Cyclic 9-coloring of plane graphs with maximum face degree six*

Min Wan^{1,2}† Baogang Xu^{1‡}

Institute of Mathematics, School of Mathematical Sciences
Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
Department of Mathematics, School of Sciences, Shihezi University,
4 North Road, Shihezi, 832003, China

Abstract

A cyclic coloring is a vertex coloring such that vertices incident with a same face receive different colors. Let G be a plane graph, and let Δ^* be the maximum face degree of G. In 1984, Borodin conjectured that every plane graph admits a cyclic coloring with at most $\lfloor \frac{3\Delta^*}{2} \rfloor$ colors. In this note, we improve a result of Borodin et~al [On cyclic colorings and their generalizations, Discrete Mathematics 203(1999), 23-40] by showing that every plane graph with $\Delta^*=6$ can be cyclically colored with 9 colors. This confirms the Cyclic Coloring Conjecture in the case $\Delta^*=6$.

1 Introduction

We only consider connected and non-empty plane graphs without loops or multiple edges. Undefined concepts and terminologies are all from [3]. A k-coloring of a graph G is a mapping $c:V(G) \to \{1,2,\ldots,k\}$ such that $c(u) \neq c(v)$ whenever $uv \in E(G)$. A cyclic k-coloring of an embedded graph is a k-coloring such that any two vertices incident with a common face receive different colors. The cyclic chromatic number, denoted by $\chi_c(G)$, of

 $^{^{\}circ}$ Research partially supported by NSFC projects 11331003 and 11171160 and by the Doctoral Fund of Ministry of Education of China.

[†]Email: wanmin_lw@163.com †Email: baogxu@njnu.edu.cn

a graph G is the smallest integer k such that G admits a cyclic k-coloring. Let G be a family of embedded graphs. The cyclic chromatic number $\chi_c(G)$ of G is defined to be $\sup\{\chi_c(G): G \in G\}$. Let G be a plane graph. We use $\Delta^*(G)$ (or Δ^* if the graph is clear from context) to denote the maximum face degree of G.

For convenience, we use \mathcal{G} to denote the family of plane graphs, and use \mathcal{G}_k to denote the subfamily of plane graphs of which each has maximum face degree at most k.

Motivated by the dual problem of coloring maps such that countries with a common border line or a common border point get different colors, Ore and Plummer [9] introduced the concept of cyclic chromatic number in 1969, and proved that $\chi_c(\mathcal{G}) \leq 2 \cdot \Delta^*$. It is easy to verify that $\chi_c(\mathcal{G}_3) \leq 4$ is equivalent to the Four Color Theorem [1, 2]. In 1984, Borodin [5], confirming a conjecture of Ringel [10] on 1-planar graphs, showed that $\chi_c(\mathcal{G}_4) \leq 6$, and proposed a conjecture (which is usually referred to as the Cyclic Coloring Conjecture) claiming that $\chi_c(\mathcal{G}) \leq \lfloor \frac{3\Delta^*(\mathcal{G})}{2} \rfloor$. This conjecture, if true, is best possible as evidenced by the graph obtained from the 3-prism by replacing the three vertical edges by paths of length $\lfloor \frac{\Delta^*}{2} \rfloor - 1$, $\lfloor \frac{\Delta^*}{2} \rfloor - 1$ and $\lfloor \frac{\Delta^*}{2} \rfloor - 1$, respectively (see [5]).

In 1992, Borodin [4] improve the upper bound on plane graphs to $\chi_c(\mathcal{G}) \leq 2 \cdot \Delta^* - 3$ whenever $\Delta^* \geq 8$, and proved that $\chi_c(\mathcal{G}_7) \leq 12$, $\chi_c(\mathcal{G}_6) \leq 11$, and $\chi_c(\mathcal{G}_5) \leq 9$. Then, the upper bounds were further improved to $\chi_c(\mathcal{G}) \leq \lceil \frac{5\Delta^*}{3} \rceil$ (Sanders and Zhao [11]), $\chi_c(\mathcal{G}_7) \leq 11$ (Havet, Sereni and Škrekovski [8]), $\chi_c(\mathcal{G}_6) \leq 10$ and $\chi_c(\mathcal{G}_5) \leq 8$ (Borodin, Sanders and Zhao, [7]). In [6], Borodin *et al* introduced a new parameter k^* (which is the maximum number of vertices shared by two faces), proved some new upper bound on $\chi_c(\mathcal{G})$ with respect to Δ^* and k^* . They also conjectured that if both Δ^* and k^* are large enough, then $\chi_c(\mathcal{G}) \leq \Delta^* + k^*$, which implies the Cyclic Coloring Conjecture for large Δ^* .

In this note, we prove $\chi_c(\mathcal{G}_6) \leq 9$, that confirms the Cyclic Coloring Conjecture for the case $\Delta^* = 6$.

Theorem 1.1 Every planar graph with $\Delta^* = 6$ has a cyclic 9-coloring.

In Section 2, we prove several technical lemmas on reducible configurations. Theorem 1.1 is proved in Section 3 by discharging method.

2 Reducible Configurations

A plane graph G with $\Delta^*(G) \leq \Delta^*$ is said to be a (Δ^*, k) -minimal if it has no cyclic k-coloring, and is such a graph with minimum sum of the numbers of vertices and edges. This section contains some lemmas about the structure of a (6, 9)-minimal graph related to reducible configurations.

Some notations and convention are defined as follows. The cyclic degree cd(x) of a vertex x is defined to be the number of vertices that is different from x but lie on the boundary of some faces incident with x. By identifying a pair of nonadjacent vertices x and y in a graph G, we mean to replace x and y by a single vertex adjacent to all vertex of $N(x) \cup N(y)$, where N(x) is the neighbor of x in G, and denote the resulting graph by $G/\{x,y\}$. To contract an edge xy of a graph G is to delete the edge and then identify its endvertices, and the resulting graph is denoted by G/xy. The length of a path or a cycle is the number of its edges. A k-vertex (resp. k^- -vertex or k^+ -vertex) refers to a vertex of degree k (resp. at most k or at least k). The notations k-face, k^- -face and k^+ -face are defined similarly. For convenience, we say that two vertices are cyclically adjacent if they lie on the boundary of a same face.

Now, we can state and prove our lemmas. Let G be a (6,9)-minimal graph. The first two lemmas are from [4].

Lemma 2.1 [4] No i-face in G has an edge in common with a j-face if $i + j \leq \Delta^* + 2$.

Lemma 2.2 [4] There are no separating i-cycles in G where $i \leq \Delta^*$.

Lemma 2.3 No (6,9)-minimal graph may contain a vertex x with $cd(x) \le 8$.

Proof. Suppose that G is a (6,9)-minimal graph that contains a vertex x with $cd(x) \leq 8$. Let $e = xy \in E(G)$ and let H = G/e. Since $\Delta^*(H) \leq \Delta^*(G) \leq 6$, H has a cyclic 9-coloring, say c, by the minimality of G. This induces a partial cyclic coloring c' of G with only x uncolored. Since $cd(x) \leq 8$, x sees at most eight colors in c', and thus we can color x with a color distinct from all colors used on the vertices cyclically adjacent to it. This yields a cyclic 9-coloring of G, contradicting its (6,9)-minimality. \Box

Below Lemma 2.4 is an easy consequence by the minimality of G. We omit its proof.

Lemma 2.4 Let G be a (6,9)-minimal graph. Then,

(1) G have no edge such that $\Delta^*(G-e) = \Delta^*(G)$.

- (2) G is 2-connected.
- (3) $\delta(G) \geq 3$.

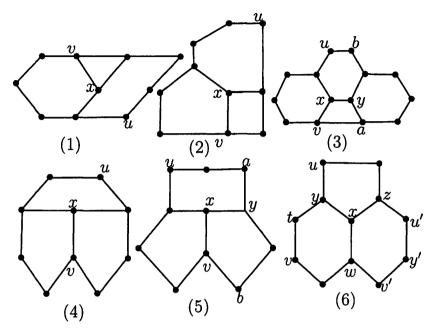


Figure 1.

Now, we show that (6,9)-minimal graph contains no configurations listed in Figure 1.

Lemma 2.5 Let G be a (6,9)-minimal graph, and let x be a 3-vertex of G.

- (1) x is incident with no 3-face.
- (2) If x is incident with a 4-face, then x is incident with exactly one 4-face and two 6-faces. Furthermore, the neighbors of x incident with 4-face are 4+-vertices.
- (3) x cannot be incident with three 5-faces.
- (4) If x is incident with two 5-faces, then the other face incident with x must be 6-face. Furthermore, the neighbors of x incident with 6-face are 4⁺-vertices.

(5) If x is incident with a unique 5-face and two 6-faces, then at least one of its neighbors is a 4^+ -vertex.

Proof. By Lemma 2.4(1), G contains no edges such that $\Delta^*(G - e) = \Delta^*(G)$. It is certain that x is incident with at most one 4-face, and if x is incident with a 3-face then the other faces incident with x are both 6-faces. Since $cd(x) \geq 9$ by Lemma 2.3, if x is incident with a 4-face then it must be incident with a 6-face.

Assume to the contrary that one of $(1) \sim (5)$ does not hold.

If x is incident with a 3-face, then it is incident with two 6-faces, and thus we have a configuration as shown in Figure 1(1). If x is incident with three 5-faces, then we have a configuration as shown in Figure 1(4). In both cases, cd(x) = 9. Let $H = (G/vx)/\{x,u\}$. It is clear that H is still a plane graph with $\Delta^*(H) \leq 6$, and thus has a cyclic 9-coloring c by the minimality of G. This offers a 9-coloring c' of G with only x uncolored, where c'(u) = c'(v). We need to show that u and v are not cyclically adjacent. Then, c' is a partial cyclic coloring of G, and we can extend it to one of G as cd(x) = 9 and c'(u) = c'(v). Assume to its contrary that u and v are cyclically adjacent. Let f be the face incident with both u and v, and let v be the path of length 3 that contains v and v in Figure 1(1). Since v is a separating v in the short path on the boundary of v connecting v and v forms a separating v-cycle with v is v-cycle with v-cycle v-cycle v-cycle v-cycle v

Suppose that x is incident with a 4-face. Then, x is incident with at most one 4-face and must be incident with a 6-face by Lemma 2.4(1). If x is incident with a 5-face, then cd(x) = 9, and G has a configuration as shown in Figure 1(2). Let $H = (G/vx)/\{x,u\}$. The same argument as above shows that H has a cyclic 9-coloring which can be extended to one of G, contradicting the choice of G. Therefore, x must be incident with two 6-faces. To prove the second statement of (2), we assume to its contrary that xy is an edge incident with the 4-face such that d(y) = 3 (see Figure 1(3)). Now, cd(x) = cd(y) = 10. Let $H = (((G/vx)/\{x,u\})/ay)/\{y,b\}$. Similarly to the previous case, we may get a partial cyclic 9-coloring c of c from one of c where only c and c are not colored, and c and c and c and c are case at most seven colors with respect to c, we can extend c to a cyclic 9-coloring of c. This completes the proof of (2).

Now, let x be incident with two 5-faces. Then, the other face incident with x is a 6-face by (2) and (3), and thus we have a configuration as shown in Figure 1(5). If the second statement of (4) is not true, we may suppose by symmetry that d(y) = 3, and then cd(x) = 10 and $cd(y) \le 11$. Again, by considering the graph $(((G/vx)/\{x,u\})/ay)/\{y,b\}$ as above, we get a

partial cyclic 9-coloring c of G, where only x and y are not colored, and c(v) = c(u) and c(a) = c(b). It is easy to check that c can be extended to G by first coloring y and then coloring x. Therefore, (4) holds.

Finally, let x be incident with a unique 5-face and two 6-faces. Assume to its contrary that all the neighbors of x are 3-vertices (see Figure 1(6)). By considering a cyclic 9-coloring of $(((((G/u'z)/\{z,u\})/yx)/\{x,y'\})/v'w)/\{w,v\}$, we have a partial coloring c of G where x,w and z are not colored, c(u) = c(u'), c(y) = c(y') and c(v) = c(v'). We will show that c is a partial cyclic coloring of G and extend it to the whole graph. Since G contains no separating i-cycles for $i \leq 6$ by Lemma 2.2, it is easy to see that neither u and u', nor v and v', are cyclically adjacent in G. If y and y' are cyclically adjacent, then y and y' must be on the boundary of the outer face of G, say f_o , such that both yu and yt are incident with f_o (since d(y) = 3), and thus there would be a separating 5-cycle or 6-cycle in G. Therefore, y and y' cannot be acyclically adjacent, and c is indeed a partial cyclic coloring of G. Since cd(x) = 11, $cd(z) \leq 11$, $cd(w) \leq 12$, we can color w, z and x sequentially to produce a cyclic 9-coloring of G. This completes the proof of (5), and thus all of the lemma.

3 Proof of Theorem 1.1

To prove Theorem 1.1, we apply a discharging procedure to a minimal (6,9)-graph (it is 2-connected by Lemma 2.4). The *initial charge* $\omega(x)$ for each element x of $V(G) \cup F(G)$ is defined to be 4-d(x). As a consequence of the Euler's formula on plane graphs,

$$\sum_{x \in V \cup F} \omega(x) = 8.$$

We will modify the charge ω to a new one ω' following rules (R_1) and (R_2) below. Since the discharging procedure does not make any change to the total sum, $\sum_{x \in V \cup F} \omega'(x) = \sum_{x \in V \cup F} \omega(x) = 8$. We will deduce a contradiction by showing that $\omega'(x) \leq 0$ for each $x \in V \cup F$.

Let x be a 3-vertex, and let T be a 3-face.

 R_1 x sends $\frac{1}{6}$ to each of its incident 5-faces, and $\frac{1}{3}$ to each of its incident 6-face. For each 4^+ -vertex y in N(x), x sends further $\frac{1}{6}$, through y, to each 6-face incident with xy.

 R_2 T sends $\frac{1}{3}$ to each of its adjacent 6-faces.

We are ready to prove Theorem 1.1.

Proof. Let G be a (6,9)-minimal graph. By Lemma 2.4(3), $\delta(G) \geq 3$.

First we calculate ω' for vertices. Let x be a k-vertex. If $k \geq 4$, then $\omega'(x) = \omega(x) \leq 0$ since R_1 and R_2 make no changes on 4^+ -vertices. Suppose that k=3. Then, $\omega(x)=4-d(x)=1$. By Lemma 2.5(1), x is incident with no 3-face. If x is incident with one 4-face, then it is incident with two 6-faces and the neighbors of x incident with 4-face are 4^+ -vertices by Lemma 2.5(2), and by R_1 , x sends out $\frac{1}{3} \times 2$ to its incident 6-faces and sends further at least $\frac{1}{6} \times 2$, through its 4⁺-neighbors, to its incident 6-faces. So, $\omega'(x) \leq 0$. Next, we suppose that x is incident with three 6-faces, then it sends out at least 1 into its incident 6-faces by R_1 , thus $\omega'(x) \leq 0$. Finally, we distinguish two cases that x is incident with one or two 5-faces following Lemma 2.5(3)(4)(5). If x is incident with two 5-faces and one 6-face, then the neighbors of x incident with 6-face are both 4^+ -vertices, and by R_1 , x sends out $\frac{1}{6} \times 2$ to its incident 5-faces and $\frac{1}{3} + \frac{1}{6} \times 2$ to its incident 6-face, respectively. If x is incident with a 5-face and two 6-faces, then at least one neighbor of x incident with 6-face is 4^+ -vertex, and x sends out at least $\frac{1}{3} \times 2 + \frac{1}{6} + \frac{1}{6} = 1$ by R_1 . Again, $\omega'(x) \leq 0$ in both cases.

Now, we estimate ω' for faces. Let f be an l-face. If l=3, then $\omega(f)=4-d(f)=1$. Since 3-face is only adjacent to 6-face by Lemma 2.1, f sends out $\frac{1}{3}\times 3=1$ by R_2 , and $\omega'(f)=\omega(f)-1=0$. If l=4, then $\omega'(f)=\omega(f)=0$ since our discharging rules make no change to the weight of 4-faces. If l=5, then f receives totally at most $\frac{5}{6}$ from its incident 3-vertices by R_1 , and so $\omega'(f)\leq \omega(f)+\frac{5}{6}<0$.

Suppose so that l=6. Then, $\omega(f)=-2$. Let xy be an edge incident with f. If d(x)=3 and d(y)=4, then x sends extra $\frac{1}{6}$ to f through y by R_1 . If xy is incident with a 3-face T, then $d(x)\geq 4$ and $d(y)\geq 4$ by Lemma 2.5(1), and T sends $\frac{1}{3}$ to f by R_2 . For the simplicity of computation, we may count that $\frac{1}{6}$ (essentially sent out from x to f when d(x)=3 and d(y)=4) as being sent out from y, and count half of that $\frac{1}{3}$ (essentially sent out from T) as being sent out from T also. After such a redistributing procedure, we may suppose that f receives nothing from its adjacent faces, and receives at most $\frac{1}{3}$ from each of its incident vertices. Therefore, $\omega'(f)\leq \omega(f)+6\cdot \frac{1}{3}=0$.

The above arguments yield that $\sum_{x \in V \cup F} \omega'(x) \leq 0$, contradicting $\sum_{x \in V \cup F} \omega(x) = 8$. This completes the proof.

Acknowledgement: We thank O. V. Borodin for informing us the structure of the extremal graphs with $\chi_c(G) = \lfloor \frac{3\Delta^*}{2} \rfloor$.

References

- K. Appel and W. Haken, Every planar map is four colorable: Part I: Discharging. *Illinois J. Math.* 21(1977), 429-490.
- [2] K. Appel, W. Haken and J. Koch, Every planar map is four colorable: Part II: Reducibility. Illinois J. Math. 21(1977), 491-567.
- [3] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, New York, 2008.
- [4] O. V. Borodin, Cyclic coloring of plane graphs, Discrete Mathematics 100 (1992), 281-289.
- [5] O. V. Borodin, Solution of Ringel's problems on vertex-face coloring of plane graphs and coloring of 1-planar graphs, Metody Diskret. Analiz 41 (1984) 12-26 (in Russian).
- [6] O. V. Borodin, H. J. Broersma, A. Glebov and J. Heuvel, A new upper bound on the cyclic chromatic number, J. Graph Theory 54(1) (2007), 58-72.
- [7] O. V. Borodin, D. P. Sanders and Yue Zhao, On cyclic colorings and their generalizations, *Discrete Mathematics* 203 (1999), 23-40.
- [8] F. Havet, J. Sereni, and R. Škrekovski, 3-facial coloring of plane graphs, SIAM J. Discrete Mathematics 22(1) (2008), 231-247.
- [9] O. Ore and M. D. Plummer, Cyclic coloration of plane graphs, Recent Progress in Combinatorics, Proceedings of the Third Waterloo Conference on Combinatorics, Academic Press, 1969, 287-293.
- [10] G. Ringel, Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Semin. Univ. Hambg. 29 (1965), 107-117.
- [11] D. P. Sanders and Yue Zhao, A new bound on the cyclic chromatic number, J. Combinatorial Theory Series B 83 (2001), 102-111.