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Abstract

In this paper we study (2-d)-kernels in graphs. We shall show
that the problem of the existence of (2-d)-kernels is A"P-complete
for a general graph. We also give some results related to the problem
of counting of (2-d)-kernels in graphs. For special graphs we show
that the number of (2-d)-kernels is equal to the Fibonacci numbers.
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1 Introduction and preliminary results

In general we use the standard terminology and notation of combinatorics
and graph theory see [1, 2]. Only simple, undirected graphs are considered.
A path P,, n > 2 is a graph with V(P,) = {zi,...,z,} and E(P,) =
{ziziy1 11 =1,...n~ 1}. In what follows G stands for a graph with the
vertex set V(G), |V(G)| denotes the cardinality of V(G).
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A subset § C V(G) is an independent set of G if no two vertices of
S are adjacent in G. An independent set of G is mazimal if there is no
independent set of G containing S as a proper subset.

A subset Q C V(G) is a dominating set of G if each vertex from V(G)\Q
has a neighbour in Q. A subset J is a kernel of G if J is independent
and dominating. The concept of kernels was introduced by Neumann and
Morgenstern in digraphs in the context of game theory and kernels were
studied in the next decades see [11, 12, 15]. H. Galeana-Sénchez played an
important role in studying the existence of kernels and their generalizations
in digraphs, see for example papers (4, 5, 8]. Recently interesting results
for kernels are obtained by C. Hernindez-Cruz, see (7, 8].

In [13] A. Wloch introduced a new type of kernels by considering dom-
inating sets with additional restrictions. We recall this definition.

A subset J C V(G) is a 2-dominating kernel of G if J is independent
and 2-dominating i.e each vertex from V{(G)\ J has at least two neighbours
in J.

For convenience instead of 2-dominating kernel we will write (2-d)-
kernel.

The definition of (2-d)-kernel implies that a connected graph with (2-d)-
kernel J has an order at least 3 and |J| > 2. If G is totally disconnected then
V(G) is a (2-d)-kernel. In this paper only connected graphs will be stud-
ied. Necessary and sufficient conditions for the existence of (2-d)-kernels in
graphs were given in [13].

We shall prove that the problem of the existence of (2-d)-kernels is N'P-
complete for general graphs.

Theorem 1.1. (2-d)-kernel is N'P-complete.

Proof. Let G be a graph. Given a subset K C V(G), it can be verified in
polynomial time whether K is a (2-d)-kernel. Hence (2-d)-kernel is in N'P.

In order to prove N'P-hardness (and hence A'P-completeness), we re-
duce an instance G of the well-know N'P-complete problem 3-coloring to
an instance H of (2-d)-kernel such that G is 3-colorable if and only if H
has a (2-d)-kernel, and the encoding length of H is polynomially bounded
in terms of the encoding length of G.

Let G be an instance of 3-coloring. Let us assume that G is con-
nected. We construct H as follows. For every vertex u of G we create
vertices Ty, ), Yu, Yh Zu, 2y, Wy, W), and edges such that X, = {z.,z,},
Y. = {¥u: ¥}, Zu = {24, 2.} are the parts of a complete 3-partite graph,
and w, is adjacent to the rest of the vertices, as shown in Figure 1.



Figure 1: Gadget for every vertex u.

For every edge wv € E(G) we will add all possible edges between
Xy, Yy, Z, and X,,,Y,, Z,, respectively, as shown in Figure 2.
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Figure 2: Gadget for every edge.

Clearly, |V(H)| = 8|V(G)| and |E(H)| = 19}V(G)| + 12|E(G)|. It is
direct to observe that, for every u € V(G), w!, must belong to every (2-

d)-kernel of H, if any exists. We also claim the following statements to
hold.

Claim 1. Let u € V(G) be an arbitrary vertez. If K is a (2-d)-kernel of
H, then



e 7, € K if and only if 2}, € K,
e y, € K ifand only if y,, € K,
e z, € K if and only if z,, € K.

Proof of Claim 1. Observe that N(z,) = N(z.,). If z, € K, then N(z,)N
K =2 = N(z,)N K. Thus, z, € K. An analogous argument shows the
remaining implication. O

Claim 2. Suppose that H has a (2-d)-kernel K. For every u € V(G), then
ezactly one of the following statements holds:

e X, CK,
e Y, CK,
e Z,CK.

Proof of Claim 2. Since w!, € K, we have w, ¢ K. But w, must be 2-
dominated by K, hence, X, NK # @, or Y, NK # @, 0r Z, N K # @.
Suppose without loss of generality that X, N K # @; it follows from Claim
1 that X, C K. Recall that H[{X,UY, UZ,] is a complete 3-partite graph,
thus, Y, NK=2=2Z,nK. 0O

Suppose that H has a (2-d)-kernel K. Define c¢: V(G) — {X,Y,Z} to
be the function such that ¢(u) = C if and only if C,, C K. It follows from
Claim 2 that c is well defined. The independence of K and the construction
of H imply that, if uv € E(G), then ¢(u) # c¢(v). Thus, ¢ is a 3-coloring of
G.

Let ¢ : V(G) = {X,Y,Z} be a 3-coloring of G. Define K to be the
set K = U,eve{wi} UUuev (e €(u)u. Since ¢ is a 3-coloring of G, if
w € E(G), then c(u) # ¢(v), and hence, K is an independent set. Also,
for every u € V(G), the vertices in (X, UY, U Z, U {w,}) \ c(u), are
2-dominated by c(u),. Hence K is a (2-d)-kernel of H.

Hence, G has a 3-coloring if and only if H has a (2-d)-kernel; moreover,
there is a bijection between the 3-colorings of G and the (2-d)-kernels of H.
Since the encoding length of H is linearly bounded in terms of the encoding
length of G, we conclude that (2-d)-kernel is A'P-complete. O
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2 The number of (2-d)-kernels in graphs

In this section we give some results which concerns the problem of counting
of (2-d)-kernels in graphs. Let 0(5_4)(G) denote the number of (2-d)-kernels
in graphs. For an arbitrary integer n > 1 we define the sequence of graphs
G1,...,Gp as follows: Gy = K and for n > 2,

V(Gn) = {ul’ sy Un—1,V1y .., Un—1,T1y .« 1, Tn-1, Y1, vyn—1}7

E(G3) = {z1y1, y1u1, vav1,v1z1} and for n > 3,

E(Ga) = E(G2) UULS, {zayi, yivs, wivi, vii, yi—1 3}

n Yn-2 Yn-1

T Uy

V1 Vn-2 Vn-1

Figure 3: Graph Gp, n >3
Theorem 2.1. For an arbitrary integer n, n > 1, we have 0(3_q)(Grn) = n.

Proof. Let n > 1 be an arbitrary integer. For n = 1,2 it immediately
follows that o(2_4)(G1) = 1, 0(3-4)(G2) = 2. Let n > 3. The definition
of the graph G; implies that for each 3 < i < n the graph G; has exactly
i— 1 cycles Cy as induced subgraphs. Let V(C%) = {z;,yi, ui, vi}, E(C}) =
{Tayi, yiui, usvy, vil”i}-

To calculate the number of (2-d)-kernels in the graph G,, we define the
family F(G,) of (2-d)-kernelsi.e F(G,) = {J C V(G,) : J is a (2-d)-kernel
of G,}. We consider two subfamilies F,(Gp) = {J € F(Gn) : Zn-1 € J}
and F_5(Gn) = {J € F(G,) : Tn-1 ¢ J}. Consequently 0(2_4y(Gn) =
|F(Gn)l = |Fo(Gr)|+|F-2(Gr)|- Let | F2(Gn)| = 02(Gr) and | F_o(Gr)| =
0_2(Gy). Assume that J is a (2-d)-kernel of G,, and consider the following
cases:

1. z,_, € J. Then z;,u; € J for all 1 < i < n — 2, otherwise the set J is
not independent. This means that o.(G.) =1,

2. 2,1 ¢J. Then yn_1,vn_1 €J. ff 2n_2 ¢ J then {J\ {gn_1,vn-1}} =
F_z(Gn-1). lf 2 € J then {J\ {yn-1,n-1}} = Fz(Gn-1)

Therefore the number o(3_4)(Gn) of all (2-d)-kernels of graph G, is
given by the relation o(3_4)(Gr) = 0(2-a)(Gn-1) + 1.

Thus the theorem is proved. O



Corollary 2.2. Let n > 2 be a fized integer. Then for an arbitrary m >
4n — 4 there exists a graph G of order m such that 0(5_q)(G) = n.

Proof. Let n > 2 be a fixed integer. We will define the graph G of order
m > 4n—4 such that 0(3_q)(G) =n. If m =4n—4 then G = G, foralln >
2. Let m > dn—4 and m—4n+4 = p, p > 1. We construct a graph G from
the graph G, as follows. Let 1 < i < n—1 be a fixed 4-cycle of G, induced
by the set of vertices {z;, yi,u;,v;}. Then V(G) = V(Gr)U{t,ty,...,tp—1}
and E(G) = E(Gr) U {tz;, ty;, tus, tv;, tty, .. ., ttp_1 }. Clearly |V(G)| = m.
Let J be an arbitrary (2-d)-kernel of G. It is obvious that ¢ ¢ J, otherwise
vertices u;, v; are not 2-dominated by J. Moreover {t;,...,t,—1} C J. This
implies that 0(2—d) (G) =n. 0

For a large n the graph G, has a large number of vertices. For this
reason it is interesting to find other sequences of graphs which realize a
fixed number of (2-d)-kernels.

In various counting problems the solution is given by the Fibonacci
numbers F,,. They are defined by the linear recurrence equation F;,, =
B 1+ F,_2, for n > 2 with initial terms Fy = F)} = 1. The Lucas numbers
L, are the cyclic version of the Fibonacci numbers and they are defined by
L,=L,_ 1+ Ly, forn>2with Ly =2 and L, = 1. Actually, Fibonacci
numbers and the like are studied, also in graphs and different combinato-
rial problems, for example in the context of the Merrifield-Simmons index,
Hosoya index, number partitions and others (3, 6, 9, 10, 14).

For an arbitrary integer n > 1 we define the sequence of graphs Hy, ..., H,
as follows: H; = K; and for n > 2,
V(Hn) = {uly"'7un—l1vl7-'-avn—hxl""3zn—l»y1s--'syn—l}v

-1
E(Hn) = {xlyl,ylul,ulvl,vﬂl} U U?:z {-'L'iyi’yiui:ui'viyvimi,xiui—l}
n Yn-2 Yn-1

T 2!

U1

Figure 4: Graph H,, n > 2
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Theorem 2.3. For an arbitrary integer n, n > 1, we have o(3_q)(H,) =
F,.

Proof. Let n > 1 be an arbitrary integer. Then for Hy = K, and Hy = Cj
it immediately follows that os_q)(H1) = 1= F) and 0(3_q)(H2) =2 = F3.
Letn > 3.

The definition of the graph H; implies that for each 3 < 7 < n'the
graph H; has exactly i — 1 cycles C as induced subgraphs. Let V(C}) =
{i,yi,ui, v} and E(C}) = {ziyi, yiti, wivi, viz;}. Then 27 V(Ci) =
V(H,) and the definition of H,, immediately implies labeling of vertices of
H,.

To calculate the number of (2-d)-kernels in the graph H, we define the
family F(Hy) of (2-d)-kernelsi.e F(H,) = {J C V(H,) : J is a (2-d)-kernel
of H,}.

Let Fo.(H,) = {J € F(H,) :zp-1 € J} and F_,(H,) = {J € F(H,):
Za-1 ¢ J}. Moreover let G(a—g)(Hn) = |F(Hn)| = |Fa(Hn)l + | Fz(Ha)|-
Let |F(Hp)| = 0z(H,) and |F-z(Hp)| = 0_z(H,). Assume that J is a
(2-d)-kernel of H,, and consider the following cases:

1. zp_1 ¢ J and z,_o € J. Then yo—1,v,—; € J and this means that
J\{Zn-2,Un—2,Vn-1,Yn-1} €F (Hn-2) and further

{J \ {xn—27 Un-~2, 'Uu-—lyyn-l}} = }-(Hn—Z),

2. Zp_1,Ta—2 € J. Then J\ {zn-1} €F (Hp-)) and further {J \
{zn-1}} = Fo(Hn1),

3. zn_y € Jand 2 ¢ J. Then J\ {zpn_1} €F _2(Hp-1) and further
{J \ {xn—l}} = J:-z(Hn—l)~

Therefore the number o(;_q)(Hp) of all (2-d)-kernels of graph H, is
given by the relation o(2_g)(Hn) = 02(Hn_1) +0_z(Hn_1) + 0(2—a)(Hn-2)
and finally o(3_4)(Hp) = 0(2_a)(Hn-1) + 0(2—a)(Hrn_2), for n > 3. By the
initial conditions it immediately follows that o(_g4)(Hn) = Fh. O

Corollary 2.4. Let n > 2 be a fized integer. Then for an arbitrary m >
4n — 4 there exists a graph H of order m such that oo_q)(H) = F,.

Proof. Starting from the graph H,, by the same construction as in Corol-
lary 2.2, for a 4-cycle of H,, we obtain the graph H such that o(3_4)(H) =
F,. O

Corollary 2.5. For an arbitrary integer n, n > 1, we have 0(2_4)(GF,) =
o(2-a)(Hn)
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Now we define the sequence of graphs HY, ..., H as follows: Hf = Cy,
Hj; = K4 — e, where e is an arbitrary edge of the graph K4, H3 = H3 and
for 4 < i < n the graph H} is constructed from graph H; by adding the
edge T1ui—.

1

7 ol

U1 Un-2 Un-1

Figure 5: Graph H;, n >4

Theorem 2.8. For an arbitrary integer n, n > 1, we have ga_qy(H};) =
L,.

Proof. Let n > 1 be an arbitrary integer. Then for H}, i = 1,2,3 it
immediately follows that gy_gy(H{) =2 = L1, 0(2_ay(H3) = 1 = L3 and
O(2-a)(H3) =3 = Ls.

Let F(H,) = {J C V(H,) : J is a (2-d)-kernel of H,} and L(H}}) =
{J CV(H}):Jis (2-d)-kernel of H}. We consider the following cases:
1. y; € J. This means that J \ {y;,v;} €F (Hn_;) and further {J\
{vi,vi}} = F(Hn-1),
2. y; ¢ J. Then z;,u; € J and y;—1,vi—1,, ¥i+1,Vi+1 € J. This means that
I\ A{zi, wi, Yic1, vie1,, Yig1, Vit1} € F(Hn-3) and further
{J \ {xi»ui,yi—l,'Ui—l,,yi+1,vi+l}} = ]:(Hn-S)'

Therefore the number o(s_4y(H;;) of all (2-d)-kernels of graph H} is
given by the relation o(o_q4)(Hy) = 0(2-d)(Hn-1) +0@_a)(H,-3). By The-
orem 2.3 it follows that o5_g)(H};) = Ln. O

Proving in the same way as in Corollary 2.2 for the graph H* we have:

Corollary 2.7. Let n > 2 be a fixed integer. Then for an arbitrary m >
4n — 4 there exists a graph H* of order m such that 0(3_qy(H*) = L,.

Corollary 2.8. For an arbitrary integer n, n > 1, we have o(2_q)(GL,) =
o(2-a)(Hy)

For an arbitrary integer n > 0 we define the sequence of graphs Ry, ..., R,
as follows: Rg = P3 with V(P;) = {z1,22,z3} and forn > 1
V(Rﬂ) = {$11$2a$37y11~"7yn1uly- ..,un,vl,...vn,tl,. --ytn}a
E(R,) = {z122, zox3} U Ui {Z29s, yiwi, uits, tivi, viys -
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Figure 6: Graph R,, n > 1

Theorem 2.9. For an arbitrary integer n, n > 0, we have d_q)(R,) =
2m.

Proof. We use induction for our proof. It is obvious that g(2_q)(Ro) =
o@2-a)(P3) = 1 = 2% Let n > 1 and assume that for an arbitrary R,
we have 0(2_q)(Rn) = 2". We shall show that o(3_a)(Rn+1) = 2n+1 By
the induction hypothesis o_qy(Rn) = 2" Let J(R,) = {J1,...,J2~}
he the family of all (2-d)-kernels of R,. The definition of the graph R,
immediately gives that {z,,z3} C J;, for i = 1,...,2". Moreover for
every (2-d)-kernel J of the graph R, there exists 1 < i < 2™ such that
J; C J. Since the graph Cj has exactly two (2-d)-kernels it is obvious that
02-d)(Rnt1) = 0(2—a)(Rn) - 2 =2"*!, by induction hypothesis.

Thus the theorem is proved. O

Corollary 2.10. Let n > 1 be a fizred integer. Then for an arbitrary
m > 4n + 3 there erists a graph R of order m such that o(2_q)(R) = 2™.

Proof. f m=4n+3then R=R,,. Let m>4n+3and m —4n -3 =p.
Then it is suffices to add p leaves to the vertex x5 in the graph R,. In other
words V(R) = V(R,) U {t1,...,t,} and E(R) = E(R,) U}, zoti. Then

the result is obvious. O

Corollary 2.11. For an arbitrary integer n, n > 0, we have 0(3_q)(G2») =

o(2-ay(Rn)
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