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Abstract: In 1989, Zhu, Li and Deng introduced the definition of implicit
degree, denoted by id(v), of a vertex v in a graph G. In this paper, we
give a siinple method to prove that: If G is a k-connected graph of order n
such that the implicit degree sum of any k +1 independent vertices is more
than (k + 1)(n — 1)/2, then G is hamiltonian. And we give an algorithm
according to the proof.
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1 Notation and Introduction

We will use standard notation and terminology of graph theory. Most of
them can be found for example in [4]. In addition, all the graphs considered
in this paper are finite, undirected and siinple.

Let G = (V(G), E(G)) be a graph, with vertex set V(G) and edge set
E(G). The order of G is |V(G)|. For a subgraph H of G, let G — H be the
subgraph in G induced by V(G) — V(H). For a vertex u € V(G), define
Ny(u) ={ve V(H):uw € E(G)} and N}(u) = {v € V(H) : d(u,v) = 2},
where d(u, v) is the distance from u to v in G. The degree of u in H is de-
noted by dy(u) = |Ny(u)|. If H = G, we use N(v), d(v) and N2(v) in place
of Ng(v), dc(v) and NZ(v), respectively. Define o4x(G) = min{d(u;) +
d(ug) + ...+ d(ug) : uy,us,...,ux are k independent vertices in G}.

For a cycle (path) C in G with a given orientation and a vertex z in C,
%+ and z~ denote the successor and the predecessor of z in C, respectively.
And for any I CV(C),let I- ={z:z* € I} and I* = {z : 2~ € I}. For
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two vertices z,y € V(C), zCy denotes the subpath of P from z to y. We
use yCz for the path from y to z in the reversed direction of C.

A graph G is hamiltonian if it contains a hamiltonian cycle, i.e. a
cycle containing all vertices of G. Hamiltonian problems are interesting
and important in graph theory and have been studied deeply. We have two
classic results due to Dirac and Ore respectively.

Theorem 1. (Dirac [6]) If G is a graph of order n > 3 such that 01(G) >
n/2, then G is hamiltonian.

Theorem 2. (Ore [8]) If G is a graph of order n > 3 such that 02(G) > n,
then G is hamiltonian.

It is natural to consider sufficient conditions concerning the degree sum
of more independent vertices for a graph to be hamiltonian. Bondy (2]
investigated the degree sum of k + 1 independent vertices and obtained the
following result.

Theorem 3. (Bondy [2]) Let G be a k-connected graph of order n > 3
with k > 2. If ox41(G) > (k+ 1)(n — 1)/2, then G is hamiltonian.

In order to generalize Theorems 1 and 2, Zhu, Li and Deng [10] proposed
the concept of implicit degrees of vertices.

Definition 1. (Zhu, Li and Deng [10]) Let v be a vertez of a graph G.
If N2(v) # @ and d(v) > 2, then set k = d(v) — 1, my = min{d(u) : u €
N%(v)} and My = max{d(u) : u € N*(v)}. Suppose d; < dp < +-- <
dis+1 < --- is the degree sequence of vertices of N(v) U N2(v). Let

ma, if dk < ma;
d*(v) = dis1, if deyr > My;
dy, if dp > mg and diy1 < M.
Then the implicit degree of v, is defined as id(v) = max{d(v),d*(v)}. If
N2%(v) = 0 or d(v) < 1, then we define id(v) = d(v).

It is clear that id(v) > d(v) for every vertex v. Define g;(G) =
min{id(u;) + id(ug) + ... + id(uk) : uy,us,...,ur are k independent ver-
tices in G}. The authors in {10} gave a sufficient condition for a graph to
be hamiltonian involving implicit degree condition.

Recently, Li, Ning and Cai (7] used 0%, ,(G) in place of 0x41(G) in
Theorem 3 [2], and ohtained the following result.

Theorem 4.(Li, Ning and Cai [7]) Let G be a k-connected graph of order
n >3 with k> 2. If o5, ,(G) > (k+1)(n —1)/2, then G is hamiltonian.
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In this paper, we give a simple method to prove Theorem 4 and give an
algorithin according to the proof.

2 The proof of Theorem 4

For a path P = x,Z;...x, of a graph G, let Ip(z;) = max{i : z; €
V(P) and z;zy; € E(G)} and lp(z,) = min{i : z; € V(P) and z;z, €
E(G)} Set Lp(:l:l) = Zip(xy) and Lp(x,,) = Tip(z,)-

Lemma 1.(Li, Ning and Cai (7]) Let G be a 2-connected graph and P =
T1Zp Tp with x1 = x and T, =y be a path of G connecting x and y. If
zy ¢ E(G), and d(u) < id(z) for any u € Ng_p(z) U {z}. Then either
(1) there exists a vertex x; € Np(z) such that d(x;) > id(x); or

(2) Np(z) = Np(z) U {z} — {Lp(x)}, d(z;) < id(z) for any verter z; €
N7 (z) and id(z) = min{d(v) : v € N%(z)}

Proof of Theorem 4 Let G he a graph satisfying the conditions of Theo-
rem 4 and suppose G is non-hamiltonian. Let C be a longest cycle of G and
give C a fixed orientation. Then R =G — C # (. Let yo € V(R). Since G
is k-connected, there are & paths Pj(yo,y1), Pa(yo,¥2),- . - » Px(¥0,yx) from
Yo to C having only yo in common pairwise. Let V(P;) N V(C) = {y;} for
eachi € {1,2,...,k}, and let y3, ¥, ...,y occur in this order along C with
the given orientation, where the indices are taken modulo k. Let z; = y}
for each i € {1,2,...,k} and let zo be predecessor of y, on the path P,.

Claim 1. {zo,z1,%2,...,%x} and {yo,Z1,Z2,...,Zx} are an independent
sets of G.

Proof. If zoz; € E(G) for somei € {1,2,...,k}, then C' = z;Cy; Piyo Pazox;
(see Fig.1) is a cycle longer than C, a contradiction. Similarly, yoz; ¢ E(G).

Ifz;z; € E(G) forsome+,j € {1,2,...,k} (i < j),thenC’' = a:tC'y,P,yoP
yiCz;z; (see Fig.2) is a cycle longer than C, a contradiction.
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Set Qo(zo0,71) = ZoPoyoPry1Cx1; Qi(zk, Zo) = 2xCyx PryoPazo; and
Qi(zj,zjt1) = z;Cy;+1Pj190P;y;Cxj41 for each j € {1,2,...,k — 1}.
Let R; = G — Q; for each j € {0,1,2,...,k}.

Claim 2. Nj,(z;) # Noy(a;) U {25} — {Loy(:)} and N (z41) #
No,(zj+1) U{zjs1} — {Lg,(z;4+1)} for each j € {0,1,2,...,k}.

Proof. For the path Qo, we know zoz2 ¢ E(G), zoy2 € E(G), 711 € E(G)
and z;z2 ¢ E(G). Since z; is the predecessor of y; on the path Qo and
¥ is before zo on the path Qo (see Fig.3), we have Ng, (zo) # Ngo(zo) U
{20} — {LqQo(zo)} and N (z1) # Ny (z1) U {z1} — {L,(z1)}-

For the path Qg, we know z;yr € E(G), zxz2 ¢ E(G) and zoy2 €
E(G),zoz, ¢ E(G). Since z; is before y; and y, is the predecessor of z,
on the path Qx (see Fig.4), we have Ng (zx) # Ng, (zx)U{zk}—{Lq.(zk)}
and N§, (o) # N, (z0) U {zo} — {Lqu(z0)}-

For the path @;,j € {1,2,...,k — 1}, we know z;y; € E(G),z;y0 ¢
E(G) and zj11yj41 € E(G),zj31%0 ¢ E(G). Since yp is before y; and
Yj+1 is before yo on the path Q; (see Fig.5), we have N5,~ (z;) # Ng,(z;)u

{z;}—{Lq,(zj)} and N§ (z;+1) # No,(zj+1)U{zjr1} - {Lg,(zj+1)}. O
By similar argument as in Lemma 1, we have:

Claim 3. If d(u) < id(z;) for any u € Ng,(z;) U {z;}. Then either

(a) there exists a vertex v € Ng,(z;) such that d(v) 2 id(z;); or

(b) Ng,(z;) = Ng,(z;) U {z;} — {Lq,(z;)}, d(w) < id(z;) for any w €
Ng,(z;) and id(z;) = min{d(z) : = € N*(z;)}. ]
Claim 4. For each j € {0,1,...,k}, there exists a path Wj(w{,wg) such
that

(i) V(Qy) c V(W;), and

(il) d(wl) > id(z;) and d(w}) > id(z;+1).

Proof. For convenience, set Q;{(z;j, zj+1) = uju}...uj . We have the
following two cases to discuss.

Case 1. There is a vertex u € Ng,(z;) U {x;} such that d(u) > id(z;).

Case 1.1. There is a vertex v € Np;(z;41) U {z;4+1} such that d(v) >
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id($j+ 1 )

In this case, W, (w!,w}) = uz;Q;z;41v (w] = w and w} = v) is the
path satisfying (i) and (ii).

Case 1.2. d(v) < id(x;j41) for any vertex v € Ng,(z;41) U {Zj41}-

By Claims 2 and 3, there exists a vertex u{ € Nc‘?"j (zj4+1) such that
d(uf) 2 id(z;41)- Then Wj(w],w}) = uz;Q;u]_,z;11Q;u] (w] = u and
w) = u]) is the path satisfying (i) and (ii).

Case 2, d(u) < id(z;) for any u € Ng,(z;) U {z;}.

By Claims 2 and 3, there exists a vertex u} € Ng, (z;) such that d(u?) >

Case 2.1. There exists a vertex v € Ng,(Z;+1) U {z;4+1} such that d(v) >
id(Zj41)-

In this case, W;(w], w}) = wiQ;zjul,,Q;z;41v (w] = v and w) = v)
is the path satisfying (i) and (ii).

Case 2.2. d(v) < id(x;j41) for any vertex v € Ng,(z;41) U {zj11}-
Case 2.2.1. s +1 <lq,(x;41), where s is the index of uJ on Q;.

Then by Claims 2 and 3, there exists a vertex u} € Ngj (zj41) such that
d(u}) 2 id(z;+1). Therefore, Wj(w], w3) = uiQ;z;u)y Qsu]_1%;+1Q5%;
(w] = uJ and w} = u]) is the path satisfying (i) and (ii).

Case 2.2.2. s+ 1> lg,;(Tj+1).
Set A; = {u] : v} € NG (zj+1) and i < s},
Bij={u]:ul€ Néj(qu-l) and i > s+ 1}, and
C;={ul:ue Ng,(zj+1), 12 s and ¢ is as small as possible}.

Then |4;] = |N(z;+1) NV (2;Q;u])], [B;j] = |N(z;41) NV (4]Q;zj+1)| and
IC;| = 1. Thus, |A;| + |B;| + |Cj| + |Ng,(z+1)| — {zj41} 2 d(zj4),
u{Ql(1j+l)_l € Aj N N%(z;41) and C; € N%(z;41). By Claim 2, there
exists a vertex u} € (A; U B;) — {zj41} such that d(u) > id(z1)-

When o] € B; — {zj1}, Wiwl,w}) = wiQ;zjul,,Qsu]_ 1251054
(w] = uj and w) = u]) is the path satisfying (i) and (ii).
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When v], € Aj, Wj(w],w}) = wlQyul, 7511Q5u34,75Q54 (wi = v
and wj = u]) is the path satisfying (i) and (ii).
Now we complete Claim 4. O

Since C is the longest cycle of G, for each path W; (w{ ,a:g) obtained
from the above, we have

N(w]) N N(w)) N (V(G) = V(W;)) = 0,

Ny, (w]) 0 Nw, (w}) =8 and wiw} ¢ E(G).

Then,
d(w]) + d(w}) < |V(G) - V(W) + (W;| - 1) =n - L.
Thus .
> (dwd) + d(wd) < (k+ 1)(n - 1).
j=0
But
k ) ) k
> (d(w]) + d(w])) = Y _(id(x;) + id(z;+1))
j=0 j=0
k
>2y id(z;)
j=0
2 20544(G) > (k+1)(n— 1),
a contradiction. O

3 Algorithm

First, we give an algorithm to determine the implicit degree of a vertex.
Let V(G) = {’U],‘UQ, . ,vn}.

a. An algorithm to determine the implicit degree of a vertex

Input: The adjacency matrix A = (@ij)nxn of G.
Output: The implicit degree of a vertex v;.
Step 1: Let N(v;) = @ and N2(v;) = 0.
for j=1ton,do
d(v,-) =0.
Step 2: Determine the degree of each vertex v € V(G).
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for 7 =1ton, do
for k=1 ton, do
ifaj, ==1, do
d(v;) = d(v;) +1,
else d(v;) = d(vj).
Step 3. Find the neighbors and 2-neighbors of v;.
for j =1ton,do
if ai; == 1, do
N(vi) = N(vi) U {v;},
else N(v;) = N(v;).
for k=1ton,do

ifag ==0, do
for j=1ton,do
ifa;; ==1and aj, == 1, do

Nz(v,-) = Nz('l)i) U {v}.
else N2(v;) = N2%(v;).
Step 4. Let d; < d; < ...dgq,) < ... be the degree sequence of vertices
of N(v;) U N?(v;), mg = min{d(u) : v € N2(v)} and M, = max{d(u) : u €
N2%(v;)}.
Step 5: Determine the implicit degree of v;.

Based on the proof of Claim 4 in Section 2, we give the algorithm to
construct the path W;(w},w}) for each j € {0,1,2,...,k} satisfying (i)
and (ii) in Claim 4.

bh. An algorithm to construct the path W;(w/, w})

Input: Qj(l‘j,.’llj.;.ﬂ, 7=0,1,2,...,k.
Output: W}(w{,w%) for j =0,1,2,...,k.
Step 1: Let Q;(z;,2j41) = wjuj...u] , Ry = G - Q;, U{ = Np,(z;) U
{z;}, U3 = Ng,(zj41)U{zin1}, W = Ng,(z;) and V§ = N§ (z;41). And
let lg, (z;41) = min{i : wlz;4, € E(G))} for j =0,1,2,...,k.
Step 2: for j =0 to k, do
while U{ # 0, do
for u € Ui, do
if d(u) > id(z;), do
while U # 0, do
for v € U}, do
if d(v) > id(zj+1), do
Return W,(w{,w%) = uz;Q;T;j41v.
else U} = U] — {v}.
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end for
end while
for w € V3, do
if d(‘LU) 2 id(.‘L‘j+1),‘ do
return W;(w], w}) = uz;Q;w™ z;41Q w.
else V{ = V{ — {w}.

end for
else U] = U] — {u}.
end for
end while

while V{ # 0, do
for z € V{, do
if d(z) 2 id(z;), do
label(z) = {i: z =u! and u! € V(Q;)}.
if lg,.,(zj+1) > label(z) + 1, do
while V§ # 0, do
for y € V4, do
if d(y) 2 id(zj4+1), do
return Wj(wi, w3) = 2Q;z;2% Q;y 2;+1Q;y.
else Vi = V4 - {y}.
end for
elselet A; = {ul :u) € Ng, (zj+1) and i < lable(z)},
and B; = {u] :uf € Ngj (zj+1) and i > lable(z)+1}.
while A; # 0, do
for z€ A, do
if d(Z) 2 id($j+1), do
return W;(w], w}) = zQ;2%z;11Q;2%z,;Q;z.
else A; = A; — {z}.
end for
end while
while B; # 0, do
for z € B;, do
if d(z) > id(z;41), do
return WJ('I.U{,'LU%) = $Q-jIjE+QjZ—$j+]Q-jZ.
else B; = B; — {z}.

end for
_end while
else V{ = V{ — {z}.
end for
end while
end for
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Decomposition of a 2Ky into H3 Graphs
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Abstract

An Hj graph is a multigraph on three vertices with double edges between
two pairs of distinct vertices and a single edge between the third pair. In this
paper, we decompose a complete multigraph 2K, into Hs graphs.

1 Introduction

A graph can be decomposed into a collection of subgraphs such that every
edge of the graph is contained in one of the subgraphs. Decomposing a graph
into simple graphs has been well studied in literature. For a well-written sur-
vey on the decomposition of a complete graph into simple graphs with small
number of points and edges, see [1]. A multigraph is a graph where more than
one edge between a pair of points is allowed. The decomposition of copies of a
complete graph into proper multigraphs has not received much attention yet, see
[2,3,4,5,6,9, 10). A complete multigraph AK,, (A > 1) is a graph on v points
with A edges between every pair of distinct points.

Definition 1 An H; graph is a multigraph on three vertices with double edges
between two pairs of distinct vertices and a single edge between the third pair.

If V = {a, b, c} and a double edge between a and b and a double edge between
b and c, then we denote the H3 graph as (a,b,c) i, (see figure 1). An H3(v, )
is a decomposition of a AK, into Hs graphs. In particular, an H3(10¢t,2) is a

decomposition of a 2K graph into %;"Lﬂ = 2t(10t — 1) H; graphs.

Hurd and Sarvate [6] show that the necessary condition for existence of an
Hj3(v,2) is v = 5t or v = 5¢ + 1. They claim that an H3(5¢ + 1,2) exists for
t > 1, and there does not exist an H3(5,2), but an H3(10,2) and an H3(15,2)

*The first author thanks the College of Charleston for granting a sabbatical.
tThanks to The Citadel Foundation for their support.
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exist. The general case for an H3(5t,2) where ¢ > 3 was left open. In this paper,
we continue to work on this problem and prove that an H3(10t¢,2) (i.e. H3(5¢,2)
for all even integers t) exists. To settle the H3 decomposition problem completely,
one needs to complete the decomposition of 2Kq;+5 into Hs graphs.

Figure 1: An H3 Graph

We need the following results.

Definition 2 A I-factor of a graph G is a set of pairwise disjoint edges which
partition the vertex set. A I-factorization of a graph G is the set of 1-factors
which partition the edge set of the graph.

A 1-factorization of K5, contains 2n — 1 l-factors. In [11], Stanton and
Goulden define the difference partition P, . .., P, of Ko, as n disjoint classes,
where the edge (3, 7) is in Py if and only if (i—j) = k(mod 2n) where the vertices
are labeled 0,1,...,2n — 1.

Theorem 1 [7] Consider the set T of triangles (1 +i,1+z+i,1+z +y +1)
fori=1,...,2n. The set T contains exactly the edges from Py, P,, Py, where
r+y<n

When z + y = n, we observe the following result.

Lemma 1 The setT of triangles (1+i,1+z+14,1+2+y+i)fori=1,...,2n
contains exactly the edges from Py, P,, 2P, ., wherex +y = n.

Lemma 2 [11] The pairs in Pog.1(22 + 1 < n) split into two I-factors.
Lemma 3 [11]If2x + 1 < n, then Py, U Por 4 splits into four 1-factors.

Lemma 4 [11] If n is even, then P, is a single 1-factor. If n is odd, then P, _, U
P, can be split into three 1-factors.

2 Constructions for H3(10t,2)s

In this section, we develop certain procedures to be used for the H3(10¢,2) in
general. Notice that a 1-factorization of a AK,, can be obtained by duplicating the
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