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Abstract

The a - incidence energy of a graph is defined as the
sum of ath powers of the signless Laplacian eigenvalues
of the graph, where « is a real number such that o # 0
and a # 1. The « - distance energy of a graph is defined
as the sum of ath powers of the absolute values of the
eigenvalues of the distance matrix of the graph, where
« is a real number such that o # 0. In this note, we
present some bounds for the a - incidence energy of a
graph. We also present some bounds for the o - distance
energy of a tree.

Keywords : a — Incidence Energy, a — Distance Energy.

We consider only finite undirected graphs without loops or
multiple edges. Notation and terminology not defined here fol-
low that in [1]. For a square matrix M, we use Det(M) and
M?! to denote its determinant and transpose respectively. Let
G be a graph with n vertices and e edges. We assume that the
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vertices in G are ordered such that A =d; > dy > ... > d,,
where d;, 1 < ¢ < n, is the degree of vertex v; in G. We define
Tk(G) as T, d¥. For each vertex v;, 1 < i < n, m; is defined as
the sum of degrees of vertices that are adjacent to v;. Obviously,

SLym; = S,d? = 55(G). We also let T3(G) = 2y/Z=k and

Th(G) = ,/—5521,(,—:1';—;';'”—‘). Let A(G) be the adjacency matrix of G

and let D(G) be the diagonal matrix of the degree sequence of
G. The eigenvalues A (G) 2 A2(G) 2 ... 2 A1 2 M(G) =0
of L(G) := D(G) — A(G) of G are called the Laplacian eigen-
values of the graph G. The eigenvalues 71(G) > 72(G) > ... >
Ta—1 2 Ta(G) (2 0) of Q(G) := D(G) + A(G) of G are called
the signless Laplacran elgenva.lues of the graph G. Notice that
IE(G) := ¥ ,(n:(G))? is an equivalent definition of the inci-
dence energy of the graph G (see [5] and [11]). Motivated by
the equivalent definition for the incidence energy of the graph
G, we define the o - incidence energy, denoted IE,(G), of G
as Y ,(1(G))*, where « is a real number such that o # 0
and a # 1. Notice that 3, 7:(G) = 2|E(G)|. So we don’t
allow a = 1 in our definition of /E,(G). The distance matrix,
denoted D(G), of a connected G is the a square matrix of or-
der n such that its (3, j) - entry is d;;, the number of edges of
the shortest path between vertices v; and v;. The eigenvalues
n(G) 2 1n(G) > ... 2 vp—1 = va(G) of D(G) of G are called
the distance eigenvalues of the graph G Notlce that d;; = 0,

,_1 v; = tr(D(G)) =0, and J(G) := T, v2 = tr((D(G))?) =

i1 Lg=1 di;. In [6], DE(G) — lu,(G’)| is called the dis-
tance energy of the graph G. Motivated by the above definition
for DE(G), we define the o - distance energy, denoted DE,(G),
of G as Y1, |vi(G)|*, where ¢ is a real number such that o # 0.

Zhou in [8] and [10] obtained several results on the lower or
upper bounds for the sum of powers of the Laplacian eigenval-
ues of a graph. Using the ideas and proof techniques in [8], we
obtain some bounds for the « - incidence energy of a graph and
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o - distance energy of a tree.

Theorem 1 Let G be a connected graph with n > 3 vertices,
e edges, and maximum degree A.

(1) fa<0ora>1, then

(2e —1—A)°®
(n—1)e1

(@) IEs > (1+A) +

and the above inequality cannot become an equality.

(26 - Tl)a

(b) IE, 2 T + (n=Ty1
with equality if and only if G is K.

(2e — Tp)°

(c) IEa2T2°‘+(—n—_—1—)a

with equality if and only if G is K,.

(2) If 0 < a <1, then

(2e —1—- A)
(n—1)e-1

(@) TE, < (1+A)® +

and the above inequality cannot become an equality.

o (26 1 1)
< + —_—

with equality if and only if G is K,,.

(2e — Tp)®

<Te 4 X222
(¢) IEq <T3 + (n 1)

with equality if and only if G is K.



Clearly, (2) in Theorem 1 has the following corollary.

Corollary 1 Let G be a connected graph with n > 3 vertices,
e edges, and maximum degree A. Then

(@) IE(G) < VI+A+/(2e—1~A)(n—1)

and the above inequality cannot become an equality.

(b) IE(G) £ YT ++/(n—1)(2e - T7)

with equality if and only if G is K.

(¢) IE(G) < T +/(n —1)(2e — T)
with equality if and only if G is K.

Notice that (a) and () in Corollary 2 are Theorem 3.6 and
Theorem 3.5 in [5] respectively and when G is a connected (c)
in Corollary 2 is Theorem 3.7 in [5].

Theorem 2 Let T be a tree of n > 2 vertices. Then

(1) If & > 1, then

1

DE, > (y/J/2)*(1 + '(n—_l—)a—_l-

).
with equality if and only G = K.

If o < 0, then

DE, > (y/J(n—1)/n)*(1 1)m_.l).

with equality if and only G = K».
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(2) If 0 < & < 1, then

DE, < (/Tn=1/n)"(1+ g5y

with equality if and only G = Ks.

(3) If @ > 0, then

o oy (n = 1)2"2__1.
DE, > (4/J/2)" + (n - 1)(-*—=— 77 )

with equality if and only G = K.
(4) If n > 3 and a > 0, then
a(n—=2

DE, > ((n— 1)+ (n — 1))2%%

We need the following lemmas to prove Theorem 1 and The-
orem 2. Lemma 1 below is from [4] by Grone and Merris.

Lemma 1 Let G be a graph with n > 2 vertices and e > 1
edges. Then A\ (G) > A + 1. If G is connected, the equality
holds if and only if A =n — 1.

Lemma 2 below is from Lemma 2 in [7].

Lemma 2 Let G be a graph. Then A, < 71, the equality holds
if and only if G is a bipartite graph.

Lemma 3 below is Theorem 3.6 in [2].

Lemma 3 Let G be a connected graph with diameter d(G). If
QR(G) has exactly k distinct eigenvalues, then d(G) +1 < k.

Lemma 4 below is from Theorem 2.1 and Corollary 2.2 in [3].
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Lemma 4 Let T be a tree of n vertices with distance eigenvalues
VM2V > .2 VUp12Vn. Thenvy >0> 1052 .. 2 Vp 1 2 Uy
and vy vy ..., = (=1)" " }(n — 1)27"2,

Lemma 5 below is from Theorem 3 in [9].

Lemma 5 Let T be a tree of n > 3 vertices with distancg
eigenvalues v; > vy > ... > Vp—y > V. Then vy > (n —1)2%%"
and the inequality cannot become an equality.

Lemma 6 below follows from Theorem 3 in [12].

Lemma 6 Let T be a tree of n > 2 vertices with distance

eigenvalues v; > v > ... > vy > Up. Then vy < (/J(n—1)/n
with equality if and only G = Kj.

Lemma 7 below follows from Theorem 4 in [12].
Lemma 7 Let T be a tree of n > 2 vertices with distance
eigenvalues v; > vy > ... > vp_y > V. Then v > /J/2 with
equality if and only G = K.

Proof of (1) in Theorem 1. Notice that z* is concave up
when £ > 0 and o < 0 or a > 1. Thus

1 o1
;)¢ < T,
(i___zzn—l 2 "izzzn—l :
Hence
n
T > — T
=2 = (n_la-— z—z2 '
with equality holds if and only if 7, = ... = 7,. Therefore

_ = a a a_ (26—7-)
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Now consider the function f(z) = z* + (gf—l_)%gr It can be
easily verified that f(z) is increasing when z > 2

From Lemmas 1 and 2, we have 71 > A > A+1> A > 2,
Thus

IEa =372 f(n) 2 fM) 2 f(A+1)

=1

_ o, (2e—-1-A)"
=(1+A)*+ =1
Suppose that the above inequality becomes an equality. Then
n=M=A4A+1and , = .. =17, From Lemmas 1 and 2
again, we have that ; = A\; = n and G is a bipartite graph.
From ¥}, ; = 2e, we have that 7, = ... = 7, = 22, Notice
that , = ... = 7, = %= % 7y = n, otherwise we have that

nn—-1)=2e—n< n(n —1) —n, a contradiction. Thus G has
two distinct eigenvalues. By Lemma 3, we have that G is com-
plete graph, a contradiction. Therefore we complete the proof
of (a) in (1) of Theorem 1.

From the proof of Theorem 3.7 in [5], we have that 74 > T, >
T, > % > 2 Therefore

i a (26 - Tg)a
IE, = ;T > f(n) 2 f(T) =T + =11
_ (26 - T])a
> f(Th) —Tla'*'m-
Suppose that IE, = Yy, 77 = T + {,f_;g}?r Then 7, =
T\ > % and 7, = ... = 7,. Notice that 1 # 7, = ... = 7, other-

wise we have that 2e = Y., 7; > 4e, a contradiction. Thus G
has two distinct eigenvalues. By Lemma 3, we have that G is a
complete graph.
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suppose that 1E, =T+ &35, Then ny =
To>T > ; and 7 = ... = T,. Notlce that m; # 1 = ... = 7,
otherwise we have that 2e = Y[, 7; > 4e, a contradiction. Thus

G has two distinct eigenvalues. By Lemma 3, we have that G is
a complete graph.

Suppose that G is K,. A simple calculation shows that
i1 77 = f(n) = f(T2) = f(T1) = (2(n—1))*+(n—-1)(n—2)".

Therefore we complete the proofs of (b) and (¢) in (1) of
Theorem 1.

Proof of (2) in Theorem 1. Notice that z* is concave down
when £ > 0 and 0 < @ < 1 we have that

n

ZTia < Ja-1 (Z 7)*
i=2 ( - i=2

with equality holds if and only if 7, = ... = 7,,. Notice further
that the function f(z) = x"‘+é‘26—1)ﬁ)—1 is decreasing when z > 2n—e
By similar arguments as the ones in Proof of (1) in Theorem 1,
we can prove that (a), (b), and (c) in (2) of Theorem 1 are true.

Proof of (1) in Theorem 2. Notice that = is concave up
when £ > 0 and & < 0 or & > 1. Thus

n 1 n

(> e <3 ——

i=2 =2

|l/i|a.

Hence
n

Zlyila (n—1)a- 1(2"4'

i=2 1=2
From Lemma 4, we have that 11 > 0> vs > ... 2 Vp_1 2> Vp.
Since Y, v; = 0, we have that v, = |V1| =Y, |vl|. Hence
n

DE, =) |ul®* > v} + = 1(Z lvi])®

=1 ( =2
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1
(n—_l)v_—l)-

If @ > 1, by Lemma 7, we have that v, > /J/2. Thus

=171+

DE, > v2(1+ (—n—_-lﬁa—q) > (\/7/5)"(1 + (n—_%)-

When the above inequality becomes an equality, we have that

= \/.m and Lemma 7 implies that T = K5. A simple com-
putation shows that the above inequality becomes an equality
when T = Kz.

If o < 0, by Lemma 6, we have that »; < /J(n—1)/n.
Thus

DE, > vo(1+ ) > (JIm=1)/n)*(1+ (—n—_lT);_—l).

1
When the above inequality becomes an equality, we have that
= 4/J(n — 1)/n and Lemma 6 implies that T = Kj. A simple
computation shows that the above inequality becomes an equal-
ity when T = K.

Hence we complete the proof of (1) in Theorem 2.

Proof of (2) in Theorem 2. Notice that z* is concave down
when £ > 0 and 0 < a < 1. Thus

Zth|a< —1)e-1 Zlel

=2 =2

From Lemma 6, we have that

n

1 n
DE, =) |ul* <} + —==lu))* =
i=1 (n—1) i=2

R0+ =) < (T = D/m) (1 + oy
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When the above inequality becomes an equality, we have that
vy =4/J(n — 1)/n and Lemma 6 implies that T = K,. A simple
computation shows that the above inequality becomes an equal-
ity when T = K.

Hence we complete the proof of (2) in Theorem 2.

Proof of (3) in Theorem 2. From Lemma 4, we have that
|| |v2]...|un| = C := (n = 1)2"~2. By AM - GM inequality, we
have that

n
IDEL ==§:|Vda==|Uﬂa-+|bbrx+'“.+'hhrl

i=1
1
> ||* 4 (n — 1)(|ve] ... [val*) =T
C, o
= vf + (n— 1)().
141

Now consider the function f(z) = z*+ (n— 1)(%),.‘%, It can
be easily verified that f(z) is non - decreasing when z > C=.
From Hadamard inequality and AM - GM inequality, we have
that

C? = Det(D(T))Det(D(T)*) = Det(D(T)D(T)}) <

g LT
L
i=1j=

We, by Lemma 7, have that v; > /J/2>C =. Therefore

)= (J/n)" < (J/2)"

DE, = g il > F) 2 FJ772)

= (yJ/2)* + (n = 1)(
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When the above inequality becomes an equality, we have that
v = \/:7—/5 and Lemma 7 implies that T = K. A simple com-
putation shows that the above inequality becomes an equality
when T = K.

Hence we complete the proof of (3) in Theorem 2.

Proof of (4) in Theorem 2. By Lemma 5, we have that
v > (n—1)2%* > C=. From the proof of (3) in Theorem 2,
we have

DE, > f((n - 1)2°%) = (n —1)* + (n— 1))27 ",
where f(z) = 2% + (n — 1)(£)7*T and C := (n - 1)2"2

Hence we complete the proof of (4) in Theorem 2.

The author would like to thank the referee for his or her
suggestions. The author also would like to thank Prof. Bo Zhou
for providing his manuscripts.
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