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Abstract

A cyclic coloring is a vertex coloring such that vertices incident
with a same face receive different colors. Let G be a plane graph,
and let A* be the maximum face degree of G. In 1984, Borodin
conjectured that every plane graph admits a cyclic coloring with at
most L%J colors. In this note, we improve a result of Borodin et al
(On cyclic colorings and their generalizations, Discrete Mathematics
203(1999), 23-40] by showing that every plane graph with A* = 6 can
be cyclically colored with 9 colors. This confirms the Cyclic Coloring
Conjecture in the case A* = 6.

1 Introduction

We only consider connected and non-empty plane graphs without loops
or multiple edges. Undefined concepts and terminologies are all from (3].
A k-coloring of a graph G is a mapping ¢ : V(G) — {1,2,...,k} such
that c(u) # c(v) whenever uv € E(G). A cyclic k-coloring of an embedded
graph is a k-coloring such that any two vertices incident with a common face
receive different colors. The cyclic chromatic number, denoted by x.(G), of
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a graph G is the smallest integer & such that G admits a cyclic k-coloring.
Let G be a family of embedded graphs. The cyclic chromatic number x.(G)
of G is defined to be sup{x.(G) : G € G}. Let G be a plane graph. We use
A*(G) (or A* if the graph is clear from context) to denote the mazimum
face degree of G.

For convenience, we use G to denote the family of plane graphs, and use
Gk to denote the subfamily of plane graphs of which each has maximum
face degree at most k.

Motivated by the dual problem of coloring maps such that countries
with a common border line or a common border point get different colors,
Ore and Plummer (9] introduced the concept of cyclic chromatic number in
1969, and proved that x.(G) < 2- A*. It is easy to verify that x.(G3) <
4 is equivalent to the Four Color Theorem (1, 2]. In 1984, Borodin (5],
confirming a conjecture of Ringel [10] on l-planar graphs, showed that
Xc(Ga) < 6, and proposed a conjecture (which is usually referred to as
the Cyclic Coloring Conjecture) claiming that x.(G) < [-?’A%QJ This
conjecture, if true, is best possible as evidenced by the graph obtained
from the 3-prism by replacing the three vertical edges by paths of length

&1 -1,(4" ] —1and [4"] -1, respectively (see [5]).

In 1992, Borodin [4] improve the upper bound on plane graphs to
Xxc(G) < 2-A* — 3 whenever A* > 8, and proved that x.(G7) < 12,
xc(Gs) < 11, and x.(Gs) < 9. Then, the upper bounds were further im-
proved to x.(G) < 5’-%] (Sanders and Zhao [11]), x.(G7) < 11 (Havet,
Sereni and Skrekovski (8])s xc(G6) < 10 and x.(Gs) < 8 (Borodin, Sanders
and Zhao, {7]). In (6], Borodin et al introduced a new parameter k* (which
is the maximum number of vertices shared by two faces), proved some new
upper bound on x.(G) with respect to A* and k*. They also conjectured
that if both A* and k* are large enough, then x.(G) < A* + k*, which
implies the Cyclic Coloring Conjecture for large A*.

In this note, we prove x.(Gs) < 9, that confirms the Cyclic Coloring
Conjecture for the case A* = 6.

Theorem 1.1 FEvery planar graph with A* = 6 has a cyclic 9-coloring.

In Section 2, we prove several technical lemmas on reducible configura-
tions. Theorem 1.1 is proved in Section 3 by discharging method.
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2 Reducible Configurations

A plane graph G with A*(G) < A* is said to be a (A*, k)-minimal if
it has no cyclic k-coloring, and is such a graph with minimum sum of the
numbers of vertices and edges. This section contains some lemmas about
the structure of a (6, 9)-minimal graph related to reducible configurations.

Some notations and convention are defined as follows. The cyclic degree
cd(z) of a vertex z is defined to be the number of vertices that is different
from z but lie on the boundary of some faces incident with . By identifying
a pair of nonadjacent vertices z and y in a graph G, we mean to replace z
and y by a single vertex adjacent to all vertex of N(z)U N(y), where N(z)
is the neighbor of z in G, and denote the resulting graph by G/{z,y}. To
contract an edge zy of a graph G is to delete the edge and then identify
its endvertices, and the resulting graph is denoted by G/xy. The length of
a path or a cycle is the number of its edges. A k-vertex (resp. k~-vertex
or k*-vertex) refers to a vertex of degree k (resp. at most k or at least
k). The notations k-face, k~-face and k*-face are defined similarly. For
convenience, we say that two vertices are cyclically adjacent if they lie on
the boundary of a same face.

Now, we can state and prove our lemmas. Let G be a (6,9)-minimal
graph. The first two lemmas are from [4].

Lemma 2.1 [4] No i-face in G has an edge in common with a j-face if
i+j< A" +2.
Lemma 2.2 [{] There are no separating i-cycles in G where i < A*.

Lemma 2.3 No (6,9)-minimal graph may contain e verter = with cd(z) <
8.

Proof . Suppose that G is a (6,9)-minimal graph that contains a vertex
z with cd(z) < 8. Let e = zy € E(G) and let H = G/e. Since A*(H) <
A*(G) < 6, H has a cyclic 9-coloring, say ¢, by the minimality of G.
This induces a partial cyclic coloring ¢’ of G with only z uncolored. Since
cd(z) < 8, x sees at most eight colors in ¢/, and thus we can color z with a
color distinct from all colors used on the vertices cyclically adjacent to it.
This yields a cyclic 9-coloring of G, contradicting its (6, 9)-minimality. O

Below Lemma 2.4 is an easy consequence by the minimality of G. We
omit its proof.

Lemma 2.4 Let G be a (6,9)-minimal graph. Then,

(1) G have no edge such that A*(G — e) = A*(G).
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(2) G is 2-connected.
(3) 8(G) 2 3.

Figure 1.

Now, we show that (6,9)-minimal graph contains no configurations
listed in Figure 1.

Lemma 2.5 Let G be a (6,9)-minimal graph, and let z be a 3-vertez of G.

(1) z is incident with no 3-face.

(2) If = is incident with a 4-face, then z is incident with ezactly one 4-
face and two 6-faces. Furthermore, the neighbors of x incident with
4-face are 4% -vertices.

(3) z cannot be incident with three 5-faces.

(4) If x is incident with two 5-faces, then the other face incident with z
must be 6-face. Furthermore, the neighbors of x incident with 6-face
are 47 -vertices.
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(5) If z is incident with a unique 5-face and two 6-faces, then at least one
of its neighbors is a 4% -vertex.

Proof . By Lemma 2.4(1), G contains no edges such that A*(G —e) =
A*(G). It is certain that z is incident with at most one 4-face, and if z is
incident with a 3-face then the other faces incident with = are both 6-faces.
Since cd(z) > 9 by Lemma 2.3, if z is incident with a 4-face then it must
be incident with a 6-face.

Assume to the contrary that one of (1) ~ (5) does not hold.

If z is incident with a 3-face, then it is incident with two 6-faces, and
thus we have a configuration as shown in Figure 1(1). If z is incident with
three 5-faces, then we have a configuration as shown in Figure 1(4). In
both cases, cd(z) = 9. Let H = (G/vz)/{z,u}. It is clear that H is still
a plane graph with A*(H) < 6, and thus has a cyclic 9-coloring ¢ by the
minimality of G. This offers a 9-coloring ¢’ of G with only z uncolored,
where ¢'(u) = ¢/(v). We need to show that u and v are not cyclically
adjacent. Then, ¢’ is a partial cyclic coloring of G, and we can extend it to
one of G as cd(z) = 9 and ¢'(u) = ¢’(v). Assume to its contrary that u and
v are cyclically adjacent. Let f be the face incident with both » and v, and
let P be the path of length 3 that contains u and vz in Figure 1(1). Since
A* < 6, P together with the short path on the boundary of f connecting u
and v forms a separating i-cycle with ¢ < 6. This contradiction to Lemma
2.2 proves (1) and (3).

Suppose that z is incident with a 4-face. Then, z is incident with at
most one 4-face and must be incident with a 6-face by Lemma 2.4(1). If
z is incident with a 5-face, then cd(z) = 9, and G has a configuration as
shown in Figure 1(2). Let H = (G/vz)/{z,u}. The same argument as
above shows that H has a cyclic 9-coloring which can be extended to one of
G, contradicting the choice of G. Therefore, £ must be incident with two 6-
faces. To prove the second statement of (2), we assume to its contrary that
zy is an edge incident with the 4-face such that d(y) = 3 (see Figure 1(3)).
Now, cd(z) = cd(y) = 10. Let H = (((G/vz)/{z,u})/ay)/{y,b}. Similarly
to the previous case, we may get a partial cyclic 9-coloring ¢ of G from one
of H, where only = and y are not colored, and ¢(v) = ¢(u) and ¢(a) = ¢(b).
Since each of z and y sees at most seven colors with respect to ¢, we can
extend c to a cyclic 9-coloring of G. This completes the proof of (2).

Now, let = be incident with two 5-faces. Then, the other face incident
with z is a 6-face by (2) and (3), and thus we have a configuration as shown
in Figure 1(5). If the second statement of (4) is not true, we may suppose
by symmetry that d(y) = 3, and then cd(z) = 10 and cd(y) < 11. Again,
by considering the graph (((G/vz)/{z,u})/ay)/{y,b} as above, we get a

417



partial cyclic 9-coloring ¢ of G, where only = and y are not colored, and
c(v) = c(u) and c(a) = c(b). It is easy to check that ¢ can be extended to
G by first coloring y and then coloring x. Therefore, (4) holds.

Finally, let = be incident with a unique 5-face and two 6-faces. Assume
to its contrary that all the neighbors of = are 3-vertices (see Figure 1(6)). By
considering a cyclic 9-coloring of ({((((G/v'z)/{z,u}) [yx)/{z,¥'})/v'w)/
{w, v}, we have a partial coloring ¢ of G where z,w and z are not colored,
c(u) = c(v'), c(y) = c(y’) and ¢(v) = ¢(v'). We will show that c is a partial
cyclic coloring of G and extend it to the whole graph. Since G contains no
separating i-cycles for i < 6 by Lemma 2.2, it is easy to see that neither u
and v/, nor v and v/, are cyclically adjacent in G. If y and y’ are cyclically
adjacent, then y and y’ must be on the boundary of the outer face of G,
say f,, such that both yu and yt are incident with f, (since d(y) = 3), and
thus there would be a separating 5-cycle or 6-cycle in G. Therefore, y and
y’' cannot be acyclically adjacent, and ¢ is indeed a partial cyclic coloring
of G. Since cd(z) = 11,c¢d(2) £ 11,cd(w) < 12, we can color w,z and z
sequentially to produce a cyclic 9-coloring of G. This completes the proof
of (5), and thus all of the lemma. O

3 Proof of Theorem 1.1

To prove Theorem 1.1, we apply a discharging procedure to a minimal
(6,9)-graph (it is 2-connected by Lemma 2.4). The initial charge w(z) for
each element x of V(G)U F(G) is defined to be 4 —d(z). As a consequence
of the Euler’s formula on plane graphs,

Z w(z) = 8.

T€VUF

We will modify the charge w to a new one w’ following rules (R;) and
(R2) below. Since the discharging procedure does not make any change
to the total sum, ) .y pw'(2) = 3 cyupw(z) = 8. We will deduce a
contradiction by showing that w’(z) < 0 for each z € VU F.

Let z be a 3-vertex, and let T be a 3-face.

R; z sends ;15- to each of its incident 5-faces, and % to each of its incident
6-face. For each 4*-vertex y in N(z), = sends further é, through v,
to each 6-face incident with zy.

Ry T sends % to each of its adjacent 6-faces.
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We are ready to prove Theorem 1.1.

Proof . Let G be a (6,9)-minimal graph. By Lemma 2.4(3), 6(G) > 3.

First we calculate w’ for vertices. Let z be a k-vertex. If k¥ > 4, then
W'(z) = w(z) < Osince R; and R, make no changes on 4*-vertices. Suppose
that £ = 3. Then, w(z) = 4 — d(z) = 1. By Lemma 2.5(1), z is incident
with no 3-face. If z is incident with one 4-face, then it is incident with
two 6-faces and the neighbors of x incident with 4-face are 4+-vertices by
Lemma 2.5(2), and by R;, = sends out % x 2 to its incident 6-faces and sends
further at least % x 2, through its 4T-neighbors, to its incident 6-faces. So,
w'(z) < 0. Next, we suppose that z is incident with three 6-faces, then it
sends out at least 1 into its incident 6-faces by R;, thus w'(z) < 0. Finally,
we distinguish two cases that z is incident with one or two 5-faces following
Lemma 2.5(3)(4)(5). If = is incident with two 5-faces and one 6-face, then
the neighbors of = incident with 6-face are both 4*-vertices, and by R;, =
sends out % x 2 to its incident 5-faces and § + & x 2 to its incident 6-face,
respectively. If z is incident with a 5-face and two 6-faces, then at least one
neighbor of z incident with 6-face is 4*-vertex, and z sends out at least
3 x2+%+1=1by Ry Again, w'(x) <0 in both cases.

Now, we estimate w’ for faces. Let f be an l-face. If | = 3, then
w(f) =4—d(f) = 1. Since 3-face is only adjacent to 6-face by Lemma 2.1,
f sends out 3 x 3 =1 by Ry, and w'(f) =w(f) —1=0. If | = 4, then
w'(f) = w(f) = 0 since our discharging rules make no change to the weight
of 4-faces. If I = 5, then f receives totally at most 5 from its incident
3-vertices by Ry, and so w'(f) S w(f) + £ <0.

Suppose so that [ = 6. Then, w(f) = —2. Let zy be an edge incident
with f. If d(z) = 3 and d(y) = 4, then z sends extra g to f through y
by R;. If zy is incident w1th a 3-face T, then d(z) > 4 and d(y) > 4 by
Lemma 2.5(1), and T sends £ to f by Ra. For the simplicity of computation,
we may count that } (essentially sent out from z to f when d(z) = 3 and

d(y) = 4) as being sent out from y, and count half of that 1 (essentially
sent out from T') as being sent out from y also. After such a redlstrlbutmg
procedure, we may suppose that f receives nothing from its adjacent faces,
and receives at most § from each of its incident vertices. Therefore, w'(f) <
w(f)+6-3=0.

The above arguments yield that }_ .y rw'(z) < 0, contradicting
Y zevur w(x) = 8. This completes the proof. o

~—~
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