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Abstract

A graph G on n > 3 vertices is called claw-heavy if every induced
claw of G has a pair of nonadjacent vertices such that their degree
sum is at least n. We say that a subgraph H of G is f-heavy if
max{d(z),d(y)} > % for every pair of vertices z,y € V(H) at dis-
tance 2 in H. For a given graph R, G is called R-f-heavy if every
induced subgraph of G isomorphic to R is f-heavy. For a family R
of graphs, G is called R-f-heavy if G is R-f-heavy for every R € R.
In this paper, we show that every 2-connected claw-heavy graph is
hamiltonian if G is { Py, D}- f-heavy, or {P;, H}- f-heavy, where D is
a deer and H is a hourglass. Our result is a common generalization
of previous theorems of Broersma et al. and Fan on hamiltonicity of
2-connected graph.
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1 Introduction

In this paper, we use Bondy and Murty [2] for notation and terminology
not defined here, and consider only undirected, finite and simnple graphs.

Let G be a graph and H be a subgraph of G. For a vertex u € V(G),
define Ng(u) = {v € V(H) : uwv € E(G)}. The degree of u in H is denoted
by dy(u) = |[Ny(u)|. For z,y € V(H), the distance between z and y in
H, denoted by dy(x,y), is the length of a shortest (z,y)-path in H. When
there is no danger of ambiguity, we can use N(u), d(u) and d(z,y) in place
of Ng(u), dg(w) and dg(z,y), respectively.

For a subset S of V(G), we use (S) to denote the subgraph of G induced
by S. A graph H is called an induced subgraph of G if H = (S} for some
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S C V(G). An induced subgraph of G with the vertex set {z,u,v,w} and
the edge set {zu, v, rw} is called a claw (K 3), with the center x and end
vertices u,v,w. For a given graph R, G is called R-free if G contains no
induced subgraph isomorphic to R. For a family R of graphs, G is called
R-free if G is R-free for every R € R.

A vertex v of a graph G on n vertices is called heavy if d(v) > %,
and if v is not heavy, we call it light. Following [3], a claw of G is called
2-heavy if at least two of its end vertices are heavy, and G is called 2-
heavy if all of its claws are 2-heavy. Following (5], G is called claw-heavy
if every induced claw of G has a pair of nonadjacent vertices u and v such
that d(u) + d(v) > n. Clearly, every 2-heavy graph is claw-heavy, but a
claw-heavy graph is not necessarily 2-heavy. Following [11], a subgraph
H of G is called f-heavy if max{d(z),d(y)} > % for every pair of vertices
x,y € V(H) at distance 2 in H. For a given graph R, G is called R- f-heavy
if every induced subgraph of G isomorphic to R is f-heavy. For a family
R of graphs, G is called R-f-heavy if G is R-f-heavy for every R € R.
Clearly, every R-free graph is also R-f-heavy, and a graph is 2-heavy is
equivalent to that it is claw-f-heavy.

A cycle in a graph G is called a Hamilton cycle if it contains all vertices
of G. And G is called hamiltonian if it contains a Hamilton cycle. Degree
condition is an iimportant type of sufficient conditions for the existence of
Hamilton cycles in graphs. The following result due to Fan is well known.

Theorem 1. ({7]) Let G be a 2-connected graph on n > 3 vertices. If

max{d(z),d(y)} > § for every pair of vertices z and y at distance 2, then
G is hamiltonian.

There is another type of sufficient conditions for haniltonicity, called
forbidden subgraph conditions. The following two results belong to this
type, where Py, D and H are graphs in Fig.1.

Theorem 2. ([4]) Let G be a 2-connected graph. If G is {K, 3, P7, D}-free,
then G is hamiltonian.

Theorem 3. (/8]) Let G be a 2-connected graph. If G is { K 3, P;, H}-free,
then G is hamiltonian.
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In [3], the authors extended Theorems 2 and 3 to the class of 2-heavy
graphs.

Theorem 4. ([3]) Let G be a 2-connected graph. If G is 2-heavy, and
moreover { P;, D}-free, or { Py, H}-free, then G is hamiltonian.

In 2009, Chen et al. [6] relaxed 2-heavy in Theorem 4 to claw-heavy,
and got the following result.

Theorem 5. ([6]) Let G be a 2-connected graph. If G is claw-heavy, and
moreover { Py, D}-free, or { Py, H}-free, then G is hamiltonian.

By relaxing forbidden subgraph conditions to conditions in which the
subgraphs are allowed, but where Fan-type degree condition is iinposed on
these subgraphs if they appear, Ning extended Theoremn 4 as follows.

Theorem 6. ([10]) Let G be a 2-connected graph. If G is {K, 3, Pr, D}-
f-heavy or {K, 3, Pr, H}-f-heavy, then G is hamiltonian.

Our ohjective in this paper is to prove that we can use claw-heavy in
place of K 3-f-heavy in Theorem 6.

Theorem 7. Let G be a 2-connected graph. If G is claw-heavy, and more-
over { Py, D}-f-heavy or {P;, H}-f-heavy, then G is hamiltonian.

Remark. The graph in Fig.2 shows our result in Theoremn 7 does strengthen
those in Theorems 5 and 6. Let n > 20 he an even integer and K 3 U
Ky _7 denote the union of two complete graphs K 3 and Kz_7. And let
V(Ky) = {xl,wg,...,:%} and V(Kgz_7) = {y1,92,...,yp—7}. We choose
a graph G with V(G) = V(K3 UKgy_7) U {z,y,2,u,v,w,t} and E(G) =
E(K.? UK%_-,)U{:r:iyi,.tiyi“ 1=1,2,..., % -—7}U{1‘v5~_7y121_7, $12£_7y1}U
{zy, zz,yz, yw, zt,uw, vt} U {xz;, yTi, 22 : T; € V(K,v‘;)} U {uyi,vyi s yi €
V(K3 _7)}U{zyr,y1, 211 }. It is easy to see that G is a hamiltonian graph
satisfying the condition of Theoremn 7, but not the conditions of Theoremns
5 or 6.



2 Proof of Theorem 7

For a cycle C in G with a given orientation and a vertex z in C, z* and
a2~ denote the successor and the predecessor of = in C, respectively. And
forany I C V(C),let I ={z:2t € I} and I* = {z : 2~ € I}. For
two vertices z,y € C, xCy denotes the subpath of C from z to y, and yCr
denotes the path from y to = in the reversed direction of C. A similar
notation is used for paths.

A cycle C is called a heavy cycle if it contains all the heavy vertices
of G. We use E*(G) to denote the set {zy : zy € E(G) or d(z) + d(y) >
n,z,y € V(G)}. Let k& > 3 be an integer. Following [9], a sequence of
vertices C = z123...TxT; is called an Ore-cycle or briefly, o-cycle of G, if
2iTi41 € E*(G) for every i € {1,2,...,k}, where zx;1 = z;. The deficit of
an o-cycle C is the integer def(C) = |{1 € {1,2,...,k} : zixiys ¢ E(G)}|.
Thus, a cycle is an o-cycle of deficit 0. We define an o-path of G similarly.

The technique of the proof of Theorem 7 is mnotivated by Chen, Zhang
and Qiao [6]. And the proof is based on the following lemnas.

Lemma 1. ([1},{12]) Every 2-connected graph contains a heavy cycle.

Lemma 2. (/9]) Let G be a graph and C be an o-cycle of G. Then there
ezists a cycle C' of G such that V(C) C V(C').

Proof of Theorem 7. Suppose to the contrary that G is not hamiltonian.
By Lemina 1, G contains a heavy cycle. Let C be a longest heavy cycle
with a given orientation. Then V(G) \ V(C) # 0. Since G is 2-connected,
there exists a path P connecting two vertices z; € V(C) and 23 € V(C) in-
ternally disjoint with C and such that |V(P)| > 3. Let P = z1ujus ... upz2
be such a path of iniinum length.

Claim 1. wx],upz;y ¢ E*(G) for every k€ {1,2,...,7} and i = 1,2.
Proof. Ifupzy € E*(G) forsomek € {1,2,...,r}, then C’ = 27 ux Pz1Cxy
is an o-cycle containing all the vertices of C and |V(C’)| > |V(C)|. By

Lemma 2, there exists a heavy cycle longer than C in G, a contradiction.
The other assertions can be proved similarly. m]

Claim 2. z7z} € E*(G) and z5z3 € E*(G).

Proof. If z7z] ¢ E(G), then {zy,z],z},u;} induces a claw. Since G
is claw-heavy, d(z7) + d(zf) > n by Claimn 1. This implies that 7z} €
E*(G). Similarly, we can prove that z; z3 € E*(G). 0

Claim 3. Either z; z] € E(G) or z; z§ € E(G).
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Proof. Suppose to the contrary that z7z} ¢ E(G) and z;z§ ¢ E(G).
By Claim 1, d(z7) + d(z}) > n and d(z3) + d(z3) > n. This implies that
(d(zy) + d(z3)) + (d(zT) + d(zF)) > 2n. Then d(z7) + d(z5) = n or
d(zf) +d(z) > n. Thus C' = 27 Cz2Pxz,Cx5 z] is an o-cycle containing
all the vertices of C and |V(C’)| > |V(C)| or C" = z{ Cz2 P21 CxfzT isan
o-cycle containing all the vertices of C and |V(C"})| > |V(C)|. Therefore,
by Lenuna 2, there exists a heavy cycle longer than C in G, a contradiction.
So 27zt € E(G) or z;z§ € E(G). o

Claim 4. zyz; ¢ E*(G), zf2§ ¢ E*(G), z;z;_; ¢ E*(G) and z;z}_; ¢
E*(G) fori=1,2.

Proof. By Claim 2, z7z{ € E*(G). If 27z; € E*(G), then C' =
z7 x5 Cx1 PxoCx{ is an o-cycle containing all the vertices of C and |V(C’)| >
|V(C)|. By Lemma 2, there exists a heavy cycle longer than C in G, a con-
tradiction. Then z7z; ¢ E*(G). Similarly, =Tz} ¢ E*(G).

If z)z; € E*(G), then C' = zy25; Cxfzy Cx, Pz, is an o-cycle contain-
ing all the vertices of C and |V(C')| > |V(C)|. By Lemina 2, there exists
a heavy cycle longer than C in G, a contradiction. So z,z; € E*(G). The
other assertions can bhe proved similarly. 0

By Claiin 4, there is some vertex in x;"Ca:;_i not adjacent to z; in G
for i = 1,2. Let y; be the first vertex in z} Cz;_; not adjacent to z; in G
for i = 1,2. Let u be a vertex in V(P)\ {z1,z2} and let z; be an arbitrary
vertex in 1,‘*’ Cy; fori=1,2.

Claim 5. uzy,uzy, 2113, 2211, 2122 € E*(G).

Proof. Suppose uz; € E*(G). By Claim 1, we have z; # zf. Then
x1z; € E(G) by the choice of y;. Then C’ = z, Puz;Czy 2z} Cz[ z1 is an
o-cycle containing all the vertices of C and |V(C')| > |V(C)|. By Lemma
2, there exists a heavy cycle longer than C in G, a contradiction. Hence
uzy ¢ E*(G). Similarly, uze ¢ E*(G).

Suppose z1z; € E*(G). By Claim 4, z; # zF. Then by Claimn 2,
C' = z) Pz22,Cz5 23 Cx] 2} Cz z1 is an o-cycle containing all the vertices
of C and |V(C’)| > |V(C)|. By Lemma 2, there exists a heavy cycle
longer than C in G, a contradiction. Hence zyzo ¢ E*(G). Similarly,
2oty ¢ E*(G).

Suppose zj22 € E*(G). By Claim 4, z; # z} or 25 # zF. Then
by Claim 2, C' = zyPzyz; Cafz;Cz12;Cayzi Coy i (if 21 # zt and
zp # ) or ) Prazy Cafa;Co120Cxy (if 2y = zf and 2o # 2F) or
21 PraC2120CaT 2f Czy (i 21 # zf and 22 = x7) is an o-cycle contain-
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ing all the vertices of C and |V(C”)| > |[V(C)|. By Lemnina 2, there exists a
heavy cycle longer than C in G, a contradiction. Hence 212, ¢ E*(G). O

By Claim 3, without loss of generality, we may assume z7z{ € E(G).
Claim 6. z,z; € E(G).

Proof. Suppose z,z2 ¢ E(G). Now by the choice of P and Claim 5,
we have {y1,y7,z1,u1,u2,...,%r, T2,¥Y5 ,y2} induces Prig, where r > 1.
Since G is Ps-f-heavy, G is also P, ¢-f-heavy. By the choice of C, u; and
u, are light. It follows that y; and y; are heavy. Thus y;y;, € E*(G),
contradicting Claimn 5. O

Casel. r = 1.

Note that G is D-f-heavy or H-f-heavy. If G is D-f-heavy, then by
Claims 5 and 6 and the choice of ¥, and 2, {y1,¥7,21,u1,Z2,¥5,¥2}
induces a D. Since u; is light, y; and y; are heavy. It follows that
Y7 ¥2 € E*(G), contradicting Claim 5.

Next, we assuine G is H- f-heavy. Then by Claims 1, 4 and 6, {u,, z), z2,
z7,zy} induces an H and {u1,z),72,2z5,z7} induces an H. Since u; is
light, we have 27 and x5 are heavy. This implies that z7z; € E*(G),
contradicting Claim 4.

Case 2. r > 2.
Claim 7. z;z € E(G).

Proof. Suppose to the contrary that z7z$ ¢ E(G). Then d(z3)+d(z]) >
n by Claiin 2. Without loss of generality, suppose d(x; } 2 n/2. By Claims
1 and 4, we have d(u,) + d(z3) < n and d(z;) + d(z3) < n, respectively.
Since d(u,) < n/2 < d(z3), d(u.) + d(z1) < n. Then {z2,z1,ur, 25}
induces a claw such that there is no pair of nonadjacent vertices with
degree sumn at least n, contradicting the hypothesis of Theorem 7. So
z7z3 € E(G). 0

Claim 8. d(x1) > % and d(z2) > 3.

Proof. By the choice of P, we have ujzo ¢ E(G) and u,z, ¢ E(G). By
Claim 4, we obtain ;7 ¢ E*(G) and z; 22 ¢ E*(G). And by Claiin 1, we
get u1zy ¢ E*(G) and u,z3 ¢ E*(G). Note that z;z5 € E(G) by Claim
6. Thus {z1,z7,u1, 72} induces a claw and {z2,z3,u,, 21} induces a claw.
Since G is claw-heavy, d(u;) + d(z2) > n and d(u.) + d(z;) > n. Since



d(u1) < 5 and d(u,) < %, we have d(z;1) > % and d(z2) > 3. a

By Claim 8, d(z,)+d(z2) > n. By the choice of P, we have Ng_c(z1)N
Nc_c(:tz) = . Thus, ]Nc(.’l:])l + |Nc($2)f > lV(C)l Since z1z2 € E(G)
by Claiin 6, by the choice of y; and y; and Claims 4 and 5, we have
INC[ml_,yl_](x])l + |Nc[z;,y;](x2)| = [V(Clz7,y1])| and |NC[z;,y;](xl)I +
|NC[12-,y2_](:cg)| = |V(C[z3,y5])|- Moreover, by the choice of y;,y2 and
Claim 5, we have 21y, T2y1, Z1¥2, T2y2 ¢ E(G). Thus,

|NC[yT,x;2](‘rl)| + |NC[yT,z;2]($2)l + |NC[y;"xl-2}($1)l + |NC[y;',z‘l_2](x2)’

> V(Clvf,z22 DI+ (Cld , =7 )| +2-

This imnplies that either
Ny 22 @)l + INopt 2y (@2)] > VIt 237 +1

or
INopys 2ot @) + INops 2o @2)| > (Clud, 27 2)] + 1.

Without loss of generality, we may assuine that

Nepys a2@D] + [Nopt asy(@2)] > VClut 237 + 1
Then there is a vertex v € Q[yf’,:z:{z] such that z;v € E(G) and zov™ €
E(G). Now C’ = z} Cv~z2 Pz1vCx}zd CxTz] is a cycle containing all the
vertices of C and |V(C)| < |V(C")|, contradicting the choice of C. Now we
complete the proof of Theoremn 7. 0O
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