Decomposition of a $2K_{10t}$ into H_3 Graphs

Dinesh G. Sarvate *
Department of Mathematics
College of Charleston
Charleston, SC 29424

Li Zhang †
Department of Mathematics
and Computer Science
The Citadel
Charleston, SC 29409

Abstract

An H_3 graph is a multigraph on three vertices with double edges between two pairs of distinct vertices and a single edge between the third pair. In this paper, we decompose a complete multigraph $2K_{10t}$ into H_3 graphs.

1 Introduction

A graph can be decomposed into a collection of subgraphs such that every edge of the graph is contained in one of the subgraphs. Decomposing a graph into simple graphs has been well studied in literature. For a well-written survey on the decomposition of a complete graph into simple graphs with small number of points and edges, see [1]. A multigraph is a graph where more than one edge between a pair of points is allowed. The decomposition of copies of a complete graph into proper multigraphs has not received much attention yet, see [2, 3, 4, 5, 6, 9, 10]. A complete multigraph λK_v ($\lambda > 1$) is a graph on v points with λ edges between every pair of distinct points.

Definition 1 An H_3 graph is a multigraph on three vertices with double edges between two pairs of distinct vertices and a single edge between the third pair.

If $V=\{a,b,c\}$ and a double edge between a and b and a double edge between b and c, then we denote the H_3 graph as $\langle a,b,c\rangle_{H_3}$ (see figure 1). An $H_3(v,\lambda)$ is a decomposition of a λK_v into H_3 graphs. In particular, an $H_3(10t,2)$ is a decomposition of a $2K_{10t}$ graph into $\frac{2\times 10t\times (10t-1)}{2\times 5}=2t(10t-1)$ H_3 graphs.

Hurd and Sarvate [6] show that the necessary condition for existence of an $H_3(v,2)$ is v=5t or v=5t+1. They claim that an $H_3(5t+1,2)$ exists for $t \ge 1$, and there does not exist an $H_3(5,2)$, but an $H_3(10,2)$ and an $H_3(15,2)$

^{*}The first author thanks the College of Charleston for granting a sabbatical.

[†]Thanks to The Citadel Foundation for their support.

exist. The general case for an $H_3(5t,2)$ where t>3 was left open. In this paper, we continue to work on this problem and prove that an $H_3(10t,2)$ (i.e. $H_3(5t,2)$ for all even integers t) exists. To settle the H_3 decomposition problem completely, one needs to complete the decomposition of $2K_{10t+5}$ into H_3 graphs.

Figure 1: An H₃ Graph

We need the following results.

Definition 2 A *1-factor* of a graph G is a set of pairwise disjoint edges which partition the vertex set. A *1-factorization* of a graph G is the set of 1-factors which partition the edge set of the graph.

A 1-factorization of K_{2n} contains 2n-1 1-factors. In [11], Stanton and Goulden define the difference partition P_1, \ldots, P_n of K_{2n} as n disjoint classes, where the edge (i,j) is in P_k if and only if $(i-j) \equiv k \pmod{2n}$ where the vertices are labeled $0,1,\ldots,2n-1$.

Theorem 1 [7] Consider the set T of triangles (1+i, 1+x+i, 1+x+y+i) for $i=1,\ldots,2n$. The set T contains exactly the edges from P_x,P_y,P_{x+y} , where x+y< n.

When x + y = n, we observe the following result.

Lemma 1 The set T of triangles (1+i, 1+x+i, 1+x+y+i) for $i=1,\ldots,2n$ contains exactly the edges from $P_x, P_y, 2P_{x+y}$, where x+y=n.

Lemma 2 [11] The pairs in $P_{2x+1}(2x+1 < n)$ split into two 1-factors.

Lemma 3 [11] If 2x + 1 < n, then $P_{2x} \cup P_{2x+1}$ splits into four 1-factors.

Lemma 4 [11] If n is even, then P_n is a single 1-factor. If n is odd, then $P_{n-1} \cup P_n$ can be split into three 1-factors.

2 Constructions for $H_3(10t, 2)$ s

In this section, we develop certain procedures to be used for the $H_3(10t,2)$ in general. Notice that a 1-factorization of a λK_v can be obtained by duplicating the

1-factors in the 1-factorization of K_v λ times.

Procedure FACTOR-FOR-H-THREE(F,A,n'): Given a 1-factorization (of a multigraph G) $F=\{F_1,\ldots,F_{2n}\}$ where $F_i=F_{i+n}\ (1\leq i\leq n)$ and V is the vertex set of G. Let $A=\{1,\ldots,2n\}$ be a set of n'=2n points such that $A\cap V=\emptyset$ (notice that n' equals the numbers of 1-factors in F). For $j\in A=1,\ldots,n$ and each pair (a,b) in F_j and F_{j+n} , we construct H_3 graphs $\langle a,j,b\rangle_{H_3}$ and $\langle a,j+n,b\rangle_{H_3}$. The resulting H_3 graphs contain two edges between any pair of distinct points in V (note that every edge comes exactly once in a 1-factorization and we construct two H_3 graphs on every edge) and two edges between any pair of points where one point is in V and the other point is in A (note that each point in A is used on every edge in a 1-factor of G to construct H_3 graphs and the edges in that 1-factor are disjoint and partition V).

Lemma 5 If $v \equiv 4 \pmod{10}$, then an $H_3(3v-2,2)$ exists. In other words, an $H_3(10t,2)$ exists if $t \equiv 1 \pmod{3}$.

Proof: Assume $v \equiv 4 \pmod{10} = 10z + 4(z \ge 0)$. Since 10z + 4 is even, K_{10z+4} has 10z + 3 1-factors and $2K_{10z+4}$ has 20z + 6 1-factors in F. Perform procedure FACTOR-FOR-H-THREE(F, A, n'), where n' = 20z + 6. Since $20z + 6 \equiv 1 \pmod{5}$, an $H_3(20z + 6, 2)$ exists. Obtain an $H_3(20z + 6, 2)$ on the n' points in A. Combine the H_3 graphs obtained, we have an $H_3((10z + 4) + (20z + 6), 2) = H_3(30z + 10, 2) = H_3(3v - 2, 2)$. Since an $H_3(30z + 10, 2) = H_3(10(3z + 1), 2)$, an $H_3(10t, 2)$ exists if $t \equiv 1 \pmod{3}$. \square

Theorem 2 If an $H_3(5t, 2)$ and an $H_3(10t, 2)$ exist, for all t > 1, then an $H_3(20t, 2)$ exists.

Proof: It is known that the complete bipartite graph $K_{5t,5t}$ has 5t 1-factors, then $2K_{5t,5t}$ has 10t 1-factors in F.

Perform procedure FACTOR-FOR-H-THREE(F,A,n'), where n'=10t. Obtain an $H_3(5t,2)$ on each of the two vertex sets of $2K_{5t,5t}$, respectively. Obtain an $H_3(10t,2)$ on the 10t points in A. Combine all the H_3 graphs obtained, we have an $H_3(5t+5t+10t,2)=H_3(20t,2)$. \square

Procedure TRIANGLE-TO-H-THREE $(2P_x,2P_y,P_{x+y},n'=2n)$: Given disjoint classes P_x , P_y and P_{x+y} from a difference partition of K_{2n} where x+y+1 ($i=1,\ldots,2n$) contains exactly the edges from P_x,P_y,P_{x+y} . Using P_x,P_x,P_y,P_y,P_{x+y} , we can construct 2n H_3 graphs $\langle 1+i,1+x+i,1+x+y+i\rangle_{H_3}$. If x+y=n, then we use $P_x,P_x,P_y,P_y,P_{x+y},P_{x+y}$ to construct 2n H_3 graphs (note that if x+y=n, the set T of 2n triangles contains exactly the edges from P_x,P_y,P_{x+y},P_{x+y} by Lemma 1). Similarly, TRIANGLE-TO-H-THREE $(P_x,2P_y,2P_{x+y},n')$ produces 2n H_3 graphs $\langle 1+i,1+x+y+i,1+x+i\rangle_{H_3}$ and TRIANGLE-TO-H-THREE $(2P_x,P_y,2P_{x+y},n')$ produces 2n H_3 graphs $\langle 1+i,1+x+y+i,1+y+i\rangle_{H_3}$.

Lemma 6 If $s \equiv 2 \pmod{5}$ and s > 2, then an $H_3(6s - 12, 2)$ exists. In other words, an $H_3(10t, 2)$ exists if $t \equiv 0 \pmod{3}$, t > 0.

Proof: Suppose $s\equiv 7 \pmod{10}$. We duplicate a difference partition P_1,\ldots,P_s of K_{2s} to obtain two copies of each class. TRIANGLE-TO-H-THREE $(2P_1,2P_{s-1},2P_s,2s)$ produces 2s H_3 graphs. By Lemma 3, $P_{2i}\cup P_{2i+1}$ splits into four 1-factors, thus $2P_{2i}\cup 2P_{2i+1}$ splits into eight 1-factors, $i=1,\ldots,\frac{s-3}{2}$. Let F be the set of these $8\times\frac{s-3}{2}=4(s-3)$ 1-factors. Perform FACTOR-FOR-H-THREE(F,A,n'=4(s-3)), and then obtain additional H_3 graphs from an $H_3(4(s-3),2)$ on the set of n' new points in A (note that $4(s-3)\equiv 1 \pmod{5}$, an $H_3(4(s-3),2)$ exists [6]). Combine all of the H_3 graphs obtained, we have an $H_3(2s+4(s-3),2)=H_3(6s-12,2)$.

Suppose $s\equiv 2 \pmod{10}$. Similarly, TRIANGLE-TO-H-THREE $(2P_2,2P_{s-2},2P_s,2s)$ produces 2s H_3 graphs. Each of P_1 , P_3 and P_{s-1} splits into two 1-factors by Lemma 2, thus $2P_1$, $2P_3$ and $2P_{s-1}$ split into 12 1-factors. Also, $2P_{2i}\cup 2P_{2i+1}$ splits into eight 1-factors, $i=2,\ldots,\frac{s-4}{2}$. Let F be the set of $8\times(\frac{s-4}{2}-1)+12=4(s-3)$ 1-factors. Perform FACTOR-FOR-H-THREE(F,A,n'=4(s-3)), and then obtain additional H_3 graphs from an $H_3(4(s-3),2)$ on the set of n' new points in A. Combine all of the H_3 graphs obtained, we have an $H_3(6s-12,2)$. Let s=5z+2(z>0), then an $H_3(6s-12,2)=H_3(30z,2)=H_3(10(3z),2)$, i.e., an $H_3(10t,2)$ exists if $t\equiv 0 \pmod{3}, t>0$. \square

Lemma 7 If s > 3 and $s \equiv 2 \pmod{5}$, then an $H_3(6s - 22, 2)$ exists. In other words, an $H_3(10t, 2)$ exists if $t \equiv 2 \pmod{3}$.

Proof: Suppose $s\equiv 7 \pmod{10}$. Observe $2P_1$ and $2P_{s-1}\cup 2P_s$ split into 10 1-factors. TRIANGLE-TO-H-THREE $(2P_2,P_4,2P_6,2s)$ produces 2s H_3 graphs and TRIANGLE-TO-H-THREE $(2P_3,P_4,2P_7,2s)$ produces 2s H_3 graphs. $2P_5$ split into 4 1-factors. Also, $2P_{2i}\cup 2P_{2i+1}$ splits into eight 1-factors, $i=4,\ldots,\frac{s-3}{2}$. Let F be the set of $8\times(\frac{s-3}{2}-3)+10+4=4s-22$ 1-factors. Perform FACTOR-FOR-H-THREE (F,A,n'=4s-22), and then obtain additional H_3 graphs from an $H_3(4s-22,2)$ on the set of n' new points in A (note that $4s-22\equiv 1 \pmod{5}$, an $H_3(4s-22,2)$ exists [6]). Combine all of the H_3 graphs obtained, we have an $H_3(2s+4s-22,2)=H_3(6s-22,2)$.

Suppose $s\equiv 2\pmod{10}$. TRIANGLE-TO-H-THREE $(P_2,2P_4,2P_6,2s)$ produces 2s H_3 graphs and TRIANGLE-TO-H-THREE $(P_2,2P_8,2P_{10},2s)$ produces 2s H_3 graphs. Each of $2P_i$, i=1,3,5,7,9,11, split into 4 1-factors. $2P_s$ split into 2 1-factors. Also, $2P_{2i}\cup 2P_{2i+1}$ splits into eight 1-factors, $i=6,\ldots,\frac{s-2}{2}$. Let F be the set of $8\times(\frac{s-2}{2}-5)+4\times6+2=4s-22$ 1-factors. The rest procedures follow the previous paragraph, so we have an $H_3(2s+4s-22,2)=H_3(6s-22,2)$. Let s=5z+7(z>0), then an $H_3(6s-22,2)=H_3(30z+20,2)=H_3(10(3z+2),2)$ exists, i.e., an $H_3(10t,2)$ exists if $t\equiv 2\pmod{3}$. \square

Combining Lemmas 5, 6 and 7, we have the following main result.

3 Summary

In this paper, we decompose a complete multigraph $2K_{10t}$ into H_3 graphs. To settle the H_3 decomposition problem completely, one needs to complete the decomposition of $2K_{10t+5}$ into H_3 graphs, which is still an open problem. Examples of such decompositions for v=15,25,35,45,135,155,205,225 and 10t+5 for $t\equiv 1 \pmod{21}$ along with some recursive constructions are given in [8].

References

- [1] P. Adams, D. Bryant, and M. Buchanan. A survey on the existence of G-Designs. *Journal of Combinatorial Designs*, 5:373-410, 2008.
- [2] H. Chan and D. G. Sarvate. Stanton graph decompositions. *Bulletin of the ICA*, 64:21–29, 2012.
- [3] S. El-Zanati, W. Lapchinda, P. Tangsupphathawat, and W. Wannasit. The spectrum for the stanton 3-cycle. Accepted, *Bulletin of the ICA*.
- [4] D. W. Hein and D. G. Sarvate. Decomposition of λK_n using stanton-type graphs. Accepted, J. Combin. Math. Combin. Comput.
- [5] S. P. Hurd, N. Punim, and D. G. Sarvate. Loop designs. J. Combin. Math. Combin. Comput., 78:261-272, 2011.
- [6] S. P. Hurd and D. G. Sarvate. Graph decompositions of $K(v, \lambda)$ into modified triangles using Langford and Skolem sequences. Accepted, *Ars Combinatoria*.
- [7] D. G. Sarvate. Blocks designs without repeated blocks. Ars Combinatoria, 21:71-87, 1986.
- [8] D. G. Sarvate and L. Zhang. Decomposition of a $2K_{10t+5}$ into H_3 graphs. Working paper.
- [9] D. G. Sarvate and L. Zhang. Decompositions of λK_n into LOE and OLE graphs. Submitted.
- [10] D. G. Sarvate and L. Zhang. Decomposition of a $3K_{8t}$ into H_2 graphs. Ars Combinatoria, 110:23-32, 2013.
- [11] R. G. Stanton and I. P. Goulden. Graph factorization, general triple systems and cyclic triple systems. *Aequationes Mathematicae*, 22:1–28, 1981.