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Abstract

In 1989, Frankl and Fiiredi [1] conjectured that the r-uniform
hypergraph with m edges formed by taking the first m sets in the
colex ordering of N(™ has the largest Lagrangian of all r-uniform
hypergraphs of size m. For 2-graphs, Motzkin-Straus theorem implies
this conjecture is true. For 3-uniform hypergraphs, it was proved by
Talbot in 2002 that the conjecture is true while m in certain range.
In this paper, we prove that the 4-uniform hypergraphs with m edges
formed by taking the first m sets in the colex ordering of N has the
largest Lagrangian of all 4-uniform hypergraphs with ¢ vertices and
m edges which satisfying (*;') <m < (') + (*33) - 17(}3%) + L.
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1 Introduction

A hypergraph is a generalization of a graph in which an edge can
connect any number of nodes. Exactly, a hypergraph H is a pair (V, E),
where V is a finite set of elements called nodes or vertices, and E is a set
of nonemnpty subsets of V called edges or links. Moreover, E is a subset of
2V \ 0, where 2V is the power set of V. An edge e = {a1,az,---,a,} will
be simply denoted by @jaz---a, in this paper. An r-uniform hypergraph
is a hypergraph such that all its edges have same size ». That is to say,
an r-uniform hypergraph is a collection of sets of size ». So a 2-uniform
hypergraph is a general sense graph, a 3-uniform hypergraph is a collection
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of triples, and so on. For a positive integer r, let V(") denote the set consists
of all r-subsets of V. Let Kt(') denote the complete r-uniform hypergraph
on t vertices, that is the r-uniform hypergraph on ¢ vertices containing
all possible edges. A complete r-uniform hypergraph on t vertices is also
called a clique with order ¢t. A clique is said to be maximal if there is no
other clique containing it, while it is called maximuin if it has maximum
cardinality. Let N be the set of all positive integers. For an integer n € N,
let [n] denote the set {1,2,3,.--,n}. Let [n](") represent the complete r-
graph on the vertex set [n].

For r-uniform hypergraphs H = (V, E), denote the (r—1)-neighborhood
of a vertex i € V by E; = {A € V=Y : AU {i} € E}. Similarly,
denote the (r — 2)-neighborhood of a pair of vertices 7,5 € V hy E;; =
{B € VI"=2 : BU {i,j} € E}. Denote the complement of E; by Ef =
{Ae V-1 AU {i} € V\E}. Also, denote the complement of E;; by
E ={Be V-2 : Bu{i,j} € VIV\E} and E\; = E; N E3.

Definition 1.1 For an r-uniform hypergraph H = ([n], E(H)) and a vector
Z=(zy1, - ,Zn) € R", define

)\(H,f) = Z T Tiy * -+~ T4,..

i]iz-“i,-GE(H)

Let S = {& = (z1,T2, " *,Tn) Yo T = L,z; 2 0fori =1,2,---,n}.
The Lagrangian® of H, denoted by A(H), is the mazimum of the above
homogeneous function over the standard simplex S. Precisely,

MH) = max{\H,Z): & € S}.

The vector T = (z1,Z2, " ,Zn) € R™ is called a feasible weighting for
H if $ € S. The value z; is called the weight of the vertex i. A vector
7y € S is called an optimal weighting for H if A(H,7) = A(H).

In {4}, Motzkin and Straus established a remarkable connection between
the clique number and the Lagrangian of a graph.

Theorem 1.1 [4] If H is a 2-uniform graph in which a largest clique has
order ¢ then A(H) = MK®) = 1(1-1).

The obvious generalization of Motzkin and Straus’ result to hypergraphs
is false because there are many exainples of hypergraphs that do not achieve
their Lagrangian on any proper subhypergraph. Lagrangian of hypergraphs

1Let us note that this use of the name Lagrangian is at odds with the tradition.
Indeed, names as Laplacian, Hessian, Gramian, Grassmanian, etc., usually denote a
structured object like matrix, operator, or manifold, and not just a single number.
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has been proved to be a useful tool in hypergraph extremal problems. Ap-
plications of Lagrangian method can be found in [1], (2], (3], [5] , [8]and
[9]. In most applications, an upper bound is needed. Frankl and Fiiredi
[1] asked the following question. Given r > 3 and m € N how large can
the Lagrangian of an r-uniforn hypergraph with m edges he? For dis-
tinct A, B € N(") we say that A is less than B in the colex ordering if
maz(AAB) € B, where AAB = (A\ B)U (B \ A). For example, the
first (!) r-tuples in the colex ordering of N are the edges of [t]™. The
following conjecture of Frankl and Fiiredi (if it is true) proposes a solution
to the question mentioned above.

Conjecture 1.2 [1] The r-unifortn hypergraph with m edges forined by
taking the first m sets in the colex ordering of N(™) has the largest La-
grangian of all r-uniform hypergraphs with m edges. In particular, the
r-uniform hypergraph with (%) edges and the largest Lagrangian is [t](").

This conjecture is true when r = 2 by Theorem 1.1. For the case r = 3,
Talbot in [10] proved the following.

Theorem 1.3 [10] Let m and t be integers satistying (*3') <m < (3') +
(*3%) — (¢ — 1). Then Conjecture 1.2 is true for r = 3 and this value of m.

Although the obvious generalization of Motzkin and Straus’ result to
hypergraphs is false, we attempt to explore the relationship between the
Lagrangian of a hypergraph and the size of its maximumn cliques for hyper-
graphs when the number of edges is in certain range. In [7], it is conjectured
that the following Motzkin and Straus type results are true for hypergraphs.

Conjecture 1.4 [7] Let ¢, m, and r > 3 be positive integers satisfying
(71 < m < (7Y + (4Z%). Let H be an r-uniforin hypergraph with m

r—1

edges and H contain a clique of order ¢t — 1. Then A(H) = A([t — 1]7).

Conjecture 1.5 [7] Let ¢, m, and r > 3 be positive integers satisfying
("1) <m< (7)) + (::3) Let H be an r-uniform hypergraph with m

r

edges without containing a clique of order t — 1. Then A(H) < A([t —1]™).

Note that the upper hound (‘:1) + (::f) in Conjecture 1.4 is the bhest
possible (see [7]). Conjecture 1.4 is confirined when r = 3 in [7]. Let C;,,
denote the r-uniform hypergraph with m edges formed by taking the first
m sets in the colex ordering of N(*). The following result was given in [10].

Lemma 1.6 {10] For any integers m,t, and r satisfying

(7 =m< ()4 (20

we have A(Crm) = A([t — 1](™).
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In [6], the following result is obtained for r-uniform hypergraphs.

Theorem 1.7 [6] Let t,m and r be positive integers satisfying

(T eme ()5 (D)3 -0

Let H be an r-uniform hypergraph with ¢ vertices and m edges and contain
a clique of order ¢t — 1. Then A(H) = A([t — 1](").

Some other results on Conjecture 1.2, 1.4 and 1.5 can also be seen from
[11] and [12]. In this paper, we first show the following.

Theorem 1.8 Let m and t be integers satisfying

() =m0+ (57) (5)

Let H be a 4-uniform hypergraph with ¢ vertices and m edges without
containing a clique of order ¢ — 1. Then A(H) < A(ft — 1]¥).

Then, comnbing Theorems 1.7 (in the case when r = 4) and Theorem 1.8,
we have the following result immediately.

Corollary 1.9 Let m and t be integers satisfying

t—1 t—-1 t—2 t—2
< < — .
() =ms (34 (37 -5+
Let H be a 4-uniforin hypergraph with ¢ vertices and m edges. Then
ACH) < A([t - 1@).

Note that Theorem 1.8 and Corollary 1.9 provide evidence for Conjec-
ture 1.5 and Conjecture 1.2 respectively. The proof of Theorem 1.8 will be
given in Section 2. Other related results will be discussed in Section 3.

2 Proof of Theorem 1.8

We will impose one additional condition on any optimal weighting £ =
(z1,z2, -, Zn) for an r-uniform hypergraph H:

|{¢ : z; > O}| is minimal, i.e. if § is a feasible weighting for H satisfying
[{i:y: >0} < |{i:z; >0}, then A(H,7) < A(H). (1)

When the theory of Lagrange multipliers is applied to find the optimumn
of A\(H, %), subject to Y .-, =; = 1, notice that A\(E;, %) corresponds to the
partial derivative of A(H, Z) with respect to ;. The following lemna gives
some necessary conditions of an optimal weighting for H.
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Lemma 2.1 [2] Let H = (V, E) be an r-uniform hypergraph on the vertex
set [n] and £ = (z), %2, --,T,) be an optimal weighting for H with &
(£ n) non-zero weights z;, xo, --,zk satisfying condition (1). Then for
every {1,5} € [k]@, (a) A(E;, %) = ME;,%) = rA(H), (b) there is an edge
in F containing both ¢ and 7.

Definition 2.1 An r-uniform hypergraph H = (V| E) on the vertex set
[n] is left-compressed if jija---jr € E implies ijip---4, € E whenever
ix € Jk,1 < k < r. Equivalently, an r-uniform hypergraph H = (V, E) on
the vertex set [n] is left-compressed if Ej\; =@ for any 1 <i < j < n.

Remark 2.2 (a) In Lemma 2.1, part(a) implies that z;A(E;j, T)+A(Eyj, T)
= z;MEi;,Z) + MEj\i,T). In particular, if H is left-compressed, then
(zi — ;)M Eij, %) = MEy;, %) for any i, satisfying 1 < i< j < ks
ince Ej;\; = 0.

(b) If H is left-compressed, then for any i, j satisfying 1 <i < j <k,

_ A(E‘i\ja :E)

= By D) @)

T —Tj;
holds. If H is left-compressed and E;; = 0,for any i, j satisfying 1 < i <
Jj <k, then z; = ;.

(c) By (2), if H is left-compressed, then an optimal weighting T =
(z1,22, ", xy) for H must satisfy ; 2z >--- >z, > 0.

Denote )\E';"t_ Ly = max{A(H) : H is an r-uniforin hypergraph with ¢
vertices and m edges not containing a clique of order t — 1}. The following
lemma implies that we only need to consider left-comnpressed 4-uniform
hypergraphs H when we prove Theoremn 1.8.

Lemma 2.3 Let m and t be integers satisfying

t—1 t—1 t—2 t—2
<m< - .
(3 =m= () (59 -(57)
There exists a left-compressed 4-uniform hypergraph H on vertex set [t]
with m edges without containing [t — 1)) such that A(H) = /\?;l't_ 18

In the proof of Lemma 2.3, we need to define some partial order rela-
tion. An r-tuple 71454, is called a descendant of an r-tuple jij2- - Jjr
ifig < jsforeachl < s<r,andiy+ig+---+i. <jp 472+ +Jr
In this case, the r-tuple j1j3--- j. is called an ancestor of i1 -%,. The
r-tuple i1ig-- -1, is called a direct descendant of jyjp---jr if 41i2---4, is
a descendant of jyijo---jr and jy +jo+ -+ Jr =1+l + -+ i+ 1.
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We say that i,%5- .- i, has lower hierarchy than jyjg---j, if iyig-- i, is a
descendant of jyjs-- - j. This is a partial order on the set of all r-tuples.
Proof of Lemma 2.3. Let H be a 4-uniform hypergraph with ¢ vertices
and m edges without containing a clique of order ¢ — 1 such that A\(H) =
X(‘;‘ 1,0 We call H an extremal 4-uniform hypergraph for m, ¢t —1 and ¢.
Let £ = (z,z2,- -+, z:) be an optimal weighting of H. We can assume that
z; > x; when ¢ < j since otherwise we can just relabel the vertices of H
and obtain another extremal 4-uniform hypergraph for m, ¢t — 1 and ¢t with
an optimal weighting £ = (z1,x2, -+, z.) satisfying x; > z; when i < j.
Next we obtain a new 4-uniform hypergraph H from H by performing the
following;:

1. If (t—4)(t—3)(t—2)(t—1) € E(H), then there is at least one 4-tuple
in [t — 1] \ E(H), we replacing (¢t — 4)(t — 3)(t — 2)(t — 1) by this
4-tuple;

2. If an edge in H has a descendant other than (¢t —4)(t—3)(t —2)(t —
that is not in E(H), then replace this edge by a descendant other
than (t —4)(t — 3)(t —2)(t — 1) with the lowest hierarchy. Repeat this
until there is no such an edge.

Then H satisfies the following properties:

1. The number of edges in H is the same as the number of edges in H.
2. MH)=MH,Z) < MH,T) < MH).

3. t—4)(t-3)(t—-2)(t—-1) ¢ E(H).

4. For any edge in E(H), all its descendants other than (¢ —4)(z — 3)(¢t —
2)(t — 1) will be in E(H).

If H is not left-compressed, then there is an ancestor of (t —4)(t —3)(¢t -
2)(t — 1) uvwz such that wvwz € E(H). Hence (t —4)(t — 3)(t — 2)t and all
the descendants of (t — 4)(¢t — 3)(t — 2)t except (t —4)(t — 3)(t — 2)(t — 1)
will be in E(H). Then

nz (0 (59> (3) - (5) ()

which is a contradiction. H does not contain [t — 1)) since H does not
contain (t — 4)(t — 3)(t — 2)(t — 1). Clearly H is on vertex set {t]. u

In the following three lemmas, Lemnma 2.4 implies the maximuin weight
of H can not be too large if A(H) > A([t — 1]), and Lemma 2.6 implies
H contains most of the first (*,?) edges in colex ordering of N if A(H) >
)\([t — 1)), while Lemma 2.5 implies H also contains most of the next
(*3?) edges.
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Lemma 2.4 (a) Let H be a 4-uniformn hypergraph on vertex set [¢]. Let
Z = (21,%2,- -+, %) be an optimal weighting for H satisfying z, > 2o >
vo->x2,2>0. Thenz; < 24_5+T4—q or A(H) < ﬁﬁ% < A([t=1]@).

(b) Let H be a 4-uniform hypergraph on vertex set [t]. Let £ =
(z1,%2,++,Z¢) be an optimal weighting for H satisfying z; > 2 2> -+ >
z¢ > 0. Then

1 (t—3)?

ﬁm < A([t - 1](4)).

71 < 2(z4-3 + Te-2) or A(H) <
Proof. (a) f 1 2> x¢—5 + Ty—4, then dzy + 20+ -+ T4 > T1 + T2+ +
Ti_a+Ti_3+Ti_o+2i_1+x, = 1. Recalling that z, > 25 > --- 2> 74—¢, We
have ; > £5. Using Lemma 2.1, we have A(H) = \(E1,z). Note that
E, is a 3-uniform hypergraph with ¢ — 1 vertices and total weights at most
1 — 23. Hence by Theorem 1.3.

1

- 1—-——
_ 1 (¢-2)(t-4)° _(t-4¢-3)(t—-2) _
- ﬂ (t — 3)2(t - 1)2 24(t — 1)3 = )‘([t - 1](4))‘(3)

(b) If z; > 2(z¢—3 + x¢-2), then 2y + 2+ -+ 24y >y + T2+ +
To—g +Ty3+ Tg—2+ 741 +2¢ = 1. Recalling that z; > 2o > --- 2 x4_4,
we have T; > ﬁ The rest of the proof is the same as that in part (a), we

omit the computation details here. [ ]

Lemma 2.5 Let H be a left-compressed 4-uniform hypergraph in the ver-
tex set [t], then

It — 2/N\Ee_1] < 8|E(—1y:| or M(H) < A([t — 1]D).

Proof. Let £ = (z, 72, --,%:) be an optimal weighting for H. Since H is
left-comnpressed, by Remark 2.2 (a), z; 2 29 > --- > 2, 2 0. If 2, = 0,
then A(H) < A([t ~ 1]™). So we assume that z, > 0.

Consider a new weighting for H, § = (y1,¥2,-- -, ¥:) given by y; = z; for
i#£t—1,%, y1-1 =x¢—1 +x, and y, = 0. By Lemnma 2.1 (a), A(E;—1,%) =
A(E, £), so

/\(H, 37) - )\(H, .’E) IE;(A(Et_]_, f) bt x;A(E(t_l)‘,i)) - x,()\(E;, i)
—ZA(Ee—1)t, T)) — Te-1ZeA(Ee—1¢, £))
= T (ME-1,%) — MEy, ©)) — 2o ME(t-1)t, T)

= _x?A(E(t-l)tv ). (4)



Assume that |[t — 2]O\E,_1| > 8|Eq—1ye|. If MH) < A([t — 1]@) we
are done. Otherwise if A(H) > A([t — 1]¥) we will show that there exists
a set of edges F' C [t — 1))\ E satisfying

MFE,9) > TIME 1)1, T)- (5)

Then using (4) and (5), the 4-uniform hypergraph H* = ([t}, E*), where
E* = EUF, satisfies A(H*,%) > A(H). Since § has only t — 1 positive
weights, then A(H*, %) < A([t—1]™), and consequently, A(H) < A([t—1]@®).

We now construct the set of edges F. Let C = [t — 2]® \ E,_,. Then
by the assumption, |C| > 8|E(;_1)¢| and A(C,T) > 8| E(¢—1):|Tt-4Tt—3Te—2.

Let F consist of those edges in [t — 1](*) \ E containing the vertex ¢ — 1.
Since AM(H) > A([t — 1](4)) then z;_5 > 3 by Lemma 2.4 (a) and z;—4 >
T¢-3 > Z- by Lemma 2.4 (b). Hence

ME,Y) = (ze—1+z)MC,E) > 230 - 8| E(1-1ye|Te—aTe—-3Ts—2

2 @|Ee-nel@)® 22 Y iz,
i192€B¢ 1)
= zZAEp-1yt, E)- (6)
Hence F satisfies (5). This proves Lemma 2.5. [ |

Lemma 2.6 Let H be a left-compressed 4-uniform hypergraph on the ver-
tex set [t], then

[t — 2/O\E| < 8|Es—1yel or A(H) < A([t = 1]¥).

Proof. Let £ = (z1,x2,-+,2:) be an optimal weighting for H. Since H is
left-compressed, by Remark 2.2 (a), z, >z > --- 2z, 2 0. If z; = 0,
then A(H) < A([t — 1]). So we assuine that z, > 0.

Consider a new weighting for H, ¥ = (y1,¥2, -, y¢) given by y; = x; for
i#£t—1,¢t, Yo—1 = T4—1 + 2 and y, = 0. By Lemma 2.1 (a), A(E¢-1,T) =
A(Ey, ), similar to (4), we have

AH,§) - MH, ) = _x?A(E(t—l)taf)' (7

Assume that ||t — 2|V\E| > 8|E(,_1):|. If \(H) < A([t — 1J9) we are
done. Otherwise if A\(H) > A([t — 1]¥)) we will show that there exists a set
of edges F C [t — 2] \ E satisfying

A(F,'!j) > x%’\(E(t—l)hi)' (8)

Then using (7) and (8), the 4-uniform hypergraph H* = ([t], E*), where
E* = EU F, satisfies A\(H*,%) > A(H). Since ¥ has only ¢t — 1 positive
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weights, then A(H*, %) < A([t—1])®), and consequently, A\(H) < A([t—1]D).
This is a contradiction.
We now construct the set of edges . Let D = [t—2|Y\ E. Then by the
assumption, |D| > 8|E(;_1y:| and A(D, T) > 8| E(s—1y¢|Ts—5Tt—4Tt—3Ts—2.
Let F = D. Since A(H) > ([t — 1])) then z;_5 > Z. by Lemma 2.4
(a) and z;_4 > 243 > T by Lemma 2.4 (b). Hence

ME G = MD,%E) > 8Eq-1yt|Tt-52t-4Ts-3Tt—2 > 27| Ee—1)el(z1)?

> i Z i, Zi, = T ME—1ye, £)- &)
1i2€E 1)

Hence F satisfies (8). This proves Leinma 2.6. ||

Now we are ready to prove Theorem 1.8.
Proof of Theorem 1.8. Let m and t be integers satisfying (*7') < m <
(7)) + (537 —17(*3%) +1. Let H be a 4-uniform hypergraph with t vertices
and m edges without containing a clique of order ¢ — 1 such that A(H) =
/\?;m_l_t). Then by Lemma 2.3, we can assuine that H is left-compressed
and does not contain [t — 1)), Let £ = (z;,22,+--,%:) be an optimal
weighting for H. Since H is left-compressed, by Remark 2.2 (a), z; = z2 >
o>z, >0. If 2, = 0, then A(H) < A([t — 1)) since H does not contain
[t — 1]™). So we assuine that z; > 0.

If AM(H) < A([t — 1]9) we are done. Otherwise |[t — 2]P\E,_| <
8|E(—1):| by Lemma 2.5 and |[t — 2)\E| < 8|E(;—1);| by Lemnma 2.6.
Recalling that H does not contain [t — 1]¥), we have

t—2
0 < [[t=1]"N\E| = |[t—=2] N\E,_y [+|[t—2] “\E| < 16|Epy)e] < 16( 0 )

Let E* = EJ[t — 1) and H* = ([t], E*). Denote the edges of H* as m*,
then (‘7') <m* < (7)) + (33 = (}3%) + 1. So A(H*) = A([t — 1]@) hy
Theorein 1.7. Clearly, A(H*,Z) — A(H,Z) >0 since zy 229> -+ 22, >0
and |t — 1]\E| > 0. Hence A\(H) = A(H,Z) < MH*,Z) < MH*) =
A([t = 1)®). This completes the proof of Theorem 1.8. |

3 Remarks and Conclusions

We would like to point out the following result for r-uniform hypergraphs.

Theorem 3.1 [10] For any r > 4 there exists constants 7, and ko(r) such
that if m satisfies

(7)=m= () + (5) e
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with t > ko(r), let H be an r-uniform hypergraph on ¢ vertices with m
edges, then A\(H) < A([t — 1)™).

Note that, in the proof of Theoremn 3.1, we see that v, = 22" and t > ko(r) (a
sufficently large number). Now carrying out the major proof of Theorern 3.1
with 1nore detailed computation in the case when r = 4, as a comparison,
we have an improved result (Theorem 3.5) that will be stated helow. We
first need a few leminas.

Let ¢ and d, be defined as follow for positive integer ¢:

Cq
co=1,¢941 = Z(dq +i+1), do =1,dg41 = cq + dg.
=1
Denote A,,, ) = max{A(H) : H is an r-uniform hypergraph with t vertices
and m edges}. The following lemmas are proved in [10].

Lemma 3.2 [10] Let H be a left-compressed r-uniform hypergraph with ¢
vertices and m edges such that A(H) = )\{m,t). Let £ = (x1,%2, - -,%¢) be
an optimal weighting for H with k nonzero weights. Then

|{k = (dr—2 + 1)]"N\E| < cr_a| Egr—1yil-

Lemma 3.3 [10] Let H be a left-compressed r-uniform hypergraph with ¢
vertices and m edges such that A(H) = A, ). Let = (z1,22,--,7¢) be
an optimal weighting for H with k nonzero weights. Then

[k = (droz + 1)) NEx| < cr2| Ege—1yxl-

Lemma 3.4 [10] There exists a left-compressed r graph H with m edges
and t vertices such that A(H) = Ay, .

Using Leminas 3.2, 3.3 and 3.4 we have the following result for » = 4.

Theorem 3.5 Let m and t be integers satisfying (‘;1) <m< (‘;6) +
6(*3%) —105(*3") — 1. Let H be a 4-uniform hypergraph with ¢ vertices and
m edges. Then A(H) < A([t — 1]@).

Proof. Let m and t be integers satisfying (*;') < m < (*3%) +6(*3°%) -
105(‘;1) —1. Let H be a 4-uniform hypergraph with ¢ vertices and m edges
such that A(H) = )\?m ¢)- Then by Lemma 3.4, we can assume that H is left-

compressed. Let £ = (x),z2,-+,%;) be an optimal weighting for H with
k nonzero weights. Next we show that k <t — 1. So A(H) < A(Jt — 1]¥).
Assuine that k =t for a contradiction.
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Set r = 4 in Lemma 3.2 and 3.3 and note that dp = 5 and ¢y = 15, we
have

|(k — 6])\E| < 15|Ek_1)i| and |[k — 6]N\Ey| < 15|E_1yel-  (10)

Since H is left-compressed, then |[k —6]®\Ei_;| < 15|Ex—1yk| for 0 < i <
5. If k =t, then

069+ 3 [ - 6 () Becd

=0

t—6 t—6 t—1
> - . 11
> (00)e(0)-m() o
This contradicts to the assumption that
t—6 t—6 t—1
< - - 1.
m_<4)+6(3) 105(2) 1

Hence k <t — 1 and M(H) < A([t - 1]@). |
Note that

(3%) +e('3°) ~1os('37) 1
= () () +a(F7) +o(2) () + (%)

—105(t R 1) -1 (12)

m = |E|

2

Clearly, this value is less than

() (59 (5 *

Hence the upper bound and approach in Corollary 1.9 are better than that
in Theorem 3.5. Also, in Theorem 3.5, we get rid of the restriction that the
number of vertex set t is sufficiently large, which is imposed in Theoremn
3.1 when r = 4.

A natural question is to generalize Theorem 1.8 to general case when
r > 5. Unfortunately, for general case when r > 5, we are not able to obtain
similar results since we are not able to obtain z; < y(z;—o + z:—3) for some
~ as we did in Lemnma 2.4. Another challenge in the future study is how
to prove similar results as Theoremn 1.8 without restriction of exactly set ¢
vertices. This will be considered in the future work.
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