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Abstract
Let G be a connected graph, the degree resistance distance of G is
defined as Dr(G) = Y [d(u) + d(v)]r(u,v), where d(u) (and
{u,v}CV(G)

d(v)) is the degree of the vertex u (and v), r(u,v) is the resistance
distance between vertices u and v. A fully loaded unicyclic graph
is a unicyclic graph with the property that there is no vertex with
degree less than 3 in its unique cycle. In this paper, we determine
the minimum and maximum degree resistance distance among all
fully loaded unicyclic graphs with n vertices, and characterize the
extremal graphs.

1 Introduction

All graphs considered here are both connected and simple unless otherwise
stated. The distance between vertices u and v of the graph G, denoted by
d(u,v), is the length of a shortest path between them. The degree of vertex
u is d(u); n, m are the number of vertices and edges of G, respectively. The
girth of a graph G is the length of the shortest cycle in G.

The famous Wiener index was introduced by Harold Wiener in 1947,
defined as[1]

WG)= Y, duv) (1)
{uw}CV(C)

A modified version of the Wiener index is the degree distance, was introduce
by A. A. Dobrynin and A. A. Kochetova[2], defined as

D@G)= ) ldu)+d()d(,v) (2)

{u,v}CV(G)

If G is a tree on n vertices, the Wiener index and the degree distance are
related as D(G) = 4W(G) — n(n — 1) (for details see (3]).
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In [4), a multiplicative variant of the degree distance, namely modified
Schultz index or Gutman indez was put forward, defined as

SH(G)= D dw)d(v)d(u,v) 3)

{uv}CV(G)

If G is a tree on n vertices, the Wiener index and the modified Schultz
index are related as $*(G) = 4W(G) — (2n — 1)(n — 1) (for details see {4]).
The modified Schultz index of graphs attracted attention recently. In [5] an
asymptotic upper bound for S*(G) was reported. In [6], a relation between
the edge Wiener index and modified Schultz index was established, and S.
Mukwembi in [7] improved on a bound by Dankelmann, Gutman, Muk-
wembi and Swart established in [6]. The maximal and minimal modified
Schultz index of bicyclic graphs are determined in [8] and [9], respectively.

The concept of resistance distance was introduced by Klein and Randié
[10) in 1993, on the basis of electrical network theory. They viewed a
graph G as an electrical network N such that each edge of G is assumed
to be a unit resistor. The resistance distance between the vertices u and
v of a graph G, denoted by r(u,v), is defined to be the effective resistance
between nodes u, v € N. Analogous to the definition of the Wiener index,
the Kirchhoff index K f(G) of a graph G is defined as{10, 11]

Kf(G)= > r(wv) (2)

{uw}EV(G)

If G is a tree, then 7(u,v) = d(u,v) for any two vertices u and v, the
Kirchhoff and Wiener indices of trees coincide.

The Kirchhoff index is an important molecular structure descriptor{12],
it has been well studied in both mathematical and chemical literatures.
For a general graph G, 1. Lukovits et al. [13] showed that K f(G) > n—1
with equality if and only if G is complete graph K,. J. L. Palacios [14]

3 _
showed that K f(G) < " 6 "™ with equality if and only if G is a path P,.

3 _
For a circulant graph G, ref. [15] showed that n — 1 < K f(G) < " 19 n,

the first equality holds if and only if G is K,, and the second does if and
only if G is Cy,. The unicyclic graphs with extremal Kirchhoff index were
determined in [16, 17]. H. Deng also studied the Kirchhoff index of fully
loaded unicyclic graphs (18] and graphs with cut edges [19]. H. Zhang et
al. [20] characterized bicyclic graphs with extremal Kirchhoff indices. B.
Zhou [21] characterized the extremal graphs with given matching number,
connectivity. H. Wang et al.[22] determined the first three minimal Kirch-
hoff indices among cacti. R. Li in [22] obtained newer lower bounds for the
Kirchhoff index of a connected graph.
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The degree Kirchhoff index was put forward in [23], and further studied
in [24, 25|, defined as

RMG)= >  dwdw)r(u,v) (3)

{vv}EV(G)

Comparing Eqgs. (2) and (3) we can see that the degree Kirchhoff index
may be viewed as the resistance distance analogue of the Schultz index.
However, there is a much more subtle reason for the introduction of this
novel structure descriptor.

The degree resistance distance was introduced by I. Gutman, L. Feng
and G. Yu in [26]:

Dr(@)= ) [d(u)+d(@)r(u,v) (4)

{u,v}CV(G)

They investigated the degree resistance distance of unicyclic graphs, deter-
mined the unicyclic graphs with the minimum and second minimum degree
resistance distance. Chen et al. [27] determined unicyclic graphs with the
maximum and second maximum degree resistance distance. J. L. Palacios
in [28] renamed the degree resistance distance as additive degree Kirchhoff
indez, gave tight upper and lower bounds for the degree resistance distance
of a connected undirected graph.

If G is a tree, the degree distance and the degree resistance distance
coincide as well, i,e., Dr(G) = 4W(G) — n(n - 1).

A graph G is called a unicyclic graph if it contains exactly one cycle.
For convenience, we represent a unicyclic graph G with the unique cycle
Ci=vwe -y as G=U(C,;T, T3, -+ ,T;), where T; is the component
of G — E(C;) and T; is a tree rooted at v;; T} is trivial if it is an isolated
vertex. A fully loaded unicyclic graph is a unicyclic graph with the property
that there is no vertex with degree less than 3 in its unique cycle. If G =
U(Ci;T1,Ts,- - ,Tq) is a fully loaded unicyclic graph, then T1,T5, -+ , T}
are all nontrivial. Let % (n;!) be the set of all fully loaded unicyclic graphs
with n vertices and the unique cycle Ci, % (n) be the set of all fully loaded
unicyclic graphs with n vertices; S, and P, be the star and the path on n
vertices, respectively.

The paper is organized as follows. In Section 2, we introduce some
lemmas and two transformations which decrease the degree resistance of
graphs and a transformation which increases the degree resistance degree
of a graph. In Section 3, we obtain a formula for calculating the degree
resistance distance of graphs in % (n;!), and determine graphs in % (n)
with the maximum and the minimum degree resistance distance by analytic
methods.
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2 Preliminary Results

For a graph G with v € V(G), G — v denotes the graph obtained from G

by deleting v (and its incident edges); and for an edge uv of the graph G

(the complement of G, respectively), G — uv(G + uv, respectively) denotes

the graph resulting from G by deleting (adding, respectively) the edge uv.
For a vertex v € V(G), let

r(v|G) = Z r(u,v), S'(v|G) = Z d(u)r(u,v)

weV(G) vEV(G)

C., be the cycle on n > 3 vertices, for any two vertices v;,v; € V(C,) with
(= i)n+i=
n
u € V(C,), it’s suffice to see that r(u|Cy) = z 1, S'(u|Cp) =

Lemmg 2.1([29]). Let T be any n vertices trees, then (n — 1)? <
wW(T) < n 6_ n, the left equality holds if and only if G = S,, and the right
holds if and only if G & P,.

Lemma 2.2([2]). Let z be a cut vertex of a connected graph and a and
b be vertices occurring in different components which arise upon deletion
of z, then 7(a,b) = r(a,z) + r(z,b).

Lemma 2.3([26]). Let G; and G be connected graphs with disjoint
vertex sets, with n;, np vertices, and m;, ma edges, respectively; u; €
V(G1), uz2 € V(G2). Constructing the graph G by identifying the vertices
u; with ug, and denote the so obtained vertex by u. Then Dgr(G) =
Dr(G1) + Dr(G2) + 2mar(u1|G1) + 2myr(u2|Gz) + (n2 — 1)8'(w1]G1) +
(n1 - I)S'(’U.zle).

Let X and Y be two nontrivial connected graphs, such that u € V(X),
v € V(Y); G be the graph obtained from X and Y by adding the edge uv.
We form a graph G’ = a(G,u) by identifying vertices u and v, and adding
one pendant edge at u. We say that G’ is a o-transform of G(see Figure

1).

J); for any vertex
n® —1

i < j, by Ohm’s law, we have r(v;,v;) =

“®®

G' = a(G,u)

Figure 1. The transformation o

Lemma 2.4. Let G’ = (G, u) be a a-transform of the graph G, then
Dg(G) > Dr(G@").
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Proof. Assume that H is the graph induced by V(Y) U {u}, and
|E(X)| = mu, |[E(Y)| = mg, [V(X)] = ny, {V(Y)] = na. By Lemma
2.3, one has Dr(H) = Dgr(Y) + 2r(v|Y) + S'(v|Y) + 2mz + n2 — 1. Then

Dr(G)

= Dp(X) + Dr(H) + 2(ma + 1)r(u|X) + 2myr(u|H) + 125" (u]X)
+ (n1 — 1)S'(u|H)

= Dp(X) + Dr(Y) + 2(mg + 1)r(uX) + 2(m; + 1)r(u]Y) + naS'(u| X)
+ 18 (v[Y) + 2myny + 2mony +ny + g

and analogously,

Dgr(G'y = Dr(X) + Dr(Y) + 2(mg + )r(u|X) + 2(m; + 1)r(v]Y)
+ nQS’(ulX) + nlS'(le) +2my +2mgy +n; +ng

So we get Dr(G) — Dp(G’) = 2my(na — 1) + 2ma(ny; — 1) > 0.

This proves the result.

Let X, Y and Z be three connected graphs with «' € V(Y) and v’ €
V(Z). Suppose that u and v are two vertices of X. Let G be the graph
obtained from X, Y, Z by identifying v with v' and u with u/, respectively.
Let G’ be the graph obtained from X, Y, Z by identifying the vertices
u, v/, v/, and G” be the graph obtained from X, Y, Z by identifying the
vertices v, v/, v, as shown in Figure 2. Analogously, we say that G’ and

G" are f-transformed from G.
v
PGS
T~
B
G p
U @Q
GI
Figure 2. The transformation 3
Lemma 2.5. Let G', G” are graphs f-transformed from G. Then
Dgr(G’) < Dr(G) and Dg(G") < Dr(G).

Proof. Let |[E(X)| = my, |E(Y)] = mq, |E(Z)| = ma; |V(X)| = ny,
[V(Y)| = n2, |V(Z)| = n3. H is the graph induced by V(X)UV(Y) in G,
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G'. By Lemma 2.3, one has

Dp(G) = Dr(Z) + Dr(H) + 2mar(v|H) + 2(my + m2)r(v|Z)
+ (n3 — 1)S'(v|H) + (n1 + n2 — 2)5'(v| Z)

rlH) = Y r(v,2) =r(|X) +r@]Y) + (n2 = r(y,v),
zeV(H)
S'WH)= Y d(z)r(v,2) = S'(®X) + §'(uY) + 2mar(u,v).
zeV(H)
Thus,

Dg(G) = Dp(Z) + Dr(H) + 2mg[r(v|X) + r(u|Y) + (n2 — 1)r(u,v)]+
2(my + ma)r(v|Z) + (n3 — 1)[S'(v|X) + §'(u]Y) + 2mar(u, v)]
+ (n1 + ng — 2)S8'(v|Z2)

and analogously,

Dgr(G") = Dr(2) + Dgr(H) + 2m3[r(v|X) + r(u|Y)] + 2(m1 + m2)r(v|Z)
+ (n3 — 1)[S'(v|X) + S’ (v|Y)] + (n1 +n2 — 2)S'(v|Z2)

Thus, Dr(G) — Dr(G’) = [2ma(n3 — 1) + 2ma(nz — 1)]r(u,v) > 0.
By the similar argument, one has

DR(G) - DR(G”) = [2m2(n3 - 1) + 2m3(n2 - 1)]7‘(11,, ’U) > 0.

The proof is completed.

Suppose that G be a graph of order n > 7 obtained from a connected
graph H # P; and a cycle C, = uou; - - - ur, 7 > 4 by identifying uo with a
vertex u of the graph H; G' = G — up—_1ur_2 + uu,—2 (see Figure 3), We
say G’ is a graph 7-transformed from G.

Uy lul
Ur-1
Uy Ur-1
G G

Figure 3. The transformation vy

Lemma 2.6. Let G and G’ are two graphs depicted in Figure 3, then
Dgr(G) > Dr(@).
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Proof. Assume that |[E(H)| = ma, |V(H)| = n, by Lemma 2.3, one
has

Dr(G)

= Dg(C,) + Dr(H) + 2mur(v|C;) + 2rr(v|H) + (nr — 1)S'(v|C})
+ (r —1)S'(v|H)

= %(r”‘ 1)+ Dr(H) + 2mn et 4 2rr(v]H) + (nn — 1)’"23' 1
+ (r - 1)S'(v|H)
= Dp(H) + 2rr(v|H) + (r — 1)S'(v|H) + Ts; L "23‘ L mn 4+ — 1)

and analogously,

3 _ 2 _
Dr(G') = Dr(H) + 2rr(v|H) + (r — 1)S"(v|H) + T——T—#

™ —-2r+6 r—-2r+3
3 mp + 3

(nn - 1)

Thus, one has

28 +6 2r-7 2r—4
Dr(G) - Dr(G") = L 3’"+ + T+ T - 1)
_(r—4)2-10  2r—7 or —4
=Ty Tyt
~-10 1 4
—_— 4 = - - >
> 3 +3mh+3(nh 1)>0
Lemma 2.7[28]. Let Gg be a connected graphs with mg > 1 edges, and
u,v € V(Gp) be two distinct vertices with degree at least 3 in G such that
r(u,v) =l. Let P; = ujug---u, and P, = vyvy- - - v; be two paths of order
s > 1 and t > 1, respectively; G, be the graph obtained from Gp, P, and
P, by adding edges uu,, vv;. Suppose that G;_; 41 = G5t — Urtr—1 + Ve,
and G,.H,g..l = Gs,t—vg_lvt +ugv;. Then either DR(G;,’;) < DR(G,_1.¢+1)
or Dr(G,,;) < DR(Gs+1,z—1)-

(nn—1)

3 Extremal degree resistance distance in fully
loaded unicyclic graphs

3.1 Extremal degree resistance distance of % (n;!l)

In this section, we shall determine the graph in % (n;!) with the maximum
and the minimum degree resistance distance.
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(7] !

v Un—t

Vi Vg
(8) U(Ci; Koy -+ K9, Sacag-1))  (b) U(Cr; Ka+ -+ , K3, Pag-1y)

Figure 4.

Theorem 3.1. Let G € (n;l) be an arbitrary fully loaded unicyclic
graph with girth {. Then Dp(U(Ci; K2, -+ ,K2,Sn—20-1))) < Dr(G)
and Dgr(G) < Dr(U(Ci; K2+ , K3, Pa_2¢1-1))), the first equality holds
if and only if G = U(C; K2, -+ , K2, Sp_2(1-1)) and the second does if and
onlyif G2 U(Ci; K2+ -+ , K3, Pa_sq-1))- U(Ci; Ka,--- , K2, Sp—2¢-1y) and
U(Ci; K2, -+ K2, P,_s(1_1)) are depicted in Figure 4.

Proof. For the left inequality, we suppose that G’ be the graph in
% (n;!l) has the minimum degree resistance distance. By Lemma 2.4,
Lemma 2.5, one has G' = U(C; Ka,- -+ , K3, Sn_2(1-1))-

For the right inequality, suppose that G” has the maximum degree re-
sistance distance, then all trees T;(1 < i < !) attached to the cycle C; must
be paths by Lemma 2.4. Further, from Lemma 2.6, all paths are connected
to one vertex of the only cycle Cj, then G = U(Cy; Ka, - -+ , K2, Pa_aq-1))-

This completes the proof.

3.2 The minimum degree resistance distance of % (n)

In this section, we determine the graph in % (n) with the minimum degree

resistance distance.

Theorem 3.2. Let G € % (n) with n > 6, then Dg(G) > 3n?— g- 26,
the equality holds if and only if G = U(Cs; K2, K2, Sp—4).

Proof. Firstly, we shall compute Dr(U(Ci; K2, -+, K2, Sn_2-1)))-
As depicted in Figure 4(a), we let G; be the graph induced by u; and v;
fori=1,2,.--,l, Gy be the graph induced by v; i =1+1,{+2,--- ,n-1)
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and u;. By the definition of degree resistance distance, one arrives at

Dg(G1)
= > ldw) +dlu)lr(u,u) + D ;) + d(;)]r(vi, vy)

1<i<jgl 1<i<j<

3 i
+ 30 D ld(ws) + d(vs)r(ws, v;)
i=1 j=1
) l
=6 Z T(ui, uj) + 2 Z (r(us, uj) +2) + 422(7’(“;’,“]’) +1)
1<i<jist 1<i<j<! i=1 j=1

=6K f(Ci)+2Kf(Cl) + 4(2) +4(2K f(C)) +1?)
= 16K f(C;) + 612 — 21;
and
Dg(G2) = Dp(Sn_at41) = 3(n — 21)% ~ (n — 20);
2 _
r(w|Gs) =n—21, r(w|Gy)=1+ L3—1;

S'(w|Ga) =n —2, S'(w|Gy) = %F +1- §

By Lemma 2.3, one has
Dr(U(Ci; K3, , K3, Sne2q-1)))

= 16K f(C1) + 612 — 2L + 3(n — 20)% ~ (n — 21) + 4l(n — 21)

21 2., 2
#2(n =2+ —=) + @ = D(n-2) + (- 2A)(F2+1- 3)

= -;-(-413 + 4ni? — 9nl 4 10l + 9n® — 10n)

Nextly, we determine the graph in U(Cj; K, -+, K2, Sp—gq—1)) With
the smallest degree resistance distance.

Let f(l) := Dr(U(Ci; K2, -+ , K2, Sn_gq-1))) =
100 + 9n2 — 10n), 3< 1 < [g].
Case 1. If 6 < n < 7, then {-'21] =3and [ =3. f()min = F(3) =
2 T
3n? - 2 - 26.

Case 2. If 8 < n < 10, then [g—] = 4,5 and ! = 3,4,5. Computing
directly, one has

%(-413 + 4nl? — 9nl +
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490 504

(1) f(3)=~3—<f(4)=Tforn=8.
(2) f(3)=§-;1—2<f(4)=2£forn=9.

(3) £(3) = §-31—2 < f(d) = 8% < £(5) = 300 for n = 10.

Case 3. If n > 11. 3

The first derivation of f(l) is f'(l) = _412+?nl—3n+
VanZ —27n + 30

Let f'(1) =0, then l; 2 = 2n ¥ vin ; 27n + 30.

It’s easy to verify that {; < 3, 12 > [g] Thus, f'(I) > 0 in the interval

I:= [3,4, . ,[%]] Therefore, f({)min = f(3) = 3n? — g _926.
Combining above three cases, one proves the theorem.

10

n
—_ << [=].
7 313

3.3 The maximum degree resistance distance of % (n)

In this section, we determine the graph in % (n) with the maximum degree
resistance distance. 9
Theorem 3.3. Let G € % (n) with n > 6, then Dp(G) < §n3 —28n+

104, the equality holds if and only if G = U(Cs; K2, K2, Pr—4).

Proof. For the graph U(Ci; Ka,- -+ , K2, Pa_2(1-1)), as shown in Figure
4(b), we let G3 be the graph induced by u; and v; for i =1,2,---,1, G4 be
the graph induced by v; (i=1,{+1,--- ,n-1{).

By Theorem 3.2, one has

Dr(Gs) = 16K f(Ci) + 612 — 21 = %zs +612 - %Oz, and

Dr(G4) = Dr(Pn-2141)
— AW (Pa—gis1) — (n — 20+ 1)(n — 20)

=4x%((n—-2l+1)3—(n—2l+1))—(n—2l+1)(n—2l)

= Ea 2 2 g 2 3 9 Tl.
= 3l + (8n +4)I* — (4n +4n+3)l+3n +n +3,
r(wlGe) = 5(n = 2A)(n— 20 +1), r(w|Gs) = 3 +3L - 3;

S'(w|Ga) = (n —20)%, S'(u|Gs) = %z? +50— %.
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By Lemma 2.3, one has

DR(U(CI;Kz, -y K2, Pa_a0-1y))
10
3

+2n-2)(n-21+1)+ g(n —20)(%+ 91 -
+ (2l = 1)(n—20)2

= —l3+6l2 };13+(8n+4)12—(4n2+4n+ §)l+ §n3+n2+ 2

3
+10L - 8)

= 3(28° — (20n + 60)(2 + (30n + 32)! + 20° — 21n]

In the following, we investigate graph in U(Cy; K3, -+ , K2, Ph_2¢-1))
with the largest degree resistance distance.

Let g(!) := Dr(U(Ci; Ka, -+ , Kz, Pa_s_1y)) = %[2313— (20n +60)I2+
(39n + 32)L + 2n% — 21n), 3 < I < [§1~
The first derivation of g(l) is g'(l) = 28/2 — Z(20n + 60) + 13n + 3.

(10n + 30) /10002 — 2197 + 228
42 '

The roots of g’(l) = 0 are ;2 =
It’s easy to verlfyrtlhat Iy <3,lp >3 forn > 6.
Case 1. Iflp > (], then g'(l) <0 for 3 <1 < [g]. 9(O)maz = 9(3) =

%ns - 28n + 104.

Case 2. If I < [g], then g'(l) < 0 for 3 < ! < I, and ¢’() > O for
L<I<[3):

In this case,

max{Dgr(U(Ci; K2, - , K2, Po_20-1)))} = max{g(3),g([-g])}.
In the following, we shall compare g(3) with g([%]) Let

h(n) = 9(3) - 9((3))

If n is even and n > 6, then

3
()—(-———28 +104)—(—+-3—;’——‘r’—71
n3 3n?2 79n
=g 3~ tiM

= %(n - 6)(3n% +9n — 104) > 0.
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Thus, g(3) > g(g)-

max{Dp(U(Ci; K2, , K2, Pa_2¢-1)))} = Dr(U(C3; K2, K3, Pa-4)).
If n is odd and n > 7, then

3 3 42 2
(3;’——28n+104)—(%+l+11—n——23-)

h(n) 3 3

So, g(3) = g(n—g—ll

max{Dr(U(Ci; K3, - - , K2, Po_gu-1)))} = Dr(U(C3; K2, K3, P,—4)).

Combining the two cases above, one arrives at the desired result.
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