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Abstract: Multi-sender authentication codes allow a group of senders to construct an
authenticated message for a receiver such that the receiver can verify authenticity of the
received message. In this paper, we construct one multi-sender authentication codes from
polynomials over finite fields. Some parameters and the probabilities of deceptions of this
codes are also computed.
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§1 Introduction

Multi-sender authentication codes were firstly constructed by Gilbert, Macwi-
lliams and Sloane in [1] in 1974. Multi-sender authentication system refers to that
a group of senders cooperatively send a message to a receiver, then the receiver
should be able to ascertain that the message is authentic. About this case, many
scholars and researchers had made a great contribution to multi-sender authenti-
cation codes, such as [2-6].

In the actual computer network communications, multi-sender authentication
codes include sequential model and simultaneous model. Sequential model is that
each sender uses his own encoding rules to encode a source state orderly, and the
last sender sends the encoded message to the receiver, the receiver receives the
message and verifies whether the message is legal or not. Simultaneous model
is that all senders use their own encoding rules to encode a source state, and
each sender sends the encoded message to the synthesizer respectively, then the
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synthesizer forms an authenticated message and sends the authenticated message
to the receiver, the receiver receives the message and verifies whether the message
is legal or not. In this paper, we will adopt to the second model.

In a simultaneous model, there are four participants: a group of senders U =
{U,,Us, -+, U,}, the keys distribution center, he is responsible for the key dis-
tribution to senders and receiver, including solving the disputes between them, a
receiver R, a synthesizer, he only runs the trusted synthesis algorithm. The code
works as follows:each sender and receiver have their own Cartesian authentica-
tion code respectively. Let (S, E;, T;; fi)(i = 1,2, -- -, n) be the senders’ Cartesian
authentication code, (S, Eg, T; g) be the receiver’s Cartesian authentication code,
h: Ty xTyx:--xT, — T be the synthesis algorithm. m; : E — E; be a subkey
generation algorithm, where E is the key set of the key distribution center. When
authenticating a message, the senders and the receiver should comply with the
protocol: the key distribution center randomly selects an encoding rule e € E and
sends ¢; = m;(e) to the i — th sender U;(i = 1,2, -- -, n) secretly, then he calculates
er by e according to an effective algorithm, and secretly sends eg to the receiver
R; If the senders would like to send a source state s to the receiver R, the sender
U; computes ¢; = fi(s,e;)i = 1,2,---,n) and sends m; = (5,4)(i = 1,2,---,n)
to the synthesizer through an open channel; The synthesizer receives the message
m; =(s5,4)(i=1,2,---,n) and calculates t = h(t,, t5,- - -, ;) by the synthesis algo-
rithm h, then sends message m = (s, 1) to the receiver, he checks the authenticity
by verifying whether t = g(s, eg) or not. If the equality holds, the message is
authentic and is accepted. Otherwise, the message is rejected.

We assume that the key distribution center is credible, though he know the
senders’ and receiver’s encoding rules, he will not participate in any communica-
tion activities. When transmitters and receiver are disputing, the key distribution
center settles it. At the same time, we assume that the system follows the kerck-
hoff’s principle which except the actual used keys, the other information of the
whole system is public.

In a multi-sender authentication system, we assume that the whole senders are
cooperation to form a valid message, that is, all senders as a whole and receiver
are reliable. But there are some malicious senders which they together cheat the
receiver, the part of senders and receiver are not credible, they can take imperson-
ation attack and substitution attack. In the whole system, we assume{U,, Us,-- -,
U,} are senders, R is a receiver, E; is the encoding rules set of the sender U;,
Ep is the decoding rules set of the receiver R. If the source state space S and
the key space Eg of receiver R are according to a uniform distribution, then mes-
sage space M and tag space T are determined by the probability distribution of
S and ER. L= {fl,iz,' 4 ',i’} C( 1,2,' --,n},l <n, UL = {U,‘,, Uiz' Ty, U,',l,EL =
{Ey,.Ey,,"--,Ey,). Now let us consider the attacks from malicious groups of
senders. Here there are three kinds of attack:

The opponent’s impersonation attack to receiver : Uy, after receiving their



secret keys, encodes a message and send it to receiver. U, is successful if receiver
accepts it as legitimate message. Denote P, is the largest probability of some
opponent’s successful impersonation attack to receiver, it can be expressed as
| {er € Erler c m} |
P ;| = max
meM I ER ]

The opponent’s substitution attack to the receiver: U, replace m with another
message m’, after they observe a legitimate message m. U is successful if the
receiver accept it as legitimate message, it can be expressed as

max | {er € Egleg Cm,m’} |
m'¢meM

Py = max
d meM | {er € Egler C m} |

There might / malicious senders who together cheat the receiver, that is, the
part of senders and the receiver are not credible, they can take impersonation
attack. Let L = {iy,ip,---, i)} { 1,2,--+,n}, I <n, E, = {e;,, €5, €,}. Assume
U, = {Ui,, Uy, -+, Ui}, UL, after receiving their secret keys, send a message m
to the receiver R, U is successful if the receiver accepts it as legitimate message.
Denote Py(L) is the maximum probability of success of the impersonation attack
to the receiver. It can be expressed as

’J.lean}; | {er € Erler € m and p(eg, ep) # 0} |

Py(L) = max max
v(L) eL€E, e cey | {er € Eg| p(er,ep) # 0} |

Notes: p(er,ey) # 0 implies that any information s encoded by ey can be
authenticated by eg.

In [2], Desmedt, Frankel and Yung gave two constructions for MRA-codes
based on polynomials and finite geometries, respectively. To construct multi-
sender or multi-receiver authentication by polynomials over finite fields, many
researchers had done much work, for example [7-9]. There are other construc-
tions of multi-sender authentication codes are given in {3 — 6). The construction
of authentication codes is combinational design in its nature. We know that the
polynomial over finite fields can provide a better algebra structure and is easy to
count. In this paper, we construct one multi-sender authentication codes from the
polynomial over finite fields. Some parameters and the probabilities of deceptions
of this codes are also computed. We realize the generalization and application of
the similar idea and method of the article [6-9].

§2 Some results about finite field

Let F, be the finite field with g elements, where g is a power of a prime p,
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F is a filed containing F,, denote F, be the nonzero elements set of F,. In this

paper, we will use the following conclusions.
Definition 110, A generator a of F}, is called a primitive element of F,.

Theorem 11191, Let |F| = ¢", then F is a n — dimension vector space over
F,. Let a be a primitive element of F,, g(x) is the minimal polynomial about &
over F,, then dimg(x) = n and 1,0, a?,---,a""! is a basis of F. Furthermore,
1,a,a?,---,2"! is linear independent, it is equal to @,0?,---,@"',a" (@ is a

primitive element, @ # 0) is also linear independent.
Theorem 2“”;l Let m < n. Then the number of m X n matrices of rank m over
Fq is qm(m—l)/2 T ¢
. i=n—m+]
q-1.
Definition 2!'2!, (q) is Euler function of g, it represents the number of the
elements which are prime to g.

Theorem 3!'2!. Let a be an element of g— 1 order in F}, that is, a is a primitive
element of F,, then the order of a" satisfying Gcd(r,g— 1) = 1 is also g — 1, so
the number of all ¢ — 1 order elements in F_ is ¢(g — 1)

More results about finite fields can be found in [10-12].
§3 Construction

Let the polynomial p;(x) = a;;x + azsz + -+ ayx" (1 £ j < n), where the
coefficient a,; € F, (1 < i < n). The set of source states S = F,"; the set of
i—th transmitter’s encoding rules Ey, = {a1i,a2,---,ani } (1 £ i < n); the set of
receiver’s encoding rules Eg = {p)(x), pa(x), - - -, pu(x), @},where @ is a primitive
element of F; the set of i—th transmitter’s tags T; = {t;| t; € F,} (1 £ i < n); the
set of receiver’s tags T = {t| t € F,"}.

Define the encoding map f; : S X Ey, — T, fi(s,ey,) = sa); + Saz+ -+
s"a,i(l <i<n).

The decoding map f : S XEg — T, g(5,€r) = pi(s)a+pa(s)a?+-- -+ pa(s)a".

The synthesizingmap h : Ty X Ty X---XT, = T, h(t), tz, - -+, 1) = ha+ha*+
<ottt

The code works as follows: assume g is larger than, or equal to , the number
of possible message and 3 < g.

1. Key distribution.

The key distribution center randomly generates n polynomials p;(x) = a jx +
azjx*+---+ayx" (1 < j < n), where the coefficient a,; € F, (1 < i < n) and make
these column vectors by composed of their coefficient are linearly independent,
that is, the column vector groups(ai,az1, -+, 8m)7,



(@12,a22, . @m2)", . (@10, A2n,* * -, )" are linearly independent, we denote

any azn - ap
a2 a4z 't Gn2 . .

A=| . ] . |, sothe column vectors of A are linearly independen-
Qjpn Q2n " Gpn

t, then he sends privately {ay;, @z, - - - , @y} to the sender U; (1 < i < n). He selects
a primitive element o of F, secretly again and sends {p;(x), p2(x), - - -, pn(x), @}
to the receiver R.

2. Broadcast. If the senders want to send a source state s € S to the receiver
R, the sender U; calculates #; = fi(s,ey,) = sai; + sag; + - + s"an (1 i < n),
then sends #; to the synthesizer.

3. Synthesis. After the synthesizer receives 1,1, -, ,, he calculates
h(t), t,++* o ty) = @+ 1203+ - -+1,0" = t and then sends m = (s, t) to the receiver
R.

4.Verification. When the receiver R receives m = (s,1), he calculates t' =
g(s,er) = p1(s)a + pa(s)a® + -+ - + pu(s)e”. If t = ¢, he accepts ¢, otherwise, he
rejects it.

Next we will show that the above construction is a well defined multi-sender
authentication code with arbitration.

Lemma 3.1 Let C; = (S, Ep,, T;; fi), the codes is an A-code, | <i<n.

Proof. (1) Forany ey, € Ey,, s € S, because ey, = {ay;, a2, ,ani |,
a;; € Fy (1 < j < n),sot; = say+ s%ay + -+ + s"ay € T; = F,. Conversely,

for any t; € T;, choose ey, = {aii, Gziy -+ Qi }s a;j € F,(1 £j<n), lett; =
ay a; - G h
2 ) a2 G -+ ap 1)
sayi + s°az + -+ + s"ay & (S,S,“'.S") . . . =1 . ,
Aip Q2 " Qpn in
ay axn - au
ap ax - am .
A = . . ) , because the column vectors of A are linear-
Qijn A2q Qg

ly independent, so the above linear equation has unique solution, that is, § =
(s,52,-++,5") is only defined, so s is only defined, thatis, fi (1 <i < n)isa
surjection.

(2) If s’ € S is another source state satisfying sa; + s%ai +- - -+ 5"y = S'ay; +
§ a4 +5"ay = 1, itis equivalent to (s—5")a;+(s2 - 5" 2)agi+- - +(s"—5"ay =

(78]
N
(]



ay ay - ap

aiz an -+ am
0, that is, (s = 5/, 52 — §'2,-.-, " = & . . ) = (0,0,:--,0).

Qipn A - Gmn

Similar to (1), the column vectors of A are linearly independent, A is invertible,
we know the homogeneous linear equation SA = O has a unique solution and
there is only zero solution, where S = (s — 5,5 — §'2,.--, 5" — s'"), that is,
(s-5,82— 5%, s"= ") =(0,0,---,0), so s = s'. Therefore, s is the unique
source state determined by ey, and #;, thus C; (1 £ i £ n) is an A-code.

Lemma 3.2 Let C = (S, Eg, T; g), then the codes is an A-code.

Proof. (1) For any s € S, eg € Ep, from the definition of eg, we assume that
er = {p1(x), pa(x),---,
Pa(x), @), where a is a primitive element of F,, t = g(s, er) = p)(s)@ + pa(s)a® +
o +pu(s)a” € T = F?, otherwise, we suppose p; (s)a+pa(s)a?+- - -+py(s)a” = 0,

from theorem 1'%, we know a,a?,---,a" are linearly independent, we can get
DP1(8) = pa(s) = - -+ = pu(s) =0, it is equivalent to
ayn az -t Qp
apz axp» ‘- ap
(S»sza"'$sn) . . . =(0v0v"'t0)y
An QA ' Qpn
ay a -+ ang
o a2 ax v am2 | .
similar to the proof of lemma 3.1(2), A = . . . is invertible, so
QAp Qn ' Qpn

(s, 5%,---,5" = (0,0,---,0), that is, s = 0, because s € F,*, itis a contradiction.
On the other hand, for any ¢ € T, choose eg = {p1(x), p2(x),- - -, pn(x), @}, where
« is a primitive element of F, g(s, er) = pi(s)a + paS)? + -+ pa(s)" =1 It
is equivalent to

ay az - QA a

2 a2 ax - a2 a?
(s,s,--~.s”) . . .=t

Qn Q2p *°* Qpu a"

because @, a?,-++,a" are linearly independent and A is invertible, therefore, the
above equation has unique solution, so s is only defined, that is, g is a surjection.

(2) If s’ is another source state satisfying

a) a - am 0’2

, 2 . ap a - am a
8(s',er) = (s,5°,---,5")

Ay Qn - QGpp a’
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a, an - anm a
aiz aun o am a

=(slvs/21"'9s’") . . . . =ta
n
Aip G ' Gpn @
it is equivalent to
apir a -0 am 02
ayz ax» -+ ap2 @
(s—s. =52 sn=sm )| . . . |=0,
Qin Gm -+ Gmn J\ Q"

from @,a?,---,a" are linearly independent and A is invertible again, the above
equation has a unique solution, that is, (s— ', s — g2, =5 =(0,0,---,0),
furthermore, s = s’. So s is the unique source state determined by er and ¢, thus
C = (S,Eg,T;g)is an A-code.

At the same time, for any valid m = (s, 1), it follows thatt’ = p(s)a+ pa(s)at+
<ot pp(S)a” = (a“s+a2|s2+'- -+a,,|.s")a+(a,2s+azzsz+o . -+a,,2.s")az+-- -+
(A1pS + Ao S2 + -+ + Ay = 1@ + 102 + -+ + 1,a" = 1, the receiver R accepts
m.

From lemma 3.1 and 3.2, we know that such construction of multi-sender
authentication codes is reasonable and there are n senders in this system. Next we
compute the parameters of this codes and the maximum probability of success in
impersonation attack and substitution attack by group of senders.

Theorem 3.3 Some parameters of this construction are |S| = g - 1; |Ey,| =
. n
g"—q"'(1 i <n); Tl = g(1 <i<n); |Egl = [g"® D2 [1(g' - DIp(g-1); IT| =
l
q-1. '

Proof. For|S|=gq-1, |Ti| = qand |T| = q— 1, the results are straightforward.
For Ey,, because Ey, = {ay;, @i, ,ani }, Gij € F4 (1 < j < n),(1 <i < n)andthe
co}umn vector groups (al 1,821, aul)Tv (a12l an, -, an2)Tl R (allh (25T TR
@nn)" are linearly iqdependent, so |Ey,| = q" - L|Ey,| = ¢" — ¢, and 50 on, we
get |[Eyl = "~ ¢"'(1 < i < n). For Eg, Ep = {pi(x), pa(x),- -+, pa(x), @},
the polynomials p;(x) = ajjx + az,-x2 + - +aux" (1 £ j < n), where the
coefficient a,; € F, (1 < i < n) and these column vectors by composed of
their coefficient are linearly independent, from theorem 2!'!l, we can get the

n .

number of these polynomials is g""~"/2 [1(g' — 1); For @, a is a primitive ele-
i=1

ment of F,, from theorem 3!'2), we can get the number of @ is ¢(g — 1). Thus

|Eg] = [g"-)72 ﬁ(q‘ - Dgtg - 1).

Lemma 3.4 For any m € M, the number of ez contained m is p(g — 1).
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Proof. Letm = (5,t) € M, eg = (p1(x), p2(x), -, pa(x), @} € E. If eg C m,
then
(S + pa(s)a® + - + pa(s)” =

ay a -+ an a
) ap anp - am || @
o (5,8 -,5Y =t,
Ay Qy *** Qpp "
ay az - Gy
ap ax» - ap . o
whereA=| . . . | For any @, suppose there is another matrix A
Aipn Q2n - Qm
@
o?
suchthat (s,s%,---,5") A’| . |=¢, furthermore, we have (s,s2,---,s") (A-
a”
a
o? ,
A)| . |=0,frome,d?,---,o" are linearly independent, we get (s, $2,.00 8"
a”"

(A-A’) = 0. Because (s,5%,---,5") is arbitrarily, so A—A’ = 0, thatis, A = A’,
therefore, A is only determined by @. For any given s and ¢, so the number of ep
contained m is equal to the number of a, that is, the number of ez contained m is

equal to p(q — 1).
Lemma 3.5 Forany m = (s,1) € M and m’ = (s',¢) € M with 5 # s, then
the number of ez contained m and m’ is 1.

Proof. Assume eg = {p;(x), p2(x), -, pn(x),a} € Eg. If eg C mand eg C n’,
then py(s)a+pa(s)@®+- - -+ pa(s)a” = tand py(s")a+py(s")a+- - - +p,(s)" = ¢,

a ( «
o? , o2
they are equivalentto (s, s%,--+,5") A| . |=¢ (&,52,---,s™ Al . |=
a” a"
a )
o?
¢’ respectively. Furthermore, we have (s- ', 5% - s’z, e st=M Al L | =
a" )

t—1, because s # §',s0 ¢t # ¢'. Otherwise, we assume ¢t = t’, thent - ¢’ = 0. From
a,a?,- -, a" are linearly independent and A is invertible, similar to lemma 3.2, it
must be s = §’, it is contradiction to s # s’. Therefore, t—¢" # 0. Furthermore, (-
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a
2

a
£y (s-s,st =52, s" =5 Al . |=1(x).Foranygivens,t,(t—1)"!
a"
is only defined, and s, s’ are also any given, from above the identical equation
o
o?
(*), we obtain A| is only determined, because a,a?,---,a" are linearly
o

independent and A is invertible again, so @ and A are only determined respectively.
Therefore, now the number of {p,(x), p2(x), -+, pn(x), @} is equal to the number
of such o and A, it is 1. So the number of eg contained m and m’ is 1.

Lemma 3.6 For any fixed ey = {ai;,az,-+,an }(1 < i < n) containing a

n o
given e, then the number of eg which is incidence with ey is [¢"™* "2 [1(g' -
i=l

Dle(g - 1).

Proof. For any fixed ey = {a);,a2i," - - ,as }(1 < i < n) containing a given e,
Pi(X) = aijx + azix* + -+ + ax" (1 < j < n), we assume eg = {p1(x), pa(x), -+,
pn(x), @} € Eg, where « is a primitive element of F,, from the definition of eg
and ey, we can conclude that eg is incidence with ey if and only if p,(s)a +
PAS)? + o+ pu(S) = (@S + a2+ -+ ag s + (@25 + anst + -+
s + -+ (AaS + A SE + o+ AS = e+ hat + -+ 1a" = L
From this, we can know the number of eg which is incidence with ey is equal to
the number of all Eg. Therefore, the number of eg which is incidence with ey is

[q"-r2 fg(q" — Dlg(g - ).

Lemma 3.7 For any fixed ey = {ay;,az,---,an Y(1 € i < n) containing a
given e; and m = (s,¢), then the number of ez which is incidence with ey and
contained inm is 1.

Proof. For any s € S,eg € Eg, pj(x) = ayjx+azjx> + -+ a,x" (1 < j < n),
we assume eg = {p)(x), p2(x), - - -, pn(x), @} € Ep, where  is a primitive element
of F,. Similar to lemma 3.6, for any fixed ey = {a;, a2, " ,an 1 < i < n)
containing a given ez, we have known all ez are incidence with ey. Since eg
is contained in m again, we can get pi(s)a + p2(s)a® + - + pp(s)" = t &

a a
2 2
a @

(5,55, M Al . |=rte rlis---,s" Al . | =1, we can con-
o o"



o
2
clude that t'(s, 5%,-+-,s")and A| . |are mutually inverse. Because s, is any
a"
a
o2
given, so t~'(s, 5%, - -, s") is only determined. Furthermore, A[ . |[is also only
a"
determined. Similar to the proof of lemma 3.5, from the properties of A and ¢,
we know such A and « are also only determined respectively. So the number of

eg which is incidence with ey and contained in m is equal to the number of such
A and @, that is, 1.

Theorem 3.8 In the constructed multi-sender authentication codes, if the
senders’ encoding rules and the receiver’s decoding rules are chosen according
to a uniform probability distribution, then the largest probabilities of success for
different types of deceptions respectively are:

1 1 1
P = ; Ps = ; Py(l) =

gnin=n12 ,fl,(qi -1 elg-1) [gnn-12 ﬁl(qi - Dlp(g-1)

Proof. By theorem 3.3 and lemma 3.4, we get
| {er € Egl er C m} |
P =
roE e { | Ex |

wlg-1)
g"n=1rz ﬁ(qf - Dp(g-1)
i=1
1 .
7 ] ?
g"n=DI2 [1(g° - 1)
i=1

By lemma 3.4 and lemma 3.5, we get
{ max | (eg € Egler ¢ m,m’} |}
m' £meM 1

Ps = max

meM

[ {er € Exler C m} | T eq-1

By lemma 3.6 and lemma 3.7, we get
max | {eg € Erleg € m and p(eg, ep) # 0} |
Pu(L) meM

max max
er€E; e cey

| {er € ER| p(er,ep) # 0} |
1

[gre-DP2 fnl(q" - Dlp(g - 1)
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