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Abstract

For an integer k > 0, a graphical property P is said to be k-stable
if whenever G 4 uv has property P and dg(u) + dg(v) > k, where
uv € E(G), then G itself has property P. In this note, we present
spectral sufficient conditions for several stable properties of a graph.
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1 Introduction

We consider only finite undirected graphs without loops or multiple edges.
Notation and terminology not defined here follow that in [2]. We use n
to denote the order of a graph. Let G = (V(G), E(G)) be a graph with
vertex set V(G) and edge set E(G). The complement of G is denoted
by G := (V(G), E'(G)), where E'(G) = {zy : z,y € V(G),zy ¢ E(G)}.
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The independence number, denoted by a(G), of G is the cardinality of
a maximum independent set of vertices. We use C(n,k) to denote the
number of k-combinations of a set with n distinct elements, K, to denote
the complete graph on n vertices, Cr, to denote a cycle of order m, and
K, n to denote the complete bipartite graph with two parts having m and
n vertices, respectively.

Let G+uv be the graph obtained from G by adding the edge uv € E(G),
where u,v € V(G). For an integer k > 0, a graphical property P is said
to be k-stable if whenever G + uv has property P and dg(u) + dg(v) 2 k,
where uv ¢ E(G), then G itself has property P. The k-closure of a graph
G, denoted by Ci(G), is the graph obtained from G by successively joining
pairs of nonadjacent vertices whose degree sum is at least k until no such
pairs remain. Notice that d¢, (g)(u) + dc,(G)(v) < k — 1 for any pair of
nonadjacent vertices u and v of Ci(G).

We use D(G) = diag (dg(v1),dg(v2),...,dc(vn)) to denote the degree
matrix of G of order n, where v; is a vertex in G and dg(v;) denotes
the degree of the vertex v; in the graph G, where ¢ = 1,2,...,n. The
adjacency matriz of G is defined to be a matrix A(G) = [ai;] of order n,
where a;; = 1 if v; is adjacent to vj, and a;; = 0 otherwise. The Laplacian
matriz of G is defined by L(G) = D(G) — A(G). The largest eigenvalue
of A(G), denoted by pu(G), is said to be the spectral radius of G. Let
0 = A1(G) £ X(G) £ -+ < Au(G) be the eigenvalues of L(G). Defined
£2(G) = T, ().

A graph G is Hamiltonian if G has a Hamiltonian cycle, a cycle contain-
ing all the vertices of G. A graph G is traceable if G has a Hamiltonian path,
a path containing all the vertices of G. A graph G is Hamilton-connected if
for each pair of vertices in G there exists a Hamiltonian path between them.
For an integer s > 2, a tree T is called a s-tree if the maximum degree of
T is at most s. In particular, a Hamilton path of a graph is nothing but its
spanning 2-tree.

Recently, several authors established the spectral conditions for the
Hamiltonian properties of graphs (see, for example, (3, 6, 7, 9, 10, 11, 12, 15,
16, 17, 18]). In particular, a spectral sufficient condition for a k-connected
graph to be Hamiltonian was obtained in [12]. One may naturally ask
the following question. What are the spectral sufficient conditions for a
k-connected graph to be traceable or Hamilton-connected? To answer the
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question, we will present respectively spectral sufficient conditions for a 4-
connected graph to be traceable and Hamilton-connected in Section 2 and
Section 3 below. Moreover, in Section 4, we will present spectral sufficient
conditions for a graph of order n contains a C4 or Kz s with2 <s<n-—2.
In Section 5, we will present spectral sufficient conditions for a graph to be
k-connected. In Section 6, we will present spectral sufficient conditions for
a k-connected graph to have a spanning s-tree with s > 2.
We will use the following result in our proofs.

LEMMA 1.1 Let G be a graph of order n. Suppose that P is a r(n, P)-stable

property and K, has property P. Moreover, if |E(G)| > e(n,P), then G

has property P.
@) If

(@) < \/(2n —r(n,P) - 1),EC(n,2) —e(n, P)) ,
then G has property P.
(ii) If
T2(G) < (2n - r(n, P) +1)(C(n,2) — e(n, P)),

then G has property P.

Since the proof of Lemma 1.1 is almost the same as the proof of Theorem
5in [13] (which is listed as Theorem 1.2 below), We omit the proof of Lemma
1.1 here.

THEOREM 1.2 (13] Let G be a graph of order n. Suppose that P is a
r(n, P)-stable property and K, has property P. Moreover, if |E(G)| >
e(n, P), then G has property P.

() If

w(@) < ‘/(2n —r(n,P)— 1),,(10(71’ 2) — e(n, p)),
then G has property P.

(i) If
Z2(G) £ (2n —1(n, P) +1)(C(n, 2) - e(n, P)),

then G has property P.

We will also use the following result (which is from Theorem 6 in [13])
in our proof.
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LEMMA 1.3 (13] Let G be a graph of order n. Suppose that P is a r(n, P)-
stable property and K, has property P.
() If

= 2n —r(n,P) -1)(2n — r(n,P) — 2
then G has property P.

(i) If
22(G) < (2n — r(n, P) + 1)(2n — r(n, P) — 2),

then G has property P.

2 Spectral conditions for a k-connected graph
to be traceable

LEMMA 2.1 (1] Let G be a graph of order n. The property that G is traceable
is (n — 1)-stable.
LEMMA 2.2 [5] Let G be a k-connected graph. If
a(G) < k+1,
then G is a traceable graph.

We use some ideas from [4] to prove the following Lemma 2.3 and The-
orem 2.4.

LEMMA 2.3 Let G be a non-traceable graph of order n. If G = Cn—1(G)
and 2 < m < oG), then

IE(G)] ZFn-m+1) for n even,
Fn-m)+m-1 for n odd.
Proof. Let I = {v1,v2,-++ ,Um} be a set of independent vertices of G.

Obviously, if the (n — m) vertices in G — I are deleted, the resulting graph
is disconnected. Let E(G;) be the edge set which represents the edges in
G that are incident with at least one vertex of I. Then E(G]) contains
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C(m,2) edges with both endpoints in I and Y-, (n — m — dg(v;)) edges
with exactly one endpoint in /. It follows that

|E(G)| 2 |E(GI)| = C(m,2) + Z(n —m —dg(v))

=C(m,2) +m(n—m) - > _ da(v).
i=1
By G = C,—1(G), m > 2 and the definition of C,_1(G), we have dg(v;) +
de(v;) <n—2fori# 5,1 <i,j <m. Sowhen n is even, it follows that
Y iz da(vs) is maximized when dg(vi) = 252 for 1 < i < m, and when n
is odd, it follows that Y 10, dg(vi) is ma.xlmlzed when dg(v;) = 25! and
do(v;) = — — 1 for 2 < 1 < m. Then, for even n,

n- 2) %(n-—m+1),

|E(G)| = C(m,2) + m(n—m) —m(
and for odd n,
|E(G)| 2 C(m, 2)+m(n—m)— (——+(m 1)(Zo—-1)) = —(n—m)-l'm -1
n
THEOREM 2.4 Let G be a k-connected graph of order n. If
IB@)| > C(n,2) - T2 k- 1),

then G 1is traceable.

Proof. Assume that G is non-traceable and let H = C,_;(G). Then H is
k-connected and, by Lemma 2.1, non-traceable. Using Lemma 2.2, we have
a(H) 2 k +2. According to Lemma 2.3, |E(H)| > 52(n — k — 1), and it
follows that
k+2
|E(G)| < |E(H)| = C(n,2) - |E(H)| < C(n,2) - ——(n—k-1),
contradicting the known condition and completing the proof. |

THEOREM 2.5 Let G be a k-connected graph of order n.
@ If

w(@) < /5 2k 1),
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then G is traceable.
(ii) If
£.(G) < ("_"'iz(’fﬁ_)(n —k-1),
then G is traceable.
Proof. If G is K,, then G is traceable. Let r(n,P) = n —1, e(n,P) =
C(n,2) — #2(n — k — 1) in Lemma 1.1, we complete the proof. [ |

3 Spectral conditions for a k-connected graph
to be Hamilton-connected

LEMMA 3.1 [1] Let G be a graph of order n. The property that G is
Hamilton-connected is (n + 1)-stable.
LEMMA 3.2 [5] Let G be a k-connected graph. If
o(G) k-1,
then G is a Hamilton-connected graph.

Again some ideas from [4] are used when we prove the following Lemma
3.3 and Theorem 3.4.

LEMMA 3.3 Let G be a non-hamilton-connected graph of ordern. If G =
Cn41(G) and 2 < m < aG), then

|E(G)| > {

©I3 3

(n—m-1) for n even,
(n—m)—1 forn odd.

Proof. Let I = {v),v2, -+ ,vm} be a set of independent vertices of G. By
the similar arguments as the ones in the proof of Lemma 2.3, we obtain
that -
|E(G)| 2 |E(G1)| = C(m,2) + m(n—m) — > _ da(v).
i=1
From G = Cn+1(G), m > 2 and the definition of Cn;1(G), we have dg(v;) +
dg(vj) < nfori # 4,1 < i,j < m. So when n is even, it follows that
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Y iz1da(vs) is maximized when dg(v;) = 3 for 1 < i < m, and when n
is odd, it follows that 3"i", dg(v;) is maximized when dg(vi) = 2+ and
de(v;) = -"—',‘Q‘—l — 1 for 2 < i < m. Then, for even n,

n m

|E(G)] > C(m,2) + m(n —m) — my =

(n_m_l)’

and for odd n,

IB(@)] 2 C(m, 2)+m(n—m) ~("g= +(m-1)(" 5

1 1)) = ®n—m)-1.
2
|
THEOREM 3.4 Let G be a k-connected graph of order n, where k > 2. If
IB(G)] > C(n,2) ~ 5(n — k—1),
then G is Hamilton-connected.

Proof. Assume that G is non-hamilton-connected. Let H' = Cn41(G),
then H' is k-connected and, by Lemma 3.1, non-hamilton-connected. Using
Lemma 3.2, we have a(H') > k. According to Lemma 3.3, |[E(H')| >
£(n -k —1), and it follows that

IBG)| < |B(H)| = C(n,2) ~ [E(H)| < On,2) ~ 5(n—k ~1),
contradicting the known condition and completing the proof. |

THEOREM 3.5 Let G be a k-connected graph of order n > 3, where k > 2.
(i) If

W@) < \/ K22 (k- ),

then G is Hamilton-connected.
(ii)If
~ k
T2(6) < %(n —k-1),
then G is Hamilton-connected.
Proof. If G is K,,, then G is Hamilton-connected. Let r(n,P) =n+1,
e(n,P) =C(n,2) — g(n ~k-1)

in Lemma 1.1, then we complete the proof. ]
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4 Spectral conditions for a graph of order n -
containing C; or Ky, with 2<s<n—2

LEMMA 4.1 [1] Let G be a graph of order n. The property that G contains
C4 is (2n — 5)-stable.

LEMMA 4.2 [14] Let G be a graph of order . If |[E(G)| > (14 v4n — 3),
then G contains Cj.

Let e(n, P) = 2(1++/4n —3) and 7(n, P) = 2n -5 in Lemma 1.1, then
we have the following result for a graph contains Cj.

THEOREM 4.3 Let G be a graph of order n.
(i) If

1a(G) < \/2n —3—+V4n =3,

then G contains Cjy.
(ii)If
T2(6) < g(2n2 —3n —nvdn - 3),

then G contains Cy.

LEMMA 4.4 [1] Let G be a graph of order n. The property P that G
contains Ks , is (n + s — 2)-stable, where 2 < s <n—2.

The following lemma is Exercise 7.3.4 on Page 111 in [2].

LEMMA 4.5 [2] Let G be a graph of order n. If |E(G)| > @ + %
then G contains K3 ,, where s > 2.

Let e(n, P) = @ + % and r7(n,P) = n+s—2 in Lemma 1.1, then
we have the following result for a graph contains K ,.

THEOREM 4.6 Let G be a graph of order n and let s be an integer such that
2<s<n—-2.

(i) If

G < \/(n —s+1)(2n -42,/'n("s —D-3



then G contains K ;.

(i) If
(6) < n(n—s+3)(2n—2y/n(s—1)-3)
4 )

then G contains K ;.

5 Spectral conditions for a graph to be k-
connected

LEMMA 5.1 (1] Let G be a graph of order n. The property that G is k-

connected is (n + k — 2)-stable, where k > 1.

Let 7(n, P) = n+k—2 in Lemma 1.3, then we have the following result
for a graph to be k-connected.

THEOREM 5.2 Let G be a graph of order n.

() If
1 (G) < \/(n-k+nl)(n—k)’

then G is k-connected graph, where k > 1.

()7

L2(G) < (n—k+3)(n—k),
then G is k-connected graph, where k > 1.

Next, we will show that the conditions in Theorem 5.2 also imply
that a connected graph is traceable and a 3-connected graph is Hamilton-
connected.

THEOREM 5.3 Let G be a connected graph of ordern > 4 and1 < k < n-—1.

0 If
() < \/(n—k+1)(n~k),

n

then G 1is traceable.
(ii) If
Eg(é) <(n—-k+3)(n-k),

then G is traceable.
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Proof. If G is K,,, then G is traceable. If G is not K, and is k-connected
graph, then 1 <k <n -2,

(i) Let f(k) =2(n—k+1)(n—k)—n(k+2)(n—k—1) = (n+2)k? -
(n? +n + 2)k + 4n. We can easily find that when

k

n24n+2—vni+2n3—1In2—28n+4 <
2(n+2) -

< n24+n+2+vVnt+2n3 —11n? —28n 4+ 4
= 2(n +2) ’

f(k) £ 0. We further have that if n > 4,

n24+n+2—vVnT+2n3 -11n2 -28n+4 <

2(n+2) 1
and
n24+n+2+vnT+2n3 —11n% - 28n +4 > po9
2(n +2) = ’
So, we have
\/(n—k+l)(n—k) S\/k+2(n—k—1)
n 2
when n > 4.

Hence, G is traceable by Theorem 2.5 (i).
(i) Let g(k) = 2(n -k +3)(n—k)—(n+2)(k+2)(n—k—-1) =
(n + 4)k? — (n% + 3n)k + 4n + 4. We again can easily find that when

n? 4 3n — v/n% +6n3 — Tn?2 — 80n — 64
2(n+4)

<k

< n?2 4+ 3n+ v/nt+ 6n3 —7n2 — 80n — 64
- 2(n+4) ’
g(k) < 0. We further have that if n > 4,

n? + 3n — vVn? + 6n3 — 7n2 — 80n — 64 <1
2(n +4) -

and

n2 +3n + Vni+6n3 —7n2 — 80n — 64

>n-2
2(n + 4) ="
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So, we have

(n—k+3)(n—k) < ("-—“L-z—)z(—’“*—"')(n-k-l)
when n > 4.
Hence, G is traceable by Theorem 2.5 (ii). [

THEOREM 5.4 Let G be a 3-connected graph of ordern > 6 and 3 < k <
n—1.

() If

&) < \/(n—-k-%-nl)(n—k),

then G is Hamilton-connected.
(ii) If
Ez(é) <(n—k+3)(n-k),

then G s Hamilton-connected.

Proof. If G is K,,, then G is Hamilton-connected. If G is not K, and
is k-connected graph, then 3 <k <n -2

(i) Let f(k) =2(n—k+1)(n~k) —k(n—2)(n —k —1) = nk? - (n? +
n + 4)k + 2n? + 2n. We can easily find that when

n2+n+4—vni—6n+n2+8n+ 16 <

2n k
< n2+n+d+v/nT=6n+n2+8n+16
— 2n b
f(k) £ 0. We further have that if n > 6,
n?+n+4-vnf—6n3+nZ+8n+16
<3
2n -
and
n2+n+d4+vVnT—6n8+n?+8n+16 o2

2n
So, we have

\/(n—k+1)(n—k) S\/k(n—2)(n_k_1)

n 2n

when n > 6.
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Hence, G is Hamilton-connected by Theorem 3.5 (i).
(ii) Let g(k) = 2(n -k +3)(n—k) —nk(n—k - 1) = (n +2)k? — (n? +
3n + 6)k + 2n? + 6n. We again can easily find that when

n2+3n+6—vnT—2n3-19n2-12n+ 36 <

2(n+2) k
< n?+3n+6+vnt—-2n3—~19n2 —12n + 36
- 2(n+2) ’
g(k) £ 0. We further have if n > 6,
n24+3n+6—-vnt—2n3 -19n2 — 12n + 36 <3
2(n+2) -
and
n24+3n+6+vn? —2n3 — 19n2 — 12n + 36 Y
2(n+2) -
So, we have
nk
(n—k+3)(n-k)< T(n—k—l)
when n > 6.
Hence, G is Hamilton-connected by Theorem 3.5 (ii). [ |

6 Spectral conditions for a k-connected graph
to have a spanning s-tree with s > 2

LEMMA 6.1 (8] Let G be a k-connected graph of order n. The property that
G has a spanning s-tree is (n — 1 — (s — 2)k)-stable, where k > 1, s > 2.

Let r(n,P) =n—~1—(s—2)k in Lemma 1.3, then we have the following
result for a graph to have a spanning s-tree with s > 2.

THEOREM 6.2 Let G be a k-connected graph of order n.

(i) If
= +(s=2)k)(n—1+(s-2)k
un(G)<\/(" (s—2) )(n (s—2) ),
then G has a spanning s-tree, where k > 1, s > 2.
(ii)If

£2(G) < (n+2+ (s — 2)k)(n — 1 + (s — 2)k),

then G has a spanning s-tree, where k > 1, s > 2.
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