Hamilton cycles in claw-heavy graphs with Fan-type condition restricted to two induced subgraphs

Xing Huang

011 Base, Aviation Industry Group, Guizhou, 561018, P.R. China E-mail: bitmathhuangxing@163.com

Abstract

A graph G on $n \geq 3$ vertices is called claw-heavy if every induced claw of G has a pair of nonadjacent vertices such that their degree sum is at least n. We say that a subgraph H of G is f-heavy if $\max\{d(x),d(y)\}\geq \frac{n}{2}$ for every pair of vertices $x,y\in V(H)$ at distance 2 in H. For a given graph R, G is called R-f-heavy if every induced subgraph of G isomorphic to R is f-heavy. For a family R of graphs, G is called R-f-heavy if G is R-f-heavy for every $R\in R$. In this paper, we show that every 2-connected claw-heavy graph is hamiltonian if G is $\{P_T, D\}$ -f-heavy, or $\{P_T, H\}$ -f-heavy, where D is a deer and H is a hourglass. Our result is a common generalization of previous theorems of Broersma et al. and Fan on hamiltonicity of 2-connected graph.

Keywords: Claw-heavy; Hamilton cycle; Fan-type degree condition

1 Introduction

In this paper, we use Bondy and Murty [2] for notation and terminology not defined here, and consider only undirected, finite and simple graphs.

Let G be a graph and H be a subgraph of G. For a vertex $u \in V(G)$, define $N_H(u) = \{v \in V(H) : uv \in E(G)\}$. The degree of u in H is denoted by $d_H(u) = |N_H(u)|$. For $x, y \in V(H)$, the distance between x and y in H, denoted by $d_H(x, y)$, is the length of a shortest (x, y)-path in H. When there is no danger of ambiguity, we can use N(u), d(u) and d(x, y) in place of $N_G(u)$, $d_G(u)$ and $d_G(x, y)$, respectively.

For a subset S of V(G), we use $\langle S \rangle$ to denote the subgraph of G induced by S. A graph H is called an induced subgraph of G if $H = \langle S \rangle$ for some

 $S \subseteq V(G)$. An induced subgraph of G with the vertex set $\{x, u, v, w\}$ and the edge set $\{xu, xv, xw\}$ is called a claw $(K_{1,3})$, with the center x and end vertices u, v, w. For a given graph R, G is called R-free if G contains no induced subgraph isomorphic to R. For a family R of graphs, G is called R-free if G is R-free for every $R \in R$.

A vertex v of a graph G on n vertices is called heavy if $d(v) \geq \frac{n}{2}$, and if v is not heavy, we call it light. Following [3], a claw of G is called 2-heavy if at least two of its end vertices are heavy, and G is called 2-heavy if all of its claws are 2-heavy. Following [5], G is called claw-heavy if every induced claw of G has a pair of nonadjacent vertices u and v such that $d(u) + d(v) \geq n$. Clearly, every 2-heavy graph is claw-heavy, but a claw-heavy graph is not necessarily 2-heavy. Following [11], a subgraph H of G is called f-heavy if $\max\{d(x),d(y)\}\geq \frac{n}{2}$ for every pair of vertices $x,y\in V(H)$ at distance 2 in H. For a given graph R, G is called R-f-heavy if every induced subgraph of G isomorphic to G is G-heavy. For a family G of graphs, G is called G-G-heavy if G is G-heavy for every G-free graph is also G-G-heavy, and a graph is 2-heavy is equivalent to that it is claw-G-heavy.

A cycle in a graph G is called a Hamilton cycle if it contains all vertices of G. And G is called hamiltonian if it contains a Hamilton cycle. Degree condition is an important type of sufficient conditions for the existence of Hamilton cycles in graphs. The following result due to Fan is well known.

Theorem 1. ([7]) Let G be a 2-connected graph on $n \geq 3$ vertices. If $\max\{d(x), d(y)\} \geq \frac{n}{2}$ for every pair of vertices x and y at distance 2, then G is hamiltonian.

There is another type of sufficient conditions for hamiltonicity, called forbidden subgraph conditions. The following two results belong to this type, where P_7 , D and H are graphs in Fig.1.

Theorem 2. ([4]) Let G be a 2-connected graph. If G is $\{K_{1,3}, P_7, D\}$ -free, then G is hamiltonian.

Theorem 3. ([8]) Let G be a 2-connected graph. If G is $\{K_{1,3}, P_7, H\}$ -free, then G is hamiltonian.

In [3], the authors extended Theorems 2 and 3 to the class of 2-heavy graphs.

Theorem 4. ([3]) Let G be a 2-connected graph. If G is 2-heavy, and moreover $\{P_7, D\}$ -free, or $\{P_7, H\}$ -free, then G is hamiltonian.

In 2009, Chen et al. [6] relaxed 2-heavy in Theorem 4 to claw-heavy, and got the following result.

Theorem 5. ([6]) Let G be a 2-connected graph. If G is claw-heavy, and moreover $\{P_7, D\}$ -free, or $\{P_7, H\}$ -free, then G is hamiltonian.

By relaxing forbidden subgraph conditions to conditions in which the subgraphs are allowed, but where Fan-type degree condition is imposed on these subgraphs if they appear, Ning extended Theorem 4 as follows.

Theorem 6. ([10]) Let G be a 2-connected graph. If G is $\{K_{1,3}, P_7, D\}$ -f-heavy or $\{K_{1,3}, P_7, H\}$ -f-heavy, then G is hamiltonian.

Our objective in this paper is to prove that we can use claw-heavy in place of $K_{1,3}$ -f-heavy in Theorem 6.

Theorem 7. Let G be a 2-connected graph. If G is claw-heavy, and moreover $\{P_7, D\}$ -f-heavy or $\{P_7, H\}$ -f-heavy, then G is hamiltonian.

Remark. The graph in Fig.2 shows our result in Theorem 7 does strengthen those in Theorems 5 and 6. Let $n \geq 20$ be an even integer and $K_{\frac{n}{2}} \cup K_{\frac{n}{2}-7}$ denote the union of two complete graphs $K_{\frac{n}{2}}$ and $K_{\frac{n}{2}-7}$. And let $V(K_{\frac{n}{2}}) = \{x_1, x_2, \ldots, x_{\frac{n}{2}}\}$ and $V(K_{\frac{n}{2}-7}) = \{y_1, y_2, \ldots, y_{\frac{n}{2}-7}\}$. We choose a graph G with $V(G) = V(K_{\frac{n}{2}} \cup K_{\frac{n}{2}-7}) \cup \{x, y, z, u, v, w, t\}$ and $E(G) = E(K_{\frac{n}{2}} \cup K_{\frac{n}{2}-7}) \cup \{x_i y_i, x_i y_{i+1} : i = 1, 2, \ldots, \frac{n}{2}-7\} \cup \{x_{\frac{n}{2}-7} y_{\frac{n}{2}-7}, x_{\frac{n}{2}-7} y_1\} \cup \{xy, xz, yz, yw, zt, uw, vt\} \cup \{xx_i, yx_i, zx_i : x_i \in V(K_{\frac{n}{2}})\} \cup \{uy_i, vy_i : y_i \in V(K_{\frac{n}{2}-7})\} \cup \{xy_1, yy_1, zy_1\}$. It is easy to see that G is a hamiltonian graph satisfying the condition of Theorem 7, but not the conditions of Theorems 5 or 6.

2 Proof of Theorem 7

For a cycle C in G with a given orientation and a vertex x in C, x^+ and x^- denote the successor and the predecessor of x in C, respectively. And for any $I \subseteq V(C)$, let $I^- = \{x : x^+ \in I\}$ and $I^+ = \{x : x^- \in I\}$. For two vertices $x, y \in C$, xCy denotes the subpath of C from x to y, and $y\bar{C}x$ denotes the path from y to x in the reversed direction of C. A similar notation is used for paths.

A cycle C is called a heavy cycle if it contains all the heavy vertices of G. We use $E^*(G)$ to denote the set $\{xy: xy \in E(G) \text{ or } d(x) + d(y) \ge n, x, y \in V(G)\}$. Let $k \ge 3$ be an integer. Following [9], a sequence of vertices $C = x_1x_2 \dots x_kx_1$ is called an Ore-cycle or briefly, o-cycle of G, if $x_ix_{i+1} \in E^*(G)$ for every $i \in \{1, 2, \dots, k\}$, where $x_{k+1} = x_1$. The deficit of an o-cycle G is the integer $def(C) = |\{i \in \{1, 2, \dots, k\} : x_ix_{i+1} \notin E(G)\}|$. Thus, a cycle is an o-cycle of deficit 0. We define an o-path of G similarly.

The technique of the proof of Theorem 7 is motivated by Chen, Zhang and Qiao [6]. And the proof is based on the following lemmas.

Lemma 1. ([1],[12]) Every 2-connected graph contains a heavy cycle.

Lemma 2. ([9]) Let G be a graph and C be an o-cycle of G. Then there exists a cycle C' of G such that $V(C) \subseteq V(C')$.

Proof of Theorem 7. Suppose to the contrary that G is not hamiltonian. By Lemma 1, G contains a heavy cycle. Let C be a longest heavy cycle with a given orientation. Then $V(G) \setminus V(C) \neq \emptyset$. Since G is 2-connected, there exists a path P connecting two vertices $x_1 \in V(C)$ and $x_2 \in V(C)$ internally disjoint with C and such that $|V(P)| \geq 3$. Let $P = x_1u_1u_2 \ldots u_rx_2$ be such a path of minimum length.

Claim 1. $u_k x_i^+, u_k x_i^- \notin E^*(G)$ for every $k \in \{1, 2, \dots, r\}$ and i = 1, 2.

Proof. If $u_k x_1^- \in E^*(G)$ for some $k \in \{1, 2, ..., r\}$, then $C' = x_1^- u_k \bar{P} x_1 C x_1^-$ is an o-cycle containing all the vertices of C and |V(C')| > |V(C)|. By Lemma 2, there exists a heavy cycle longer than C in G, a contradiction. The other assertions can be proved similarly.

Claim 2. $x_1^-x_1^+ \in E^*(G)$ and $x_2^-x_2^+ \in E^*(G)$.

Proof. If $x_1^-x_1^+ \notin E(G)$, then $\{x_1, x_1^-, x_1^+, u_1\}$ induces a claw. Since G is claw-heavy, $d(x_1^-) + d(x_1^+) \ge n$ by Claim 1. This implies that $x_1^-x_1^+ \in E^*(G)$. Similarly, we can prove that $x_2^-x_2^+ \in E^*(G)$.

Claim 3. Either $x_1^-x_1^+ \in E(G)$ or $x_2^-x_2^+ \in E(G)$.

Proof. Suppose to the contrary that $x_1^-x_1^+ \notin E(G)$ and $x_2^-x_2^+ \notin E(G)$. By Claim 1, $d(x_1^-) + d(x_1^+) \ge n$ and $d(x_2^-) + d(x_2^+) \ge n$. This implies that $(d(x_1^-) + d(x_2^-)) + (d(x_1^+) + d(x_2^+)) \ge 2n$. Then $d(x_1^-) + d(x_2^-) \ge n$ or $d(x_1^+) + d(x_2^+) \ge n$. Thus $C' = x_1^- \bar{C} x_2 \bar{P} x_1 C x_2^- x_1^-$ is an o-cycle containing all the vertices of C and |V(C')| > |V(C)| or $C'' = x_1^+ C x_2 \bar{P} x_1 \bar{C} x_2^+ x_1^+$ is an o-cycle containing all the vertices of C and |V(C'')| > |V(C)|. Therefore, by Lemma 2, there exists a heavy cycle longer than C in C, a contradiction. So $x_1^- x_1^+ \in E(C)$ or $x_2^- x_2^+ \in E(C)$.

Claim 4. $x_1^-x_2^- \notin E^*(G)$, $x_1^+x_2^+ \notin E^*(G)$, $x_ix_{3-i}^- \notin E^*(G)$ and $x_ix_{3-i}^+ \notin E^*(G)$ for i = 1, 2.

Proof. By Claim 2, $x_1^-x_1^+ \in E^*(G)$. If $x_1^-x_2^- \in E^*(G)$, then $C' = x_1^-x_2^-\bar{C}x_1Px_2Cx_1^-$ is an o-cycle containing all the vertices of C and |V(C')| > |V(C)|. By Lemma 2, there exists a heavy cycle longer than C in G, a contradiction. Then $x_1^-x_2^- \notin E^*(G)$. Similarly, $x_1^+x_2^+ \notin E^*(G)$.

If $x_1x_2^- \in E^*(G)$, then $C' = x_1x_2^-\bar{C}x_1^+x_1^-\bar{C}x_2\bar{P}x_1$ is an o-cycle containing all the vertices of C and |V(C')| > |V(C)|. By Lemma 2, there exists a heavy cycle longer than C in G, a contradiction. So $x_1x_2^- \in E^*(G)$. The other assertions can be proved similarly.

By Claim 4, there is some vertex in $x_i^+Cx_{3-i}^-$ not adjacent to x_i in G for i=1,2. Let y_i be the first vertex in $x_i^+Cx_{3-i}^-$ not adjacent to x_i in G for i=1,2. Let u be a vertex in $V(P) \setminus \{x_1,x_2\}$ and let z_i be an arbitrary vertex in $x_i^+Cy_i$ for i=1,2.

Claim 5. $uz_1, uz_2, z_1x_2, z_2x_1, z_1z_2 \notin E^*(G)$.

Proof. Suppose $uz_1 \in E^*(G)$. By Claim 1, we have $z_1 \neq x_1^+$. Then $x_1z_1^- \in E(G)$ by the choice of y_1 . Then $C' = x_1Puz_1Cx_1^-x_1^+Cz_1^-x_1$ is an o-cycle containing all the vertices of C and |V(C')| > |V(C)|. By Lemma 2, there exists a heavy cycle longer than C in G, a contradiction. Hence $uz_1 \notin E^*(G)$. Similarly, $uz_2 \notin E^*(G)$.

Suppose $z_1x_2 \in E^*(G)$. By Claim 4, $z_1 \neq x_1^+$. Then by Claim 2, $C' = x_1 P x_2 z_1 C x_2^- x_2^+ C x_1^- x_1^+ C z_1^- x_1$ is an o-cycle containing all the vertices of C and |V(C')| > |V(C)|. By Lemma 2, there exists a heavy cycle longer than C in G, a contradiction. Hence $z_1x_2 \notin E^*(G)$. Similarly, $z_2x_1 \notin E^*(G)$.

Suppose $z_1z_2 \in E^*(G)$. By Claim 4, $z_1 \neq x_1^+$ or $z_2 \neq x_2^+$. Then by Claim 2, $C' = x_1Px_2z_2^-\bar{C}x_2^+x_2^-\bar{C}z_1z_2Cx_1^-x_1^+Cz_1^-x_1$ (if $z_1 \neq x_1^+$ and $z_2 \neq x_2^+$) or $x_1Px_2z_2^-\bar{C}x_2^+x_2^-\bar{C}z_1z_2Cx_1$ (if $z_1 = x_1^+$ and $z_2 \neq x_2^+$) or $x_1Px_2\bar{C}z_1z_2Cx_1^-x_1^+Cz_1^-x_1$ (if $z_1 \neq x_1^+$ and $z_2 = x_2^+$) is an o-cycle contain-

ing all the vertices of C and |V(C')| > |V(C)|. By Lemma 2, there exists a heavy cycle longer than C in G, a contradiction. Hence $z_1z_2 \notin E^*(G)$. \square

By Claim 3, without loss of generality, we may assume $x_1^-x_1^+ \in E(G)$.

Claim 6. $x_1x_2 \in E(G)$.

Proof. Suppose $x_1x_2 \notin E(G)$. Now by the choice of P and Claim 5, we have $\{y_1, y_1^-, x_1, u_1, u_2, \ldots, u_r, x_2, y_2^-, y_2\}$ induces P_{r+6} , where $r \geq 1$. Since G is P_7 -f-heavy, G is also P_{r+6} -f-heavy. By the choice of C, u_1 and u_r are light. It follows that y_1^- and y_2^- are heavy. Thus $y_1^-y_2^- \in E^*(G)$, contradicting Claim 5.

Case 1. r = 1.

Note that G is D-f-heavy or H-f-heavy. If G is D-f-heavy, then by Claims 5 and 6 and the choice of y_1 and y_2 , $\{y_1, y_1^-, x_1, u_1, x_2, y_2^-, y_2\}$ induces a D. Since u_1 is light, y_1^- and y_2^- are heavy. It follows that $y_1^-y_2^- \in E^*(G)$, contradicting Claim 5.

Next, we assume G is H-f-heavy. Then by Claims 1, 4 and 6, $\{u_1, x_1, x_2, x_1^-, x_1^+\}$ induces an H and $\{u_1, x_1, x_2, x_2^-, x_2^+\}$ induces an H. Since u_1 is light, we have x_1^- and x_2^- are heavy. This implies that $x_1^-x_2^- \in E^*(G)$, contradicting Claim 4.

Case 2. $r \ge 2$.

Claim 7. $x_2^- x_2^+ \in E(G)$.

Proof. Suppose to the contrary that $x_2^-x_2^+ \notin E(G)$. Then $d(x_2^-) + d(x_2^+) \ge n$ by Claim 2. Without loss of generality, suppose $d(x_2^+) \ge n/2$. By Claims 1 and 4, we have $d(u_r) + d(x_2^+) < n$ and $d(x_1) + d(x_2^+) < n$, respectively. Since $d(u_r) < n/2 \le d(x_2^+)$, $d(u_r) + d(x_1) < n$. Then $\{x_2, x_1, u_r, x_2^+\}$ induces a claw such that there is no pair of nonadjacent vertices with degree sum at least n, contradicting the hypothesis of Theorem 7. So $x_2^-x_2^+ \in E(G)$.

Claim 8. $d(x_1) > \frac{n}{2}$ and $d(x_2) > \frac{n}{2}$.

Proof. By the choice of P, we have $u_1x_2 \notin E(G)$ and $u_rx_1 \notin E(G)$. By Claim 4, we obtain $x_1x_2^+ \notin E^*(G)$ and $x_1^-x_2 \notin E^*(G)$. And by Claim 1, we get $u_1x_1^- \notin E^*(G)$ and $u_rx_2^+ \notin E^*(G)$. Note that $x_1x_2 \in E(G)$ by Claim 6. Thus $\{x_1, x_1^-, u_1, x_2\}$ induces a claw and $\{x_2, x_2^+, u_r, x_1\}$ induces a claw. Since G is claw-heavy, $d(u_1) + d(x_2) \geq n$ and $d(u_r) + d(x_1) \geq n$. Since

$$d(u_1) < \frac{n}{2}$$
 and $d(u_r) < \frac{n}{2}$, we have $d(x_1) > \frac{n}{2}$ and $d(x_2) > \frac{n}{2}$.

By Claim 8, $d(x_1)+d(x_2) > n$. By the choice of P, we have $N_{G-C}(x_1) \cap N_{G-C}(x_2) = \emptyset$. Thus, $|N_C(x_1)| + |N_C(x_2)| > |V(C)|$. Since $x_1x_2 \in E(G)$ by Claim 6, by the choice of y_1 and y_2 and Claims 4 and 5, we have $|N_{C[x_1^-,y_1^-]}(x_1)| + |N_{C[x_1^-,y_1^-]}(x_2)| = |V(C[x_1^-,y_1^-])|$ and $|N_{C[x_2^-,y_2^-]}(x_1)| + |N_{C[x_2^-,y_2^-]}(x_2)| = |V(C[x_2^-,y_2^-])|$. Moreover, by the choice of y_1, y_2 and Claim 5, we have $x_1y_1, x_2y_1, x_1y_2, x_2y_2 \notin E(G)$. Thus,

$$\begin{split} &|N_{C[y_1^+,x_2^{-2}]}(x_1)| + |N_{C[y_1^+,x_2^{-2}]}(x_2)| + |N_{C[y_2^+,x_1^{-2}]}(x_1)| + |N_{C[y_2^+,x_1^{-2}]}(x_2)| \\ &> |V(C[y_1^+,x_2^{-2}])| + |(C[y_2^+,x_1^{-2}])| + 2. \end{split}$$

This implies that either

$$|N_{C[y_1^+,x_2^{-2}]}(x_1)| + |N_{C[y_1^+,x_2^{-2}]}(x_2)| > |V(C[y_1^+,x_2^{-2}])| + 1$$

or

$$|N_{C[y_2^+,x_1^{-2}]}(x_1)|+|N_{C[y_2^+,x_1^{-2}]}(x_2)|>|(C[y_2^+,x_1^{-2}])|+1.$$

Without loss of generality, we may assume that

$$|N_{C[y_1^+, x_2^{-2}]}(x_1)| + |N_{C[y_1^+, x_2^{-2}]}(x_2)| > |V(C[y_1^+, x_2^{-2}])| + 1.$$

Then there is a vertex $v \in C[y_1^+, x_2^{-2}]$ such that $x_1v \in E(G)$ and $x_2v^- \in E(G)$. Now $C' = x_1^+Cv^-x_2\bar{P}x_1vCx_2^1x_2^+Cx_1^-x_1^+$ is a cycle containing all the vertices of C and |V(C)| < |V(C')|, contradicting the choice of C. Now we complete the proof of Theorem 7.

Acknowledgements

The author is very grateful to the anonymou referee whose helpful comments and suggestions have led to a substantially improvement of the paper.

References

- B. Bollobás and G. Brightwell, Cycles through specified vertices, Combinatorica, 13 (1993) 147-155.
- [2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
- [3] H.J. Broersma, Z. Ryjáček and I. Schiermeyer, Dirac's minimum degree condition restricted to claws, Discrete Math., 167-168 (1997) 155-166.

- [4] H.J. Broersma and H.J. Veldman, Restrictions on induced subgaphs ensuring hamiltonicity or pancyclicity of $K_{1,3}$ -free graphs, in: R. Bodendiek ed. Contemporary Methods in Graph Theory, (BI-Wiss.-Verl., Mannhein-Wien-Zürich, 1990) 181-194.
- [5] R. Čada, Degree conditions on induced claws, Discrete Math., 308 (2008) 5622-5631.
- [6] B. Chen, S. Zhang and S. Qiao, Hamilton cycles in claw-heavy graphs, Discrete Math., 309 (2009) 2015-2019.
- [7] G. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory Ser. B, 37 (1984) 221-227.
- [8] R.J. Faudree, Z. Ryjáček and I. Schiermeyer, Forbidden subgraphs and cycle extendability, J. Combin. Math. Combin. Comput., 19 (1995) 109-128.
- [9] B. Li, Z. Ryjáček, Y. Wang and S. Zhang, Pairs of heavy subgraphs for Hamiltonicity of 2-connected graphs, SIAM J. Discrete Math. 26 (2012) 1088-1103.
- [10] B. Ning, Fan-type degree condition restricted to triples of induced subgraphs ensuring Hamiltonicity, Inform. Process. Lett., 113 (2013) 823-826.
- [11] B.Ning and S.Zhang, Ore- and Fan-type heavy subgraphs for Hamiltonicity of 2-connected graphs, Discrete Math., 313 (2013) 1715-1725.
- [12] R. Shi, 2-Neighborhoods and hamiltonian conditions, J. Graph Theory, 16 (1992) 267-271.