On the existence and the number of (2-d)-kernels in graphs

by Paweł Bednarz, Iwona Włoch

Faculty of Mathematics and Applied Physic Rzeszow University of Technology al. Powstańców Warszawy 8 35-959 Rzeszow, Poland email: iwloch@prz.edu.pl, pbednarz@prz.edu.pl

and César Hernández-Cruz

Instituto de Matemáticas Universidad Nacional Autónoma de México Ciudad Universitaria, C.P. 04510, México, D.F., Mexico email: cesar@matem.unam.mx

Abstract

In this paper we study (2-d)-kernels in graphs. We shall show that the problem of the existence of (2-d)-kernels is \mathcal{NP} -complete for a general graph. We also give some results related to the problem of counting of (2-d)-kernels in graphs. For special graphs we show that the number of (2-d)-kernels is equal to the Fibonacci numbers.

Keywords: kernel, Fibonacci numbers, Lucas numbers

AMS Subject Classification: 05C20, 05C69

1 Introduction and preliminary results

In general we use the standard terminology and notation of combinatorics and graph theory see [1, 2]. Only simple, undirected graphs are considered. A path P_n , $n \geq 2$ is a graph with $V(P_n) = \{x_1, \ldots, x_n\}$ and $E(P_n) = \{x_i x_{i+1} : i = 1, \ldots, n-1\}$. In what follows G stands for a graph with the vertex set V(G), |V(G)| denotes the cardinality of V(G).

A subset $S \subseteq V(G)$ is an *independent set* of G if no two vertices of S are adjacent in G. An independent set of G is *maximal* if there is no independent set of G containing S as a proper subset.

A subset $Q \subseteq V(G)$ is a dominating set of G if each vertex from $V(G) \setminus Q$ has a neighbour in Q. A subset J is a kernel of G if J is independent and dominating. The concept of kernels was introduced by Neumann and Morgenstern in digraphs in the context of game theory and kernels were studied in the next decades see [11, 12, 15]. H. Galeana-Sánchez played an important role in studying the existence of kernels and their generalizations in digraphs, see for example papers [4, 5, 8]. Recently interesting results for kernels are obtained by C. Hernández-Cruz, see [7, 8].

In [13] A. Włoch introduced a new type of kernels by considering dominating sets with additional restrictions. We recall this definition.

A subset $J \subset V(G)$ is a 2-dominating kernel of G if J is independent and 2-dominating i.e each vertex from $V(G) \setminus J$ has at least two neighbours in J.

For convenience instead of 2-dominating kernel we will write (2-d)kernel.

The definition of (2-d)-kernel implies that a connected graph with (2-d)-kernel J has an order at least 3 and $|J| \geq 2$. If G is totally disconnected then V(G) is a (2-d)-kernel. In this paper only connected graphs will be studied. Necessary and sufficient conditions for the existence of (2-d)-kernels in graphs were given in [13].

We shall prove that the problem of the existence of (2-d)-kernels is \mathcal{NP} -complete for general graphs.

Theorem 1.1. (2-d)-kernel is NP-complete.

Proof. Let G be a graph. Given a subset $K \subseteq V(G)$, it can be verified in polynomial time whether K is a (2-d)-kernel. Hence (2-d)-kernel is in \mathcal{NP} .

In order to prove \mathcal{NP} -hardness (and hence \mathcal{NP} -completeness), we reduce an instance G of the well-know \mathcal{NP} -complete problem 3-coloring to an instance H of (2-d)-kernel such that G is 3-colorable if and only if H has a (2-d)-kernel, and the encoding length of H is polynomially bounded in terms of the encoding length of G.

Let G be an instance of 3-coloring. Let us assume that G is connected. We construct H as follows. For every vertex u of G we create vertices $x_u, x'_u, y_u, y'_u, z_u, z'_u, w_u, w'_u$ and edges such that $X_u = \{x_u, x'_u\}$, $Y_u = \{y_u, y'_u\}$, $Z_u = \{z_u, z'_u\}$ are the parts of a complete 3-partite graph, and w_u is adjacent to the rest of the vertices, as shown in Figure 1.

Figure 1: Gadget for every vertex u.

For every edge $uv \in E(G)$ we will add all possible edges between X_u, Y_u, Z_u and X_v, Y_v, Z_v , respectively, as shown in Figure 2.

Figure 2: Gadget for every edge.

Clearly, |V(H)|=8|V(G)| and |E(H)|=19|V(G)|+12|E(G)|. It is direct to observe that, for every $u\in V(G)$, w_u' must belong to every (2-d)-kernel of H, if any exists. We also claim the following statements to hold.

Claim 1. Let $u \in V(G)$ be an arbitrary vertex. If K is a (2-d)-kernel of H, then

- $x_u \in K$ if and only if $x'_u \in K$,
- $y_u \in K$ if and only if $y'_u \in K$,
- $z_u \in K$ if and only if $z'_u \in K$.

Proof of Claim 1. Observe that $N(x_u) = N(x'_u)$. If $x_u \in K$, then $N(x_u) \cap K = \emptyset = N(x'_u) \cap K$. Thus, $x'_u \in K$. An analogous argument shows the remaining implication.

Claim 2. Suppose that H has a (2-d)-kernel K. For every $u \in V(G)$, then exactly one of the following statements holds:

- $X_u \subseteq K$,
- $Y_u \subseteq K$
- $Z_u \subseteq K$.

Proof of Claim 2. Since $w_u' \in K$, we have $w_u \notin K$. But w_u must be 2-dominated by K, hence, $X_u \cap K \neq \emptyset$, or $Y_u \cap K \neq \emptyset$, or $Z_u \cap K \neq \emptyset$. Suppose without loss of generality that $X_u \cap K \neq \emptyset$; it follows from Claim 1 that $X_u \subseteq K$. Recall that $H[X_u \cup Y_u \cup Z_u]$ is a complete 3-partite graph, thus, $Y_u \cap K = \emptyset = Z_u \cap K$.

Suppose that H has a (2-d)-kernel K. Define $c:V(G)\to \{X,Y,Z\}$ to be the function such that c(u)=C if and only if $C_u\subseteq K$. It follows from Claim 2 that c is well defined. The independence of K and the construction of H imply that, if $uv\in E(G)$, then $c(u)\neq c(v)$. Thus, c is a 3-coloring of G.

Let $c: V(G) \to \{X,Y,Z\}$ be a 3-coloring of G. Define K to be the set $K = \bigcup_{u \in V(G)} \{w'_u\} \cup \bigcup_{u \in V(G)} c(u)_u$. Since c is a 3-coloring of G, if $uv \in E(G)$, then $c(u) \neq c(v)$, and hence, K is an independent set. Also, for every $u \in V(G)$, the vertices in $(X_u \cup Y_u \cup Z_u \cup \{w_u\}) \setminus c(u)_u$ are 2-dominated by $c(u)_u$. Hence K is a (2-d)-kernel of H.

Hence, G has a 3-coloring if and only if H has a (2-d)-kernel; moreover, there is a bijection between the 3-colorings of G and the (2-d)-kernels of H. Since the encoding length of H is linearly bounded in terms of the encoding length of G, we conclude that (2-d)-kernel is \mathcal{NP} -complete.

2 The number of (2-d)-kernels in graphs

In this section we give some results which concerns the problem of counting of (2-d)-kernels in graphs. Let $\sigma_{(2-d)}(G)$ denote the number of (2-d)-kernels in graphs. For an arbitrary integer $n \geq 1$ we define the sequence of graphs G_1, \ldots, G_n as follows: $G_1 = K_1$ and for $n \geq 2$,

$$V(G_n) = \{u_1, \ldots, u_{n-1}, v_1, \ldots, v_{n-1}, x_1, \ldots, x_{n-1}, y_1, \ldots, y_{n-1}\},\$$

 $E(G_2) = \{x_1y_1, y_1u_1, u_1v_1, v_1x_1\} \text{ and for } n \geq 3,$

 $E(G_n) = E(G_2) \cup \bigcup_{i=2}^{n-1} \{x_i y_i, y_i u_i, u_i v_i, v_i x_i, y_{i-1} x_i\}.$

Figure 3: Graph G_n , $n \geq 3$

Theorem 2.1. For an arbitrary integer n, $n \ge 1$, we have $\sigma_{(2-d)}(G_n) = n$.

Proof. Let $n \geq 1$ be an arbitrary integer. For n = 1, 2 it immediately follows that $\sigma_{(2-d)}(G_1) = 1$, $\sigma_{(2-d)}(G_2) = 2$. Let $n \geq 3$. The definition of the graph G_i implies that for each $3 \leq i \leq n$ the graph G_i has exactly i-1 cycles C_4 as induced subgraphs. Let $V(C_4^i) = \{x_i, y_i, u_i, v_i\}$, $E(C_4^i) = \{x_iy_i, y_iu_i, u_iv_i, v_ix_i\}$.

To calculate the number of (2-d)-kernels in the graph G_n we define the family $\mathcal{F}(G_n)$ of (2-d)-kernels i.e $\mathcal{F}(G_n)=\{J\subseteq V(G_n): J \text{ is a (2-d)-kernel of } G_n\}$. We consider two subfamilies $\mathcal{F}_x(G_n)=\{J\in \mathcal{F}(G_n): x_{n-1}\in J\}$ and $\mathcal{F}_{-x}(G_n)=\{J\in \mathcal{F}(G_n): x_{n-1}\notin J\}$. Consequently $\sigma_{(2-d)}(G_n)=|\mathcal{F}(G_n)|=|\mathcal{F}_x(G_n)|+|\mathcal{F}_{-x}(G_n)|$. Let $|\mathcal{F}_x(G_n)|=\sigma_x(G_n)$ and $|\mathcal{F}_{-x}(G_n)|=\sigma_{-x}(G_n)$. Assume that J is a (2-d)-kernel of G_n and consider the following cases:

1. $x_{n-1} \in J$. Then $x_i, u_i \in J$ for all $1 \le i \le n-2$, otherwise the set J is not independent. This means that $\sigma_x(G_n) = 1$,

2.
$$x_{n-1} \notin J$$
. Then $y_{n-1}, v_{n-1} \in J$. If $x_{n-2} \notin J$ then $\{J \setminus \{y_{n-1}, v_{n-1}\}\} = \mathcal{F}_{-x}(G_{n-1})$. If $x_{n-2} \in J$ then $\{J \setminus \{y_{n-1}, v_{n-1}\}\} = \mathcal{F}_{x}(G_{n-1})$

Therefore the number $\sigma_{(2-d)}(G_n)$ of all (2-d)-kernels of graph G_n is given by the relation $\sigma_{(2-d)}(G_n) = \sigma_{(2-d)}(G_{n-1}) + 1$.

Thus the theorem is proved.

Corollary 2.2. Let $n \geq 2$ be a fixed integer. Then for an arbitrary $m \geq 4n-4$ there exists a graph G of order m such that $\sigma_{(2-d)}(G) = n$.

Proof. Let $n \geq 2$ be a fixed integer. We will define the graph G of order $m \geq 4n-4$ such that $\sigma_{(2-d)}(G) = n$. If m = 4n-4 then $G = G_n$ for all $n \geq 2$. Let m > 4n-4 and m-4n+4=p, $p \geq 1$. We construct a graph G from the graph G_n as follows. Let $1 \leq i \leq n-1$ be a fixed 4-cycle of G_n induced by the set of vertices $\{x_i, y_i, u_i, v_i\}$. Then $V(G) = V(G_n) \cup \{t, t_1, \ldots, t_{p-1}\}$ and $E(G) = E(G_n) \cup \{tx_i, ty_i, tu_i, tv_i, tt_1, \ldots, tt_{p-1}\}$. Clearly |V(G)| = m. Let $G_n = 0$ be an arbitrary (2-d)-kernel of $G_n = 0$. It is obvious that $f_n = 0$ the vertices $f_n = 0$ the vertices $f_n = 0$ the proof of $f_n = 0$. This implies that $f_n = 0$ the proof of $f_n = 0$ the proo

For a large n the graph G_n has a large number of vertices. For this reason it is interesting to find other sequences of graphs which realize a fixed number of (2-d)-kernels.

In various counting problems the solution is given by the Fibonacci numbers F_n . They are defined by the linear recurrence equation $F_n = F_{n-1} + F_{n-2}$, for $n \ge 2$ with initial terms $F_0 = F_1 = 1$. The Lucas numbers L_n are the cyclic version of the Fibonacci numbers and they are defined by $L_n = L_{n-1} + L_{n-2}$, for $n \ge 2$ with $L_0 = 2$ and $L_1 = 1$. Actually, Fibonacci numbers and the like are studied, also in graphs and different combinatorial problems, for example in the context of the Merrifield-Simmons index, Hosoya index, number partitions and others [3, 6, 9, 10, 14].

For an arbitrary integer $n \ge 1$ we define the sequence of graphs H_1, \ldots, H_n as follows: $H_1 = K_1$ and for $n \ge 2$,

$$V(H_n) = \{u_1, \dots, u_{n-1}, v_1, \dots, v_{n-1}, x_1, \dots, x_{n-1}, y_1, \dots, y_{n-1}\},$$

$$E(H_n) = \{x_1y_1, y_1u_1, u_1v_1, v_1x_1\} \cup \bigcup_{i=2}^{n-1} \{x_iy_i, y_iu_i, u_iv_i, v_ix_i, x_iu_{i-1}\}$$

Figure 4: Graph H_n , $n \geq 2$

Theorem 2.3. For an arbitrary integer $n, n \ge 1$, we have $\sigma_{(2-d)}(H_n) = F_n$.

Proof. Let $n \ge 1$ be an arbitrary integer. Then for $H_1 = K_1$ and $H_2 = C_4$ it immediately follows that $\sigma_{(2-d)}(H_1) = 1 = F_1$ and $\sigma_{(2-d)}(H_2) = 2 = F_2$. Let $n \ge 3$.

The definition of the graph H_i implies that for each $3 \le i \le n$ the graph H_i has exactly i-1 cycles C_4 as induced subgraphs. Let $V(C_4^i) = \{x_i, y_i, u_i, v_i\}$ and $E(C_4^i) = \{x_i y_i, y_i u_i, u_i v_i, v_i x_i\}$. Then $\bigcup_{i=1}^{n-1} V(C_4^i) = V(H_n)$ and the definition of H_n immediately implies labeling of vertices of H_n .

To calculate the number of (2-d)-kernels in the graph H_n we define the family $\mathcal{F}(H_n)$ of (2-d)-kernels i.e $\mathcal{F}(H_n) = \{J \subseteq V(H_n) : J \text{ is a (2-d)-kernel of } H_n\}$.

Let $\mathcal{F}_x(H_n) = \{J \in \mathcal{F}(H_n) : x_{n-1} \in J\}$ and $\mathcal{F}_{-x}(H_n) = \{J \in \mathcal{F}(H_n) : x_{n-1} \notin J\}$. Moreover let $\sigma_{(2-d)}(H_n) = |\mathcal{F}(H_n)| = |\mathcal{F}_x(H_n)| + |\mathcal{F}_{-x}(H_n)|$. Let $|\mathcal{F}_x(H_n)| = \sigma_x(H_n)$ and $|\mathcal{F}_{-x}(H_n)| = \sigma_{-x}(H_n)$. Assume that J is a (2-d)-kernel of H_n and consider the following cases:

- 1. $x_{n-1} \notin J$ and $x_{n-2} \in J$. Then $y_{n-1}, v_{n-1} \in J$ and this means that $J \setminus \{x_{n-2}, u_{n-2}, v_{n-1}, y_{n-1}\} \in \mathcal{F}(H_{n-2})$ and further $\{J \setminus \{x_{n-2}, u_{n-2}, v_{n-1}, y_{n-1}\}\} = \mathcal{F}(H_{n-2})$,
- 2. $x_{n-1}, x_{n-2} \in J$. Then $J \setminus \{x_{n-1}\} \in \mathcal{F}_x(H_{n-1})$ and further $\{J \setminus \{x_{n-1}\}\} = \mathcal{F}_x(H_{n-1})$,
- 3. $x_{n-1} \in J$ and $x_{n-2} \notin J$. Then $J \setminus \{x_{n-1}\} \in \mathcal{F}_{-x}(H_{n-1})$ and further $\{J \setminus \{x_{n-1}\}\} = \mathcal{F}_{-x}(H_{n-1})$.

Therefore the number $\sigma_{(2-d)}(H_n)$ of all (2-d)-kernels of graph H_n is given by the relation $\sigma_{(2-d)}(H_n) = \sigma_x(H_{n-1}) + \sigma_{-x}(H_{n-1}) + \sigma_{(2-d)}(H_{n-2})$ and finally $\sigma_{(2-d)}(H_n) = \sigma_{(2-d)}(H_{n-1}) + \sigma_{(2-d)}(H_{n-2})$, for $n \geq 3$. By the initial conditions it immediately follows that $\sigma_{(2-d)}(H_n) = F_n$.

Corollary 2.4. Let $n \geq 2$ be a fixed integer. Then for an arbitrary $m \geq 4n - 4$ there exists a graph H of order m such that $\sigma_{(2-d)}(H) = F_n$.

Proof. Starting from the graph H_n , by the same construction as in Corollary 2.2, for a 4-cycle of H_n , we obtain the graph H such that $\sigma_{(2-d)}(H) = F_n$.

Corollary 2.5. For an arbitrary integer $n, n \ge 1$, we have $\sigma_{(2-d)}(G_{F_n}) = \sigma_{(2-d)}(H_n)$

Now we define the sequence of graphs H_1^*, \ldots, H_n^* as follows: $H_1^* = C_4$, $H_2^* = K_4 - e$, where e is an arbitrary edge of the graph K_4 , $H_3^* = H_3$ and for $4 \le i \le n$ the graph H_i^* is constructed from graph H_i by adding the edge x_1u_{i-1} .

Figure 5: Graph H_n^* , $n \ge 4$

Theorem 2.6. For an arbitrary integer n, $n \ge 1$, we have $\sigma_{(2-d)}(H_n^*) = L_n$.

Proof. Let $n \geq 1$ be an arbitrary integer. Then for H_i^* , i = 1, 2, 3 it immediately follows that $\sigma_{(2-d)}(H_1^*) = 2 = L_1$, $\sigma_{(2-d)}(H_2^*) = 1 = L_2$ and $\sigma_{(2-d)}(H_3^*) = 3 = L_3$.

Let $\mathcal{F}(H_n) = \{J \subseteq V(H_n) : J \text{ is a (2-d)-kernel of } H_n\}$ and $\mathcal{L}(H_n^*) = \{J \subseteq V(H_n^*) : J \text{ is (2-d)-kernel of } H_n^*\}$. We consider the following cases:

- 1. $y_i \in J$. This means that $J \setminus \{y_i, v_i\} \in \mathcal{F}(H_{n-1})$ and further $\{J \setminus \{y_i, v_i\}\} = \mathcal{F}(H_{n-1})$,
- 2. $y_i \notin J$. Then $x_i, u_i \in J$ and $y_{i-1}, v_{i-1}, y_{i+1}, v_{i+1} \in J$. This means that $J \setminus \{x_i, u_i, y_{i-1}, v_{i-1}, y_{i+1}, v_{i+1}\} \in \mathcal{F}(H_{n-3})$ and further $\{J \setminus \{x_i, u_i, y_{i-1}, v_{i-1}, y_{i+1}, v_{i+1}\}\} = \mathcal{F}(H_{n-3})$.

Therefore the number $\sigma_{(2-d)}(H_n^*)$ of all (2-d)-kernels of graph H_n^* is given by the relation $\sigma_{(2-d)}(H_n^*) = \sigma_{(2-d)}(H_{n-1}) + \sigma_{(2-d)}(H_{n-3})$. By Theorem 2.3 it follows that $\sigma_{(2-d)}(H_n^*) = L_n$.

Proving in the same way as in Corollary 2.2 for the graph H^* we have:

Corollary 2.7. Let $n \geq 2$ be a fixed integer. Then for an arbitrary $m \geq 4n-4$ there exists a graph H^* of order m such that $\sigma_{(2-d)}(H^*) = L_n$.

Corollary 2.8. For an arbitrary integer $n, n \ge 1$, we have $\sigma_{(2-d)}(G_{L_n}) = \sigma_{(2-d)}(H_n^*)$

For an arbitrary integer $n \geq 0$ we define the sequence of graphs R_0, \ldots, R_n as follows: $R_0 = P_3$ with $V(P_3) = \{x_1, x_2, x_3\}$ and for $n \geq 1$ $V(R_n) = \{x_1, x_2, x_3, y_1, \ldots, y_n, u_1, \ldots, u_n, v_1, \ldots, v_n, t_1, \ldots, t_n\},$ $E(R_n) = \{x_1x_2, x_2x_3\} \cup \bigcup_{i=1}^n \{x_2y_i, y_iu_i, u_it_i, t_iv_i, v_iy_i\}.$

Figure 6: Graph $R_n, n \geq 1$

Theorem 2.9. For an arbitrary integer $n, n \geq 0$, we have $\sigma_{(2-d)}(R_n) = 2^n$.

Proof. We use induction for our proof. It is obvious that $\sigma_{(2-d)}(R_0) = \sigma_{(2-d)}(P_3) = 1 = 2^0$. Let $n \geq 1$ and assume that for an arbitrary R_n we have $\sigma_{(2-d)}(R_n) = 2^n$. We shall show that $\sigma_{(2-d)}(R_{n+1}) = 2^{n+1}$. By the induction hypothesis $\sigma_{(2-d)}(R_n) = 2^n$. Let $\mathcal{J}(R_n) = \{J_1, \ldots, J_{2^n}\}$ be the family of all (2-d)-kernels of R_n . The definition of the graph R_n immediately gives that $\{x_1, x_3\} \subset J_i$, for $i = 1, \ldots, 2^n$. Moreover for every (2-d)-kernel J of the graph R_{n+1} there exists $1 \leq i \leq 2^n$ such that $J_i \subset J$. Since the graph C_4 has exactly two (2-d)-kernels it is obvious that $\sigma_{(2-d)}(R_{n+1}) = \sigma_{(2-d)}(R_n) \cdot 2 = 2^{n+1}$, by induction hypothesis.

Thus the theorem is proved.

Corollary 2.10. Let $n \geq 1$ be a fixed integer. Then for an arbitrary $m \geq 4n + 3$ there exists a graph R of order m such that $\sigma_{(2-d)}(R) = 2^n$.

Proof. If m=4n+3 then $R=R_n$. Let m>4n+3 and m-4n-3=p. Then it is suffices to add p leaves to the vertex x_2 in the graph R_n . In other words $V(R)=V(R_n)\cup\{t_1,...,t_p\}$ and $E(R)=E(R_n)\cup\bigcup_{i=1}^p x_2t_i$. Then the result is obvious.

Corollary 2.11. For an arbitrary integer $n, n \ge 0$, we have $\sigma_{(2-d)}(G_{2^n}) = \sigma_{(2-d)}(R_n)$

3 Acknowledgements

The authors wish to thank the referee for a through review and very useful suggestions which improved the rewriting of this paper.

References

- [1] C. Berge, *Principles of Combinatorics*, Academic Press, New York, 1971.
- [2] R. Diestel, Graph theory, Springer-Verlag, Heidelberg, New York, Inc. 2005.
- [3] S. Falcón, A. Plaza, On k-Fibonacci numbers of arithmetic indexes, Applied Mathematics and Computation 208(1) (2009) 180-185.
- [4] H. Galeana-Sánchez, M. Guevara, Some sufficient conditions for the existence of kernels in infinite digraphs, Discrete Mathematics 309 (2009), 3680-3693.
- [5] H. Galeana-Sánchez, R. Sanchez-Lopez, H-Kernels in Infinite Digraphs, Graphs and Combinatorics 29(4) (2013) 913-920.
- [6] S. Wagner, I. Gutman, Maxima and Minima of the Hosoya Index and the Merrifield-Simmons Index, Acta Applicandae Mathematicae 112(3) (2010) 323.
- [7] P. Hell, C. Hernández-Cruz, On the complexity of the 3-kernel problem in some classes of digraphs, Discussiones Mathematicae Graph Theory 34(1) (2014) 167-185.
- [8] C. Hernández-Cruz, H. Galeana-Sánchez, k-kernels in k-transitive and k-quasi-transitive digraphs, Discrete Mathematics 312(16) (2012) 2522-2530.
- [9] E. Kılıç, On the usual Fibonacci and generalized order-k Pell numbers, Ars Combinatoria 88 (2008) 33-45.
- [10] H. Prodinger, R.F. Tichy, Fibonacci numbers of graphs, The Fibonacci Quarterly 20 (1982) 16-21.
- [11] W. Szumny, A. Włoch, I. Włoch, On (k,l)-kernels in D-join of digraphs, Discussiones Mathematicae Graph Theory 27 (2007) 457-470.
- [12] W. Szumny, A. Włoch, I. Włoch, On the existence and on the number of (k,l)-kernels in the lexicographic product of graphs, Discrete Mathematics 308 (2008) 4616-4624.
- [13] A. Włoch, On 2-dominating kernels in graphs, Australasian Journal of Combinatorics 53 (2012) 273-284.

- [14] A. Włoch, On generalized Fibonacci numbers and k-distance K_p-matchings in graphs, Discrete Applied Mathematics 160 (2012) 1399-1405.
- [15] I. Włoch, Trees with extremal numbers of maximal independent sets including the set of leaves, Discrete Mathematics 308 (2008) 4768-4772.