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Abstract

In this paper, we introduce h(z)-Lucas quaternion polynomials
that generalize k-Lucas quaternion numbers that generalize Lucas
quaternion numbers. Also we derive the Binet formula and generat-
ing function of h(z)-Lucas quaternion polynomial sequence.
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1 Introduction

Investigation of normed division algebras is a topic of a great interest today.
It is well known that the quaternions H are the noncommutative normed
division algebra over the real numbers R. Due to the noncommutativity,
one cannot directly extend various results on real and complex numbers
to quaternions. The book by Conway and Smith (3] gives a great deal of

useful background on quaternions, much of it based on Coxeter’s paper [4].
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Quaternions made further appearance ever since in associative algebras,
analysis, topology, and physics. Nowadays quaternions play an important
role in computer science, quantum physics, signal and color image process-
ing, and so on (e.g. [1]).

The investigation of special number sequences over H and O which are
not analogs of ones over R and C has attracted some recent attention (see,
e.g.,(2, 7, 8, 10, 11, 12]). While majority of papers in the area are devoted
to some Fibonacci-type special number sequences over R and C, only few
of them deal with Fibonacci-type special number sequences over H and O
(see, e.g., [2, 7, 8, 10, 11, 12]), notwithstanding the fact that there are a lot
of papers on various types of Lucas number sequences over R and C (see,
for example, (6, 13, 19, 20] and the references therein).

In this note, we introduce h(z)-Lucas quaternion polynomials that gen-
eralize k-Lucas quaternion numbers that generalize Lucas quaternion num-
bers. Also we derive the Binet formula and generating function of h(z)-
Lucas quaternion polynomial sequence.

The rest of the paper is structured as follows. Some preliminaries which
are required are given in Section 2. In Section 3 we introduce h(x)-Lucas
quaternion polynomials that generalize k-Lucas quaternion numbers that
generalize Lucas quaternion numbers and derive the Binet formula and
generating function of h(z)-Lucas quaternion polynomial sequence. Section

4 ends with our conclusion.

2 Some Preliminaries

We start this section by introducing some definitions and notations that

will greatly help us in the statement of the results.

Definition 1 ((5, 15, 21 ]) The classic Lucas {Lp},cn Sequence is de-
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fined by
Lo=2,Li=1landL,=Lp_+L,_o forn>2, (1)

The books written by Hoggat [9], Koshy [15] and Vajda [21] collects and
classifies many results dealing with these number sequences , most of them
are obtained quite recently.

In [17), the authors introduced the h(z)-Lucas polynomials.

Definition 2 ([17]) Let h(z) be a polynomial with real coefficients. The

h(z)-Lucas polynomials { L, n(x)}32., are defined by the recurrence relation
Lh,n+l($) = h(x)Lh,n(x) + Lh,n—l(x)y n>1, (2)
with initial conditions Ly o(z) = 2, La1(z) = h(x).

For k any real number and h(z) = k, it is obtained the k-Lucas numbers
Ly . For k =1 it is obtained the usual Lucas numbers L,,.
The quaternion, which is a type of hypercomplex numbers, was formally

introduced by Hamilton in 1843.
Definition 3 The real quaternion is defined by
9=qr +qit + ;7 +qk
where gr,q;,q; and g, are real numbers and i, j and k are complez operators
obeying the following rules

2=32 =k? = -1,ij = —ji = k,jk = —kj = i, ki = —ik = j.

The quaternions in Clifford algebra C are a normed division algebra with
four dimensions over the real numbers larger than the complex numbers.
The field H = C? of quaternions

3
a=Zases, a, €R,s=0,1,2,3. (3)

8=0
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is an four-dimensional non-commutative R-field generated by four base el-
ements eg = 1,e; & i,e; = j and ez = k. The multiplication rules for the

basis of H are listed in the following table

X 1 e 28 e3

1 1 e1 es es

e | ex -1 es —es

(4)
es | ea —e3 -1 el
es | e e —e -1

Table 1. The multiplication table for the basis of H.

3
A quaternion a = ) a,e, € H is pieced into two parts with scalar piece
s=0

. . — 3 . —
So = ag and vectorial piece V, = Y a,e,. We also write a = S, + V,.
s=1

The conjugate of & = S, + ‘—/: is then defined as

We call a real quaternion pure if its scalar part vanishes. Let @ and S
be two quaternions such that o = S, + V,: and 8 = Sg + 17‘; , where
— 3 — 3
Sa = 0,98 =By, Va = Y ase; and V3 = 3 f,e,. Summation of a and
g=1 s=1
B is defined as

3
a+B=(Sa+Sp) + (Vat+Va) =3 (s + B,)es.

s=0

Multiplication of the quaternion « with a scalar A € R is defined as

3
A= ASa +AVa = Y (M) e

=0

In addition, quaternionic multiplication of & and 8 is defined as

off = 85,83 + SaVp + VaSp — Vo - Vg + Vi x V3,
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where Vi, - Vg = a18; + a5 + a3f; and V, x Vg = (B3 — azfBy)i —
(183 — a3B,)j + (1B — 231k
In recent years there has been a flurry of activity for doing research with

Lucas quaternion. Horadam defined the nth Lucas quaternions as follows:

Definition 4 ([10]) The Lucas quaternion numbers that are given for the
n't classic Lucas L, number are defined by the following recurrence rela-
tions:

Th=Lpn+iln41+ jLlny2 + kLnys (5)
where n =0,+1,+£2,....

The basic properties of Lucas quaternion numbers can be found in [10].
In [7], the author investigate the Lucas quaternions and give the generating

functions and Binet’s formulas for these quaternions.

3 The A(z)-Lucas quaternion polynomials

In this section, we introduce h(z)-Lucas quaternion polynomials that gen-
eralize k-Lucas quaternion numbers. Also we derive the Binet formula and
and generating function of h(z)-Lucas quaternion polynomial sequence.

Let e;, 1 =0, 1, 2, 3 be a basis of H which satisfy the non-commutative
multiplication rules are listed in Table 1 in (4). Let h(z) be a polynomial
with real coefficients.

We now introduce h(z)-Lucas quaternion polynomials that generalize k-
Lucas quaternion numbers and derive the Binet formula and and generating

function of h(z)-Lucas quaternion polynomial sequence.

Definition 5 The h(x)-Lucas quaternion polynomials {Th n(z)}5eq are de-

fined by the recurrence relation

3
Thn(z) = Z L n+s(z)es (6)

s=0



where Ly, ,(z) is the n'* h(x)-Lucas polynomial.

For k any real number and h(x) = k, it is obtained the k-Lucas numbers
Ly n from the h(z)-Lucas polynomials Ly ,(z), and thus for h(z) = k we
obtain k-Lucas quaternion numbers T , from the h(z)-Lucas quaternion
polynomials T, »(z).

Generating functions are known as the most surprising, useful, and
clever tools in mathematics. The ordinary generating function (OGF) of
the sequence {a,}32, is defined by g(z) = Z anz™ [18] and the expo-
nential generatmg function (EGF) of a sequence {an}, is defined by
g(z) = Z anZy [14].

Throughout this paper, we shall be concerned with the ordinary generat-
ing functions. The generating function gr(t) of the sequence {Th n(x)}5%,

is defined by
97(t) = ) Thn(z)t™ (7

n=0

We consider gr(t) as a formal power series which is needed not take
care of the convergence. For general material on generating functions the
interested reader may refer to the books [16, 22] and the references therein.

For convenience, we use the following notations: Ly, = Lp.(z) and
Thin = Thn(z). ‘

Equipped with the definitions and properties above, we can present the

fundamental theorems of this paper as follows.

Theorem 6 The generating function for the h(z)-Lucas quaternion poly-
nomials Ty () s

Tho + (Thy — h(z)Tho)t

and s
gT(t) = Wl)t—tz ZO (Lh,s + Lh,s—lt) €s. (9)
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Proof. The generating function gr(t) of the h(z)-Lucas quaternion poly-

nomials is

97 (t) = Tho + That + Th,ztz + oo+ Tt + ...

(10)

The orders of T, n—; and T} n—2, respectively, are 1 and 2 less than the

order of T}, . Thus, we obtain

h(z)gT(t)t = h(:C)Th,ot + h(x)Th_1t2 + h(z)Th,zts + ...

+h(z)Th p-1t™ + ...

and

gT(t)t2 = Th,ot2 + Th,lts + Th,2t4 + ...+ Th,n_ztn + ...

From Definition 5, (10),(11) and (12), we have
(1 - h(:r)t - t2) gT(t) =Tho+ (Th,l - h(.’L‘)Th,o) t

and we thus obtain (8). From Definition 5, it follows that
3
Tp1 — h(2)Tho = Z Lp,s-16s.
s=0
Combining (13) and (14), then (9) is evident. ®

Similarly, we have the following result.

(11)

(12)

(13)

(14)

Theorem 7 Suppose that h(z) is an odd polynomial. Then for g (t) =

io: Thn(—z)(—t)* we have
n=0

gr(t) = Buolz2) = (111,1'_1 (h—(i))t-'-—’;gx)Th,O(—z)) ¢

and

1 3

gr(t) = T h@i = > (-1)" (Las(2) + Las-1(z)t) €.

s=0
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Proof. We now consider
oo
gr(t) =D Thn(-z)(-t)"
n=0
9r(t) is a formal power series. Therefore, we need not take care of the

convergence of the series. Thus, we write
97(t) = Tho(—2) = Th1(—2)t+ Th o(=2)t2 — ... 4 Th n(—2)(~t)" +.... (17)

The orders of T n—1(—z) and Th n—2(—z), respectively, are 1 and 2 less

than the order of T} ,,(—x). Thus, since h(—z) = —h(x) we obtain

~h(@)gp(t)t = —h(z)Tho(—2)t + h(z)Tha(~2)t* (18)
—h(m)Th,g(—:E)ta + - (—l)n‘lh(.’lf‘)Th,n_l(—:C)tn + ...

and

—gT(t)t2 = —TI";-,,()(—IIJ)t2 + Th'l(—x)ts - ‘.Th’z(—:lz)t4 (19)

-+ (—1)"_1Th,n_2(—$)(t)" + ...

From (17),(18) and (19) we get (15). On the other hand, by using Defini-
tion (5), we can compute

3
Th1 (=) + h{(@)Tho(—2) = D (Lh,s41(—2) + ~(z)Lns(—T)) €5 (20)

8=0

Combining Definition (2) and (20) gives the following equality
3
Thi(—z) + R(x)Tho(—2) = Z Lps-1(—x)es. (21)
=0

Since Ly n(~z) = (—1)*Ly n(z) (17, Theorem 3.3] from (15) and (21) we
have (16). =

Binet’s formulas are well known in the theory of the Fibonacci and
Lucas numbers. These formulas can also be carried out for the h(z)-Lucas

quaternion polynomials.
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The characteristic equation associated with the recurrence relation (2)

is v2 = h(z)v + 1. The roots of this equation are

_ h(z)+ VR@)Z+4 _ h(z) - R@)P T4
T](x) - 2 ) 7.2(:‘3) = .

2

The following basic identities is needed for our purpose in proving.

r1(z) + r2(2) = h(z),
r1(z) - ro(z) = VA(z)Z + 4, (22)
ri(z).re(z) = —1.
For convenience of representation, we adopt the following notations:
r1 = r1(z) and 7o = ro(x).

The following lemma is directly useful for stating our next main results.

Lemma 8 For the generating function gr(t) in (7) of the h(z)-Lucas quater-

nion polynomials T}, »(x), we have

1 [Tag —r2Tho _ Ty —1Tho
ry—"Te 1—mrt 1—rot )

gr(t) =

Proof. The proof can be obtained easily from (22). =

We obtain following Binet’s formula for T}, ,(z).

Theorem 9 For n > 0, Binet’s formula for the h(z)-Lucas quaternion
polynomials Ty () s as follows
Tha(z) = "7 + 81} (23)
3 3
where a* = ) a’e; and B* = Y Be;.

s=0 =0

Proof. From Lemma 8, we obtain

or(t) = 1 [Thg —r2Tho  Thy —71Thp
T Ty — T2 1—-mt 1— 7yt
—_— 1 - nan
= o [(Th,l 7'2Th,0)7;)7'1t (24)

oo
—(Th,y — r1Th0) Z r'z‘t"]

n=0
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By taking (6) into (24), we can get

3 oo
1

gr(t) = —— [Z (Lh,s+1 — T2Lln,s)es Z"?tn (25)

s=0 n=0

3 oo
— Z (Lh,8+1 et T]Lh's) €g Z T;tn] .
8=0 n:o

Since Lp,s41 —T2Ln,s = r§{(r1—72) and Lp s41 —T1Lp,s = —r3(r1 —72) and

from (25) we have

3 oo
1
gr(t) = 3o —ra)e, Y e (26)
1T T2 s=0 n=0
3 oo
+ Z'rg(rl —To)es Zr?t”] .
=0 n=0
3 3
For o* = Y ries; and 8" = Y rie,, from (26) we obtain
s=0 s=0
gr(t) =Y (arf + BTrg) ™. (27)
n=0

Consequently, by the equality of generating function in (7) and (27), we

have Binet’s formula for Tj () in (23) =

Theorem 10 For m € Z, n € N, the generating function of the sequence

{Th,m+n(z)} is as follows

= Thm(z) + Thym—1(x)t
n _ ) D
Z Th,m+n(x)t - 1-— h(a:)t )

n=0

Proof. By using the Binet formula for Ty ,(z), we write

o o0
Y Thmin(@)t® =D (0" + BTy +)en,
n=0 n=0

Therefore, we get
oo o0 oo
Z Th,men(z)t" = o'r Z ittt + BTry” z rat”
n=0 n=0 n=0

" 1
+8 rénl—?‘gt.

1
= a*r™
! 1- T]t
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So, from this and (22) we obtain

i T, (@) = P+ B P + (arr T 4+ B ) t.
e 1 - h(z)t — 2

n=0

Consequently, if we recall Binet’s formula for T ,(z), we get the result. =

4 Conclusions

In this paper, we introduce h(z)-Lucas quaternion polynomials that gener-
alize k-Lucas quaternion numbers that generalize Lucas quaternion num-
bers. Also we derive the Binet formula and generating function of A(x)-
Lucas quaternion polynomial sequence. We predict that in which part of
science the above-introduced generating function and Binet formula for the
h(z)-Lucas quaternion polynomials and numbers will have the most effec-

tive application.
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