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Abstract

A graph G is called (k,d)"-choosable if for every list assignment
L satisfying |L(v)|> k for all v € V(G), there is an L-coloring of G
such that each vertex of G has at most d neighbors colored with the
same color as itself. In this paper, it is proved that every graph of
nonnegative characteristic without 4-cycles and intersecting triangles
is (3,1)"-choosable.
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1 Introduction

Graphs considered in this paper are finite, simple and undirected. Let
G = (V,E, F) be a graph, where V, E and F denote the set of vertices,
edges and faces of G, respectively. For the used but undefined terminology
and notation, we refer the reader to the book by Bondy and Murrty [1].

A proper k-coloring of G is a mapping ¢ from V(G) to a color set
1,2, ,k such that ¢(z) # ¢(y) for any adjacent vertices x and y. A
graph is k-colorable if it has a proper k-coloring. Cowen, Cowen, and
Woodall [6] considered defective colorings of graphs. A graph G is said to
be d-improper k-colorable, or simply, (k, d)*-colorable, if the vertices of G
can be colored with k colors in such a way that each vertex has at most d
neighbors receiving the same color as itself. Obviously, a (k, 0)*-coloring is
an ordinary proper k-coloring.

A list assignment of G is a function L that assigns a list L(v) of colors to
each vertex v € V(G). An L-coloring with impropriety d for integer d > 0,
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or simply (L, d)*-coloring, is a mapping ¢ that assigns a color ¢(v) € L(v)
to each vertex v € V(G) such that v has at most d neighbors colored with
¢(v). For integers m > d > 0, a graph is called (m,d)*-choosable, if G
admits an (L, d)*-coloring for every list assignment L with [L(v)| = m for
all v € V(G). An (m,0)*-choosable graph is simply called m-choosable.

The notion of list improper coloring was introduced independently by
Skrekovski [12] and Eaton and Hull [9]. They proved that every planar
graph is (3, 2)*-choosable and every outerplanar graph is (2, 2)*-choosable.
Skrekovski proved in [13] that every planar graph without 3-cycles is (3,1)*-
choosable, and in [14] that every planar graph G is (2, 1)*-choosable if its
girth g(G) > 9, (2,2)*-choosable if g(G) > 7, (2, 3)*-choosable if g(G) > 6,
and (2,d)*-choosable if g(G) > 5 and d > 4. Lih et al. [10] proved that
every planar graph without 4-cycles and Il-cycles for some [ € {5,6,7} is
(3,1)*-choosable. Dong and Xu [8] shown that it is also true for some !/ €
{8,9}. Cushing and Kierstead (7] constructively proved that every planar
graph is (4, 1)*-choosable which perfectly solved the last remaining question
left open in {9, 12]. In [5], Chen and Raspaud proved that every planar
graph without 4-cycles adjacent to 3- and 4-cycles is (3,1)*-choosable, as
a corollary, every planar graph graph without 4-cycles is (3, 1)*-choosable.
Wang and Xu proved every planar graph without cycles of length 4 is
(3,1)*-choosable in (16].

For other classes of graphs, Zhang [19] proved that every graph G em-
beddable on the torus without 5- and 6-cycles is (3, 1)*-choosable. Xu and
Zhang (18] proved that every toroidal graph without adjacent triangles is
(4,1)*-choosable. Chen et al. [4] proved that every graph embeddable in
a surface of nonnegative characteristic without a 5-cycle with a chord or
a 6-cycle with a chord is (4,1)*-choosable, and every graph embeddable
in a surface of nonnegative characteristic without chordal k-cycles for all
k € {4,5,6} is (3,1)*-choosable.

Let Ay and Az be two triangles of a graph G. Define the distance
between A; and A be the length of a shortest path connecting a vertex
of A; to a vertex of A;. Let d(A) denote the least distance between two
triangles. Lam et al {3] showed that every planar graph G with d(A) > 2
is 4-choosable. Xu [17] proved that every plane graph in which no two
triangles share a common vertex, that is d(A) > 1, is 4-choosable. Wang
and Lih also independently proved this result in [15]. The condition d(A) >
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1 is essential because there exists non-4-choosable planar graphs G with
d(A) =0 (see [11)).

In [16], Wang and Xu conjectured every planar graph without intersect-
ing triangles is (3, 1)*-choosable. We consider this problem with a relaxed
condition. In fact, this paper investigates improper choosability for graphs
of nonnegative characteristic without 4-cycles and intersecting triangles.
The Euclidean plane, the projective plane, the torus, and the Klein bottle
are all the sufaces of nonnegative characteristic.

Let G denote the family of graphs with nonnegative characteristic con-
taining no 4-cycles and intersecting triangles. The main result is to show
that every graph in G is (3, 1)*-choosable. In order to prove the main
theorem, we use the technique of discharging to obtain several forbidden
configurations for the graphs in G and state as a theorem helow.

Theorem 1 For every graph G € G, one of the following conditions holds:
(1) §(G) < 3.
(2) G contains two adjacent 3™ -vertices.
(8) G contains a (4=,47,47)-face.
(4) G contains an even (37,47 ,------ +37,47)-2n-face, where n > 2.

As a consequence of Theorem 1, we derive the following Theorem 2.

Theorem 2 Every graph of nonnegative characteristic without 4-cycles
and intersecting triangles is (3,1)*-choosable.

2 Notation

We use Ng(v) and dg(v) to denote the set and number of vertices adjacent
to a vertex v, respectively, and use §(G) to denote the minimnum degree of
G. A face of an embedded graph is said to be incident with all edges and
vertices on its boundary. Two faces are adjacent if they share a common
edge. The degree of a face f of G, denoted also by dg(f), is the number of
edges incident with it, where each cut-edge is counted twice. When no con-
fusion may occur, we write N(v), d(v), d(f) instead of Ng(v),dc(v),dc(f)-
A k-vertex (or k-face) is a vertex (or face) of degree k, a k~-vertex (or
k~-face) is a vertex (or face) of degree at most k, and a k*+-vertex (or k*-
face) is a vertex (or face) of degree at least k. For f € F(G), we write



f = [u1ua---un| if uy, ug, -+ -, un are the vertices clockwisely lying on the
boundary of f. An n-face [ujuqus - - - u,) is called an (my, mg, m3, -+ ,my)-
face if d(u;)=m; for i = 1,2,3,--- ,n. A k-cycle is a cycle with & edges.
Two cycles are adjacent if they share at least one common edge. Two cy-
cles or faces are intersecting if they share at least one common (boundary)

vertex.

3 Proof of Theorem 1

In the proof of Theoremn 1, we use the technique of discharging. In the
beginning, each vertex v is assigned a charge w(v) = (k — 1) - dg(v) — 2k
if v e V(G), and w(f) = de(f) — 2k if f € F(G). Using the Euler-
Poincare formula |V (G)| - |E(G)|+|F(G)| 2 0 and the well-known relation
Trevio) 40) = Zsera dlf) = 2EG)], we have

> {(k—1)-do(v) -2k} + D {do(f) -2k} =—-2k. (1)
veV(G) fEF(G)

By the discharging rules stated in the following, we will redistribute
the charges for the vertices and faces so that the total sum of the weights
is kept constant while the transferring is in progress. However, once the
transferring is finished, we get the new charges are nonnegative, moreover,
there exists some z € V(G) U F(G) such that w'(z) > 0, then

0< Z w'(z) = z w(z) = —2k. (2)

zeV(G) U F(G) zeV(G)U F(G)
This contradiction completes the proof of Theorem 1.

Let k = 3 in formula (1).

Assume to the contrary that the theorem does not hold. Let G be such
a connected graph in G. Let w be a weight on V(G) U F(G) by defining
w(v) = 2d(v) — 6 if v € V(G), and w(f) = d(f) — 6 if f € F(G) as ahove.
For two elements z and y of V/(G) U F(G), we use 7(x — y) to denote the
charge transferred from r to y.

By the choice of G, we have:

(01) §(G) 2 3;
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(02) Every 3-vertex is adjacent to only 4*-vertices;
(O3) G contains no (47,47,47 )-face;

(O4) G contains no intersecting triangles;

(O5) G contains no even (3,4,---«-- ,3,4)-2n-face.

Let m;(v) be the number of i-faces incident with v and n;(v) be the
number of j-vertices adjacent to v. Let n;(f) denote the number of i-
vertices incident with f. We have:

Claim 1 For each vertez v € V(QG), |ma(v)| < 1.

Claim 2 For each face f € F(G), n3(f) < {d—(zflj

Let v be a d-vertex and f be an [-face incident with v. The new charge
function w'(z) is obtained hy the discharging rules given helow:

(R1l) Ford=4,7(v—> f)=1for = 3.

(R2) Ford >4, 7(v— f) = 3 ifl=35.

(R3)Ford>5,7(v— f)=2forl=3.

We now verify that w'/(z) > 0 for any x € V(G) U F(G).

Let f be an h-face of G. The proof is divided into three cases according

to the value of A.

Case 1. h > 6. Then w'(f) = w(f) > 0.

Case 2. h = 5. Then n3(f) < 2 by Claim 2. So ng+(f) > 3, then
w'(f) 2 w(f) +3- 5 =0by (R2).

Case 4. h = 3. Then w(f) =3 —6 = —3. We write f = [vjvpvs]. By
Claimn 2, we have n3(f) < 1.

Subcase 4.1. If n3(f) = 0, then w'(f) > w(f) +3-1 = 0 by (R1) and
(R3).

Subcase 4.2. If n3z(f) = 1, then there must have a 5*-vertex incident
with f by (O2) and (O3). If f is a (3,4, 5%)-face, then w'(f) > w(f) +1-
14+1-2=0by (R1) and (R3). If f is a (3,5%,5%)-face, then

w(f)>w(f)+2-2=1>0. (3)
by (R1), (R3).

Let v be a d-vertex of G.
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Ifd=3, w(v)=w)=0.

If d = 4, then by (R1) and (R2), v just transfers to the incident 3- or
5-faces. If no 3-face is incident to v, then

w'(v) > w(v) — ; -4>0. (4)
In addition, by Claim 2, m3(v) =1, then w'(v) > w(v) —1—}-3=0.
Ifd > 5, then

v) — 23
3

W) 2w -2- @) - =" "B 50

by (R1), (R2) and by Claim 1.
Now, we get that w’(z) > 0 for each x € V(G) U F(G). It follows that

0< Z{w'(x) |z e V(G)UF(G)} = Z{w(a:) |ze V(G)UF(G)} <o.
(6)
I£3 cvicyur(c) w'(x) > 0, we are done. Assume that 3 .y (gyur(c) @'(Z) =
0, so we have no 5%-vertices and 7*-faces by the above proof.

Claim 3 G contains no 3-faces.

Proof. Let G be a graph in G. We have G contains no 5*-vertices by
equation 5, so the vertices incident with any 3-faces must be 4~ -vertices,
we get it by G contains no (47,47,47)-faces. |

Claim 4 G contains no 4-vertices.
Proof. Let v be a 4-vertex in V(G), then ma(v) = 0 by Claim 3, we can
easily get it by equation 4. 1

By Claim 4, we have d(v) = 3 for every vertex in V(G), this contradic-
tion comnpletes the proof of Theoremn 1. [ |

4 Proof of Theorem 2

Suppose Theoremn 2 is false. Let G = (V, E) be a counterexainple to Theo-
rem 2 with the smallest |V| + |E|. Clearly G is connected. Embedding G
into the surface with nonnegative characteristic. Let L = {L(v)||L(v)| > 3
for all v € V(G)} be a list assignment such that G has no L-coloring in the
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sense that every vertex has at most one neighbor colored the same color as
itself. By the minimality of G. Lemma 1 is straightforward.

Lemma 1 (See [10])

(1) 8(G) 2 3;

(2) G has no adjacent 3-vertices;
(8) There is no (3,4, 4)-face.

If G contains a (4,47, 47 )-face, then it is a (4, 4, 4)-face by Lemma 1.
This configuration (4,4, 4)-face has been proved to be reducible by Chen
and Raspaud in [5], we omit it here.

Let G contains an even (3,4, --- , 3,4)-2n-face f, where n > 2. Let L be
a 3-list assignment of G, and f = [vjv2 - - - vak) be such a (3,4, - - -, 3, 4)-2n-
face with the degree condition. By the assumnption, there exists an (L, 1)*-
coloring ¢ of G — V(f). Let L'(v) be the color list of v after removing the
colors used by the neighbors of v used in ¢. Consider the coloring ¢’ of all
the vertices in V(f), we can easily extend the coloring ¢ to the graph G by
colored the vertices vax firstly with the remaining one color in its list for
k=1,---,n, and the vertices v; with the color from L(v;)\¢'(v;—1) for j =
3,5,7,---,2k —1 in order, finally color v; by one color of in L'(v;)\¢'(vax).
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