(i) If a + v + a = =, then we have necessarily k = 1. Andso v+ 8 = «.
The last configuration is extended in a unique way to the one illustrated in
Figure 14(b).

Note that 84 cannot be 8 in tile 13. In fact, observing Figure 15(a) and
taking into account the length sides, we must have z = 3. Therefore, § +
t3 = m, for some t > 3, leading us to conclude that 3 < . On the other
hand, o = §+§ (2a+y=mand F+7+8=7). Now, 7 =2a+7 <
3a= 3’41 + %‘2 < m, which is an impossibility.

At vertex ¥, we obtain § +8+p > , in which p must be a or § attending
the length sides, and so we reach a contradiction.

a
3 13 o
=
TINF Z1h
: 10
14 N 44‘15
il 2|7 b4
9 "'ﬂuv Eary Y,
2 |3 /"
A 1 1 0,7,
o
z DB pana g B 7

JZAN %
10 21
a | s
Yo +5 1“5
N
2 3
19 1" 1 a-y
13 WA, i3 N 7
8/\p [EYANG
3 N 6 /7
B 14 N\e o B NF

(b)

Figure 15. Local configurations
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(ii) If @ 4+ v + v = =, then the last configuration is extended in a unique
way to the one illustrated in Figure 15(b) (if we consider z = 8 in tile 17
we would obtain & = J, which is a contradiction). At vertex 7, we have
a+vy+p >, in which p must be @ or 7, and so we reach a contradiction.
(iii) If a+y+kB ==, k > 1, the last configuration is extended in a unique
way to the one illustrated in Figure 16(a). At vertex 7, we havea+ 5 <«
and a+vy+p>wVp € {a, B,7, 5}, which is an impossibility.

v,
Her ala’
-':"9 BN

| % 8 1

o/ 10 | 1N\ P 1

g B yina A ) B: 7 B 44
Th N 68‘.%'3' : 7 6

o 8 \g ole

o

(=) (b)

Figure 16. Local configurations

2.2 Suppose now that 83 = B (Figure 13(b)). As 8 < «a, we have a > Z,
which implies § +a + p > 7, Vp € {¢, 8,7, 5}, and so tile 7 is completely
determined as illustrated in Figure 16(b). Now, at vertex v, we have

at+y+a=mw or at+y+y=mn or at+y+kB=m k21

(i) If @+ +a = 7, then the last configuration is extended to the one given
in Figure 17(a). Now, one has § > «, v > 7 and, at vertex ¥, we have

y+kB=m k>3, or
y+kiB+ %-I'kzﬁ:ﬂ‘, ky>1, ks >0, or
Y+ kB+a+kfB=m k1 >1, k20, or
Yy+kiB+v+kfB=m ki >1, kg >0, or
y+kiB+y+koB+v+ksB=m, ky>1, ko, k3 2 0.
(a) If y+kB =7, k > 3, then 8 < %, and the last configuration is extended
in a unique way to the one illustrated in Figure 17(b). By proposition 5,

we have 03 = . Now, y+y+ B8 <m andsoy+7+kB=7m (1 <k <k)
ory+y+v+kB=m (k>1and k > 4, with k < k). In the first case it
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81(Y
N
H 4 | s
- B Y e 5 7
N ° 3 10 4N T FF N
4 5 2 3
(X3 ‘;’ 'g' Y
) B 8 1 0 14 18
10 &N 2"3‘ o) (P < S\ S 1 S
3 ey e HE P
s/ 8 1 vy N, 7 6 13|17 /7
B 153 BN 1 12
¢ HE 6 y, 19 e e o “,l 22
7 N k3 Y
15| 16
ale 7 20 21 q
T 6 +
Y p Y
9, v
(a) (b)
Figure 17. Local configurations
follows that v = (k — k)8, while in the second case we obtain 7y = £5%3.

However, in any case the obtained angles do not satisfy (2).

(b) fy+ki1f+ 5 + ke =, k1 > 1,k > 0, then we get an impossibility
since there is no way to mark the sides around ¥ (Figure 17(b)).

(c) Suppose now that v + k18 + o+ k28 = m, with ky > 1 and ko > 0. We
have necessarily k1 + k2 < 3, and, as k; + ko = 1 implies & = 3, we conclude
that kj + k2 = 2. Thus, the last configuration extends in a unique way to the
one illustrated in Figure 18. Note that we consider §; = a and 6 = 3 (tile
11 and 21, respectively). If 8; = 8 and/or 8 = &, we achieve, by symmetry,
the same tiling. The same applies to similar choices ((v,7, 8,8, o, @, 8, 8)
or (7,7,8,8,8,8,a,a)). Note that we have used the fact that we cannot
have y +B+B+v+kB=mnory+B+B+v+y+kB=m k>1and
k>0.

Using equation (2), we get 8 = 32.6° (all the angles are completely

determined). We shall denote this f-tiling by C. A 3D representation of C is
given in Figure 2.
(d) Suppose that v + k18 + v + ko8 = =, with k;, > 1 and &k > 0. If
ks > 1, we obtain the configuration illustrated in Figure 19 (observe that if
x = J3 (tile 19), then we have the equalities 2o+~ =7, a+~vy+28 = 7 and
27+ np = m, with n > 2, which lead to an incompatibility). We get k8 = ,
for some k > 5. Now, as o+ > I, then o > 3?", and so 2a+ v > m, which
is an impossibility.

Consider now k; = 0. We separate the cases

Y+B8+v=7 (k1=1) and ~y+kif+v=7m (k1 =2).
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v W F 4,
ANECR A KT P o1 3 1
83 z oy ' I8
B 72 2
” 64 65 ¥ P,
al 74 b
D 75 e
79 (\n
80
3y 78
Y
Figure 18. Planar representation of C
B (] Y
N 24 /1
4
10 oA sld Neh 2
a/a\Y 2HTa o\
1 ¥ fos 14
4+ /7 N\/8 NS
8 /AN VAN .;._;_18
6 i 12
[ 7 1 13 17 \p
[} AV + NYa p
“N\p LA ¥ Va\@ [}
20 16 | 15 2
19 21
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Figure 19. Local configuration

In the first case we have v > a and we obtain the local configuration
illustrated in Figure 20(a). At vertex w we obtain o + <y + 8 = 7. Hence
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Figure 20. Local configurations

a = v = {3, that is an impossibility.
In the second case we have & > 7 and we obtain the local configuration
illustrated in Figure 20(b). Observe that:
- if y = v (tile 29), then 3y + mB = 7 (m > 1), and so v > 28; we get an
impossibility as 2a+y =7 and a + 8 > §;
- ify=a,then 2y+a <7 and 2y+a+p > Vp € {a,B,7}, which is
also an impossibility.
At vertex w’ we obtain  +«y + 3 < 7. Therefore, o + v + 28 = w. As seen
before, it is incompatible with the equalities 2a+y =7 and 2y+ k1S =7
(k1 2> 2).
(e) Finally we consider v + k18 + v + k2B + v + k3B = m, with k; > 1
and kz, k3 > 0 (this condition implies @ > 7). It follows that k; = 1 and
ky = k3 = 0. Consequently, 8 = 6a — 27 and v = m — 2¢, and from (2) we
get csc(6a) (cos(4a) + 2sin®(3a)) = 0. And so & = arccos 152—'7@ ~ 65.3°.
Thus, the angles and edge lengths of T} and T, are completely determined
and the configuration illustrated in Figure 17(a) is extended in a unique
way to the one given in Figure 21. We obtain k8 = =, for some k > 5.
Nevertheless, there is no integer k satisfying k(6 — 27) = .

(ii) If @ + v+ v = m, then the configuration illustrated in Figure 16(b) is
extended to the one given in Figure 22(a). At vertex #, we have
y+kB=m, k>2, or
Y+ B+ka=n k21, or
7+k1ﬂ+%+k2ﬂ=ﬂ', ki >1, k2 >0, or
Yt+kiB+a+tkef=m ki 21, kp>0, or
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Figure 22. Local configurations

Y+kiB+y+kfB=m k21, k220, or
7+klﬂ+7+k2ﬂ+7+k3ﬁ=7ra klzla k?a k320'

(a) If y + kB = =, k > 2, then we obtain the configuration illustrated in
Figure 22(b). If k = 2, v+ 8+ 8 = 7, and so 8 > v > % (recall that 8 < a).
Now, at vertex v we have no way to sa.t.isfy the angle folding relation. On
the other hand, if £ > 3, we have 'y > Z> B, and S0 at vertex v we get
a+a+ 8 = 7. It follows that o = 4k+11r, B = 4k+1 and v = %w By
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(2), we obtain a contradiction.

(b) Consider v+ 8+ ka = 7, with k > 1. As f < a and 7y > %, we must
have k = 1. It follows that 8 = 4, and by (2), ¥ = ¢, which is not possible.
(c) Consider v + k18 + § + ko8 = m, with k; > 1 and kp > 0. We have
B < § <7 < a, and consequently we obtain the configuration illustrated
in Figure 23(a). At vertex v we have a + § +p > 7, Vp € {@, 8,7, § }, and
so we reach a contradiction.
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Figure 23. Local configurations

(d) Suppose that v+ k) 8+a+ky8 =, withk; > 1, ky >0and ky+ky > 2
(note that k; + k2 = 1 implies & = 8 = v, which is not possible).

If k; > 1, we obtain the configuration illustrated in Figure 23(b). As
B < £ <7 < a, at vertex v we have necessarily o + a + 8 = 7, and
soa =7~ 2y and B = 4y — 7. Using (2), we get v = §, which is an
impossibility. Thus, k; = 1 and at any vertex we cannot have two angles o
in the same alternated sum.

Now, if k2 > 1, we obtain the configuration illustrated in Figure 24(a),
and consequently a contradiction at vertex v. Therefore, k; = k2 = 1 and
the angles are completely determined by (2) (8 = 26.5°, vy = 2 and a =
m — 43). The last configuration (Figure 22(a)) is then extended in a unique
way to the one illustrated in Figure 24(b). Nevertheless, there is no way to
satisfy the angle-folding relation around vertex v (see angles measure).

(e) Consider v + k18 + v + ko8 = m, with ky > 1, ks > 0. It follows
immediately that k) + k2 > 2 (o > §). Analogously to the previous case,
one can show that k, = k; = 1, and so 8 = arctanﬁg (by (2)). The
configuration illustrated in Figure 22(a) is extended to the one given in
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Figure 24. Local configurations

Figure 25(a). Note that a +y+ 8 =a+f <manda+v+B+p > 7,
Vp € {a,B,7,%}, and so tiles 19, 21 and 23 are completely determined. At
vertex v, we have y + y+y < w, but y+v+v+p>m, Vp € {a,8,7, 5}
(f) Finally, suppose that v+ k18 +v + k28 + v+ k38 = , with k; > 1 and
ky,k3 > 0. Therefore & > v > T > B. Analogously to the previous cases,
we must have k; = 1 and at any vertex we cannot have two angles « in
the same alternated sum. Moreover, k2, k3 < 1 (as seen before). Now, we
consider separately the different arrangements for k2 and kj.

The cases k3 = 1 (with ko = O or k; = 1), and k2 = 1 and k3 = 0,
give rise to the configurations illustrated in Figure 25(b) and Figure 26,
respectively. At vertex v we have & + o < m and so a + a + 8 = 7w which
implies v = § (by (2)), which is an impossibility.

248



&2 9 23 H
AR
(=1 AV
10 2N TIF R 24
aja
2 |3
8 1 ey 14 T 18
o 3 7R N
3 03 S 9
v 7 6 SN\ 13| 17"
LI NG
afax
i HE NS
18 '77 5 vy 2
151 16
s 20 21
5 N +
v
(a)
+
5 B4
2
2 PXtm
21
) o
J BD Y,
A B NG 18, &7
++‘3‘ 9 A
20 41 s 17
NVl i+ PAVA
N Eyr AN
k4 2 3 ¥
v/ 8 1 b/ 12 T 14
B, HE N8 + B\
g HF eV NE  HF 8
7 B " 13
ola aja
(b)

Figure 25. Local configurations

If ko = k3 = 0, then we get the configuration illustrated in Figure 27.
Note that, by symmetry, if §4 = a or 8, = 3, we obtain the same f-tiling. We
shall denote such f-tiling by A. Its 3D representation is shown in Figure 2.
We have v = 52.2°, a =7 — 2y and 8 = 7w — 3y (by (2)).

(iii) Consider now a +y+ kB =m, k > 1.

(iii.1) If £ = 1, then the configuration illustrated in Figure 16(b) is extended
to the one given in Figure 28. Note that 8 # v and o # v, otherwise we
get, by (2), @« = B = %, which is not possible (tiles 13 and 21 are then
completely determined). We have o + 8 € (%, afT’"), with a > 8, @, 8 # 7,
and v € (%, 3). We shall denote such f-tiling by G,g. Its 3D representation
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Figure 27. Planar representation of A

is shown in Figure 2.

(iii.2) If £ = 2, then we get the configuration illustrated in Figure 29 (in
this case we obtain § > a > v > § > 3). At vertex 9, we have
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Figure 28. Planar representation of Gag, a + 8 € (%, 37"), a>f

at+a+a=m, a+a+y7=7 or at+a+f=m.

iii.2.1) If et+a+a =7, i.e, a = I, then we get the configuration illustrated
3

pip
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"\ 2 SN )
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7 6
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Figure 29. Local configuration

in Figure 30 (note that « + 8 + 8 + k8 = = implies k = 1, which is not
possible). We shall denote such f-tiling by G. Its 3D representation is shown
in Figure 2. We have o = §, § =~ 35.9° and v = 2£ - 28 (by (2)).

(iii.2.2) If a+a++y = 7, we get the configuration illustrated in Figure 31(a).
At vertex v, we havea+y+a=mora+vy+28 = .

(iii.2.2.1) If a+vy+a = 7, at vertex v’ (Figure 31(b)) we have y+8+8+a =
mory+p+ B+ 8+ =m (observe that a = 23).

(iii.2.2.1.1) If v + B8 + B + a = m, the last configuration is extended to
the one given in Figure 32(a). Now, if 84 = 8 we obtain another complete
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Figure 32. Local configurations

planar representation of the previous f-tiling C. Otherwise, if 84 = v, we get
the configuration illustrated in Figure 32(b). At vertex v” we must have
Y+B8+v+vy=7 (note that y +4B8 =7, andsoy+ B + v+ kB # =, for

all k). Taking into account the relations between angles, we get o = o
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B =% and 7 = 3§. But these angles do not satisfy relation (2).
(iii.2.2.1.2) If v + 8+ B + B + B = = (Figure 33(a), vertex v'), we reach a
contradiction at vertex v"/, as y+B+y+B8 <mand y+B+v+B+p >,
Vp € {a,B,7,%} (the case v + B + v+ = 7 was previously studied and
did not give rise to any f-tiling).

[
29 ¢
+ aja + + w
+ 26 27 ¥ + kil
a 25 28 P T
N 2 slogv 417
N A ;3 e
SRL 21 *
19 [+ 15 16 H 24
WA H1 N
17 cun HE "y 22
1 12 )
\ L
v 14 | 1 N\els/ 4 ].5
B 15 1) Y R )
DS 7O NI (I 2
13 9 2 3

(b)
Figure 33. Local configurations

(1ii.2.2.2) It is a straightforward exercise to show that, if a +v+28 =7
(Figure 31(a)), we get either an incongruence or the previous f-tiling C.

(iii.2.3) Finally, if k = 2 and a« + o + 8 = «, or k > 3, the configuration
illustrated in Figure 16(b) is extended to the one given in Figure 33(b). At
vertex v; we have necessarily a +a+8 =, as if a+v+ 38 < 7 and
a+a+p =, with p € {@,7}, we obtain 27 > (a+7+36) +(a+a+p) =
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(a+B)+(a+8)+(a+B8)+(v+p) > 4F = 2=, which is impossible. At vertex
vy, we must have & + v+ kB = m, since a + v + v = = implies a = %‘E_—IIE,
B = z& and 7 = z£%;, and relation (2) is not satisfied for any k. Thus,
the last configuration is extended in a unique way (for any k& > 2) to the
one illustrated in Figure 34. We have a = "—;2 and vy = "—'(z—zk——l)ﬁ, for some
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Figure 34. Planar representation of G*, k > 2

k > 2. Using these relations and (2), for each & > 2, we obtain a unique
solution in 8. For instance, for k = 2 we have 8 =~ 23.1° and for k = 3
we have 8 =~ 14°. We shall denote such family of dihedral f-tilings by G*,
k > 2. 3D representations of G2 and G2 are illustrated in Figure 2. O

4.2. Case of Adjacency B

As in the previous case, we begin stating some conditions on the angles
and lengths of the sides of T} and Ts.

Lemma 7 Suppose that there are two cells in adjacent positions as illus-
trated in Figure 7—B. Then,

(i)

cot acot 8 = coty; (3)

(i) a,b,c, 8,7y # §;
(iii) a,b,c#e.
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(iv) the three edges of Ty must have different lengths.
Proof.

(i) It follows immediately observing that cosc = cotacot 8 and cosd =
coty (and c=d).

(if) Analogous to (ii) of Lemma 4.

(iit) If @ = e (note that ¢ = d), by the sine rule we obtain sin siny = 1,
which is an impossible condition since 3,7 # 5. Analogously we prove that
b # e. Obviously ¢ # e.

(iv) Analogous to (iv) of Lemma 4. a

Proposition 8 If there are two cells in adjacent positions as illustrated in
Figure 7-B, then Q(T1,T2) = {D, Fi,1 <i < 12}, where F; (1 <i < 12)
are non-isomorphic f-tilings obtained in {4, Proposition 1.] and D is a single
tiling whose angles around vertices are positioned as illustrated in Figure 35.

-} B ala,
+ YN FZAES

Figure 35. Distinct classes of congruent vertices

ol

Proof. Suppose that any element of Q (T1,T>) has at least two cells congru-
ent, respectively, to 77 and T3, such that they are in adjacent positions as
illustrated in Figure 36(a). Taking into account the results of Lemma 7 and

Figure 36. Local configurations
with the labelling of this figure, we have

6, or 6;=cq.

I
1]

1. Suppose firstly that 6, = J. In this case we have necessarily a + 8=
(Figure 36(b)).

If @ > B, then o > % and the last configuration is extended to the one
illustrated in Figure 37(a). At vertex v we have necessarily o + vy = 7 as
a+vy+p>mp€{a,B,v, §} But then y= . Using (3), we get o = %,
which is a contradiction.

On the other hand, if a < B, we have § > § and the configuration
illustrated in Figure 37(b). At vertex v we cannot have §++ = m, otherwise
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Figure 37. Local configurations

we get 8 = I (by (3)). Nevertheless, 8+~ +p > =, Vp € {a, 8,7, §}, and
so we reach a contradiction.

2. Suppose now that 8; = a. Then, the local configuration extends as
illustrated in Figure 38. At vertex v we have

T
2

+ka=m k2>1, or o:+12r-

a+ +y+ka=m, k20

o,

Figure 38. Local configuration

2.1 Suppose that a+ % +ka = m, with & > 1. Then 7,8 > § > a. The case
k =1 corresponds to the analysis developed in [4], where twelve distinct
f-tilings, with prototiles (3, %, %) and (%, , ), were achieved, namely F;,
1 €4 £ 12, 3D representations are illustrated in Figure 2.

Now, if k£ > 1, we have a € (0, Z] and consequently 8 > ¥. With the
labelling of Figure 39(a), we have

s
02—[3 or 02—5.

2.1.1 If 82 = B, we get the configuration illustrated in Figure 39(b). At
vertex v; we have 8+ S+ a = mor §+ B+~ = «. In the first case, at
vertex v, we get 8+ + v =7 (note that 8 =+, by (3), implies 3 = § or
a = £, which is not possible). Applying these conditions in (3), we obtain
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coty + cot 4ycot2y = 0, but this equation has no solution in (§,%). On

Figure 39. Local configurations

the other hand, if 8+ 8+« = 7, we must have k = 2 (i.e,, @ = §) and the
last configuration is extended in a unique way to the one given in Figure 40.
We shall denote such f-tiling by D. A 3D representation of D is illustrated
in Figure 2.

2.1.2 If 6, = § (Figure 39(a)), we get the configuration illustrated in Fig-
ure 41(a). Now, we have

03:% or 03=,B.

If 83 = % (Figure 41(b)), observing the vertices v{, v and v}, and taking
into account that 8 and 7 cannot be adjacent angles, we have necessarily
B+ 8+a=xand 8+ v+ = . As we have seen before, these conditions
lead to a contradiction.

The analysis of 83 = 8 (Figure 42(a)) is analogous to the one made in
02 = f3, applied to the vertices v{ and vj.

2.2 Suppose now that o+ +y+ka =7, withk > 0. Then 8> v > 7 > .

If k = 0, we get the local configuration illustrated in Figure 42(b). Note
that 8, = Z, otherwise we get 63 = z which is not possible. The same
applies to the choice of 84. If 8 + v + ka = m, for all k£ > 1, the equation
(3) has no solution. On the other hand, if 8 +~v + 8 = =, we obtain a =~
35.6°. This last condition also leads to ko = w, for some k > 4, which
is not possible. And so, at vertex v;, we have necessarily 8 +v +v = .
Nevertheless, there is no way to satisfy the angle-folding relation at vertex
va.
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Figure 40. Planar representation of D

If ¥ > 1 and using analogous argumentation, we get the local configu-
ration illustrated in Figure 43. At vertex v we reach an impossibility. The
case 0 = « is similar. 0

4.3. Case of Adjacency C

Lemma 9 Suppose that there are two cells in adjacent positions as illus-
trated in Figure 7-C. Then,
()
cosa

= cot? ¥; 4
o8 = ot (@

- (B) ba# g
(i) a,b,d # ¢ (observe that if a = c, then there are no f-tilings with such
prototiles);
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Figure 41. Local configurations

(i) ifd=a, thena,B # § and

; (5)

{ cos? Bsin B = sin® acosa

cos? ysina = sin+ycos

(v) the three edges of Ty must have different lengths.

We omit the proof of this result as it is similar to Lemma 4 and Lemma 7.

Proposition 10 If there are two cells in adjacent positions as illustrated
in Figure 7-C, then Q(T1,T2) consists of a unique dihedral f-tiling, denoted
by M, such that o = §, v+ = § and y = 48.9°. A planar representation
of M is given in Figure 48 and a 3D representation is given in Figure 2.
Proof. Suppose that any element of Q2 (T, T3) has at least two cells congru-
ent, respectively, to T) and T5, such that they are in adjacent positions as
illustrated in Figure 44(a). Taking into account the results of Lemma 9 and
with the labelling of the this figure, we have
s

6, = 7
1. Suppose that 6, = Z (Figure 44(b)). The cases §; = o and 8; = 7y are
illustrated in Figure 45(a) and Figure 45(b), respectively. As v # % and
d # ¢, in both cases we reach a contradiction at vertex v.
2.1f 6, = o (Figure 44(a)), then § + &+~ + ko = , for some k > 0 (note
that T + o + ka = m, with k > 1, implies v = F, which is not possible, see
length sides). And so 8 > v > § > a. With the labelling of Figure 46(a),
we have 82 = v or 6 = a. In both cases, taking into account the angles

0p=a or 6,=n.
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Figure 42. Local configurations

and edge lengths, we get the configuration illustrated in Figure 46(b). We
have 03 = «, as 63 = § implies § + 8 + p = =, for some p € {a, 3,7}, and
in all cases we have no solution satisfying simultaneously the equations (4)
and (5). Nevertheless, there is no way to satisfy the angle-folding relation
at vertex v.

3. Suppose finally that 6, = v (Figure 47(a)). As 7 < v # §, we have
gt+tY+kB=mor §+7v+ka=m, for some k > 1.
3.1 Suppose that § + v+ kB = =, forsome k > 1. Thena >~y > § > 8
and we get the configuration illustrated in Figure 47(b) (recall that d # ¢).
Now, at vertex v we havea+a+a=7Tora+a+~vy=r".

The first case leads to the planar representation illustrated in Figure 48.
Using equation (4) we get k = 1, v~ 48.9° and 8 = § — . We shall denote
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Figure 43. Local configuration

27

(b)

e

(b)

Figure 45. Local configurations
such an f-tiling by M. A 3D representation of M is illustrated in Figure 2.

Ifa+a+v=mthen k =1and a = d. But thereisno a € (%,%"
satisfying (4) and (5).

3.2 Suppose now that § + v + ko = m, for some k > 1. We have 8 >
7 > % > a and we get the configuration illustrated in Figure 49(a), with
03 € {v,a}.
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Figure 46. Local configurations

Figure 47. Local configurations

If 03 = v, at vertex v we have f+v+v =7 or 8+ + 8 = 7 (note that,
by (4), v cannot have valency four).

If 8+~ +~ = =, we have a # d, otherwise equations (4) and (5) have
no solution. The last configuration is then extended to the one illustrated
in Figure 49(b). Nevertheless, at vertex v’ there is no way to satisfy the
angle-folding relation.

If B4+~+8 = m, then k = 1, a # d and we get the configuration illustrated
in Figure 50(a) (note that tile 17 is uniquely determined as a < v < 2a).
Again, there is no way to satisfy the angle-folding relation at vertex v”.

If 83 = o (Figure 49(a)), we get a = d, 8 # 7, and the local configuration
illustrated in Figure 50(b). At vertex v"’ we have 8+ 8 + p = , for some
p € {a,,7}. But in all cases we have no solution satisfying simultaneously
the equations (4) and (5), and so we reach a contradiction. 0
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Figure 49. Local configurations

4.4. Case of Adjacency D

Lemma 11 Suppose that there are two cells in adjacent positions as illus-
trated in Figure 7-D. Then,
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cos o . (6)

(ii) ba# & and a,f # v;
(iii) a,b,e # c (observe that if a = c, then there are no f-tilings with such
prototiles);
(i) ife=a, thena,B # I,
cos Bsin’® 8 = sinacos? a
(7)

sina = sinfsiny

and if B > %, there is at most one angle B in each alternating angle
sum;
(v) the three edges of Ty must have different lengths.

Proposition 12 If there are two cells in adjacent positions as illustrated
in Figure 7— D, then Q (T, T2) # 0 iff

(i) a=y=5andB+y=m or

(i) a=%,3v+B=m, or
(iii) 2v+ B =7 and ka =, for some k > 4.
The first case leads to a single tiling, denoted by H. A planar representation
is given in Figure 55(b). For its 3D representation see Figure 2.
The case (ii) leads to a single tiling, denoted by J, in which v =~ 48.5°. In
Figure 58 is given the corresponding planar representation. A 3D represen-
tation is given in Figure 2.
In the last situation, for each k > 4, there is a single tilings, denoted by
R*, with v = arccos /4 cos . A planar representation of R* is given in
Figure 60(b). For their k = 4 and k = 5 3D representations see Figure 2.



Proof. Suppose that any element of Q (77, T) has at least two cells congru-
ent, respectively, to T) and T3, such that they are in adjacent positions as
illustrated in Figure 51(a). Taking into account the results of Lemma 11

(b)

Figure 51. Local configurations
and with the labelling of the this figure, we have

=%y, b=a or O =

e

1. If 8, = ~ (Figure 51(b)), we have a = e and, at vertexv, § +y+ka =7
or 3 +7+ kB =, for some k > 1. In both cases, there is no way to satisfy
the angle-folding relation at vertex v.

2 If 8 = o (Figure 52(a)), at vertex v we have § gra+ ka = w or
5 +a+‘y+ka— , for some k > 1 and k& > 0. As in the previous case,
there is no way to satlsfy the angle-folding relation at vertex v.

(b)
Figure 52. Local configurations
3. If 6, = % (Figure 52(b)), then we have
0: =a, 02:% or 0 =+.

3.11If 62 = a (Figure 53(a)), e = a and at vertex v we have  +y+ka =1
or § +7+kpB =m, for some k > 1.

Iff+v+ka=mn(k2>1), we have 8> v > § > a and we get the con-
ﬁguratlon illustrated in Figure 53(b). At vertex v we reach a contradiction,
asf#% (e=a)and T +B+p>m, for all p € {§,2,8,7}.
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Figure 53. Local configurations
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7 () 10 /v "
6 +~0 8 B3
a /Y
(a) (b)

Figure 54. Local configurations

f3+9+kB=m(k21),a>v>% > p and we get the configuration
illustrated in Figure 54(a). At vertex v we have a+-a+a = w or a+a+y = 7.
In both cases we have no solution satisfying simultaneously the equations
(6) and (7).
3.21If 6, = 7 (Figure 54(b)), then e = a and a > v > § > . Taking into
account the analysis of the previous case, we conclude that at vertex vo we
have o + @ + 8 = m and at vertex vz we have @ + v + v = m; in this last
situation note that there is no way to satisfy the angle-folding relation if
a+y+ kB =, k > 2. Nevertheless, the equations (6) and (7) are not
satisfied.
3.3 Suppose finally that 8, = v (Figure 55(a)). We consider separately the
cases +y=mand B+ < 7.
331If8+v = m, then e # a and a = 4. The last configuration is
then extended in a unique way to the one illustrated in Figure 55(b), with
a=1v= % and 8 = 47, We denote such f-tiling by H. The corresponding
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Figure 55. Local configurations

3D representation is given in Figure 2.

3.3.2 Suppose now that 8 + v < . With the labelling of Figure 56(a), we
have 03 = B or 83 = a. For each case, we divide the proof in the cases a > 3
and a < 8.

3.3.2.11f 93 = B and o > B, we have o > & and we get the configuration
illustrated in Figure 56(b). At vertex v; we have o + a + p = , for some

p € {v,a,8}.

Figure 56. Local configurations

If o + @+ =, then e = a and equations (6) and (7) have no solution.

If a+a+a = (Figure 57), i.e., « = §, then e # @ and at vertex v, we
have necessarily y+v+v+8 = 7 or y+vy+8+8 = « (note that y+y+8 =w
implies y = 8 = 3). If v + v + v + 8 = m, by equation (6), we get v =
48.5° and § = 34.4° (o = %). Taking into account these angles, the last
configuration is extended in a unique way to the configuration illustrated
in Figure 58. We shall denote such f-tiling by J. Its 3D representation is
shown in Figure 2. On the other hand, if y+vy+8+8 = 7, we get v = 51.3°
and B = 38.7° (o« = §). The last configuration is then extended in a unique
way to the configuration illustrated in Figure 59(a). Taking into account
the angles measure, we reach a contradiction at vertex v.
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Figure 58. Planar representation of J

If o« + a+ 3 = m (Figure 59(b)), then e # a. But at vertex v, there is no
way to satisfy the angle-folding relation.
3.3.2.21If 63 = 8 and « < 3, we have 8 > T and we get the configuration
illustrated in Figure 60(a). At vertex v, we have 8+ v + p = =, for some
p € {7, B}, and so e # a {otherwise equations (G) and (7) have no solution).

269



28
i 8 7 32 39
HH ol ks 3 PG
2. 6 alo HE R
pos 9 31 /%%\ 38
26 B XB 3 3
+ J/ NS 1 pls/ 30 | 33 \g
25 ++ O ; £
4 ] Y
2L\ 2 AP e%
AX: 10 16
o ?T" 7‘, ) H#+0 NWY
52\, 14 Y15 SN 367
Q : z 12 +13 (1)
a\& 35
P 209¥15 e 19 a
23 X <+
o) 17 G
(a)
Bla
TN
7 3 B NG »
6 g HE 0
; 3 9 1"
Vet 1
o 3 N7
4 HF (1t
1 2
¥ 10 L[. 15
4 I . 7
13 3 14 >
aia,
(b)

P\ 7 [V ket
4t

a1l
10 P[P 1 T 14

v
(2) (b) Planar representation of R¥,
k>4

Figure 60. Local configurations
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If B + v + v = m, the last configuration is extended in a unique way to
the one illustrated in Figure 60(b). The vertices v; and v, are in antipodal
positions since there exist two distinct geodesics of the same length joining
them, and soa+b+c=n Wehavea =%, k > 4,and § = 7 - 2v.
Using these relations, it is a straightforward exercise to show that v =
arccos \/ % cos £. We shall denote such family of dihedral f-tilings by RE,

k > 4. 3D representations of R* and R® are illustrated in Figure 2.

If 8+~ + B = m, we get the configuration illustrated in Figure 61(a).
We reach a contradiction at vertex v, as there is no way to satisfy the
angle-folding relation (observe that -y # S).

+ -}":'

T 8 aua o 19 A 2o

4 Bo-u P M 2

& e 3 18“ C:

7 X, ! N 7“’ o3, ! 3
1~ 5 * E]
s\*"|* 2 " #1708 s \* [T 2 7

9 J’LA.-} 9
g AR BN
’ 3, 12 PN 12

2 A%
BN 15
B
(a) (b)

Figure 61. Local configurations

3.3.2.3If 03 = o and a > B (Figure 56(a)), then, taking into account the
edge lengths, we obtain ao+ v + kB = w, k > 1. Therefore e # a (other-
wise, equations (6) and (7) are not satisfied) and we get the configuration
illustrated in Figure 61(b). Nevertheless, there is no way to satisfy the
angle-folding relation at vertex v (see length sides).

3.3.2.4 Finally, if 3 = o and a < 8 (Figure 62(a)), we have B+ v +y =
or f+v+ka=m, withk >1.

fB+y+v=m thene =aand § +v+a = =, which lead to a
contradiction.

If 847+ ka =m k > 1 (Figure 62(b)), then must 6; = =, since
64, = 7 and 64 = B lead to a contradiction as illustrated in Figure 63(a)
and Figure 63(b), respectively, where there is no way to satisfy the angle-
folding relation at vertex v. The last configuration is then extended to the
one illustrated in Figure 64. However, at vertex v we reach a contradiction.
Note that tile 11 is completely determined as 85 = o implies §g = 5. The
same applies to tile 12. Note also that v # %, otherwise, equation (6) has
no solution.
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() (b)

Figure 62. Local configurations

Figure 64. Local configuration

4.5. Case of Adjacency E

Proposition 13 If there are two cells in adjacent positions as illustrated
in Figure 7—E, then Q (T1,T2) is the empty set.
Proof. Suppose that any element of 2 (T, T2) has at least two cells congru-
ent, respectively, to T1 and T, such that they are in adjacent positions as.
illustrated in Figure 65(a). Taking into account the results of Lemma 11
and with the labelling of the this figure, we have
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Figure 65. Local configurations

01=g, hh=a or 6;=+.

Note that, by proposition 5 and proposition 6, we have 8; # (.
1. If 6, = 7 (Figure 65(b)), we have a = e. As v # Z, we reach a contra-
diction at vertex v.
2.1If 6, = a, then by the case of adjacency A, tile 3 is completely determined.
On the other hand, as a = e, we have 8 > v > a (Figure 66(a)). However,
we obtain an incongruence since there is no way to satisfy the angle folding
relation at vertices v; and v, simultaneously.

N 4'3' N
1
1
o
21 MANv 4 b p
N 2 | q 3
5 o7 2
53 Y 3
b ™
(a) (b)

Figure 66. Local configurations

3. Suppose finally that 8, = 4. With the labelling of Figure 66(b), we have
02 = or 02 = ﬁ

3.11f0; = o, we have § +~+ka ==, for some k > 1. Then 8 > v > I>a
and we get the configuration illustrated in Figure 67(a). Note that we have
necessarily 8 = 7 (tile 7), and so e # a. Consequently v = § and equation
(6) has no solution.

3.21If 6; = B, then § + v + kB = =, for some k > 1 (Figure 67(b)).
And so a > 8. As tiles 3 and 6 form the previous case of adjacency, by
proposition 12 we have (T, T3) = 0. (]
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Figure 67. Local configurations
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