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Abstract. The Wiener index of a graph is the sum of the distances
between all pairs of vertices. In this paper we determine h-cacti and h-
cactus chains with the extremal Wiener indices, respectively.
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1 Introduction

The Wiener index was introduced by H. Wiener [8] in 1947. A lot more
is done on the Wiener index than what could be mentioned here. The
significant applications of the Wiener index in chemistry can be found in
[7]. 1. Gutman et al. [6] detailed the correlation of Wiener index with
certain physicochemical properties of nonpolar organic substances. A. A.
Dobrynin et al. [3, 4] have extensively researched the Wiener index in
mathematics.

A cactus G is a connected graph in which each edge lies on at most
one cycle. Therefore, each block in G is either an edge or a cycle. An
h-cactus is a cactus in which each block is an h-cycle. An h-cactus chain is
an h-cactus in which each block contains at most two cut-vertices and each
cut-vertex lies in exactly two blocks. Certain invariants of a closely related
class of block-cactus graphs have been studied in {2, 9]. T. Dosli¢ and F.
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Malgy (5] considered a type of cactus chain and studied their matching and
independence related properties.

In this paper we determine the h-cacti and h-cactus chains with the
extremal Wiener indices, respectively.

2 Main results

Suppose that dg(u, v) is the distance between vertices u and v in a graph G,
andlet d(v|G) = Y de(u,v). ThenW(G) =3 > d(v|G)is Wiener
ueV(G) veV(G)
indez of G. The following lemma is important and will be repeatedly used

to obtain our main results.

Lemma 2.1. [1] Let G be a connected graph with a cut-vertez u such that
G, and G4 are two connected subgraphs of G having u as the only common
vertez and G, UGy = G. Then

W(G1UG2) = W(G1)+W (G2)+([V(G1)|-1)d(u|G2)+(|V(G2)|-1)d(u|G)1).

The number of h-cycles in an h-cactus is its length. Denote by ¥ (k) the
set of all h-cacti of length k.

Theorem 2.1. IfY,Y* € ¥(k), then W(Y') = W(Y*)mod(h - 1).
Proof. We proceed by induction on k. The case k = 2 is obviously true.

So suppose k > 3.

Note that any two Y and Y* of ¥ (k) can be obtained from two appro-
priately chosen graphs X and X* of ¥(k — 1) by attaching to them two
new h-cycles Cj, and Cj, respectively, as in Fig. 1.
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By Lemma 2.1, we know that
W(Y) = W(X)+W(Ch) + ([V(X)| — 1)d(u|Ch) + (JV(Ch)| — 1)d(u|X),
W(Y*) = W(X*)+W(CR)+([V(X*)|-1)d(u"|CR)+(IV(CR) - 1)d(u7| X™).

Since W(Cp) = W(C3), [V(X)| = [V(X*)| and d(u|Ch) = d(u*|CF),

we obtain
W(Y) - W(Y™") = (W(X) - W(X")) + (h - 1)(d(u|X) — d(u*|X™)).

The result follows from inductive hypothesis that W (X) = W(X*)mod(h—
1). O

An h-cactus star is an h-cactus that has only one cut-vertex. Denote
by Fi the h-cactus star of length k. Suppose that Fj, is a subgraph of
G, € ¥ (k) whose cut-vertex u; is on a cycle C (i = 1,2). Two vertices
u and v on cycle C are in t-position if do(u,v) = ¢t. If u; and up are in
t-position on C and 1 <t < | 4], then we call the process of moving Fj,
from ug to u; the flower transformation of G, and denote the resulting
graph by G2, as in Fig. 2.

Lemma 2.2. Let G; and u; (i = 1,2) be defined as above, and Tp =
CiI\{Fey, Fia }. If de, (wi|To) < do, (ualTo), then W(G1) > W(Gh).
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Fig. 2. Flower transformation

Proof. By Lemma 2.1, we have

W(G1) =W(To U Fr,) + W(Fi,) + (IV(To U Fi,)| — 1)dg, (w2l Fi,)
+([V(Fi,)| — 1de, (u2|To U Fr, ),

W(Gz) =W(To U Fi,) + W(Fy,) + ({V(To U Fi,)| - 1)da, (v1|Fi,)
+ (|V(Fi,)| — 1)dg, (w1|To U Fy,).
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Since dg, (u2|Fk,) = da, (u1|Fk,), we have
W(G1) — W(Gz) = (IV(Fi,)| — 1)(de, (u2|To U Fx,) — dg, (wa|To U Fi, ))-
Note that

dGl (u2'T0 U Fkl) = dGl (UqlTo) + (IV(Fkl)l - l)dcx (u2) ul) + de'l (ullex),
dGz (ul‘TO U Fkx) = dGz (ullTO) + dG2 (ul{Fkl)'

Since dg, (u2|To) 2 dg, (v1]To), we have W(G1) —W(Gs) = (|[V(Fk, )| -
1)(dg, (u2|To) — dg,(w1|To) + (IV(Fk,)| — 1)de, (u2,u1)) > 0. O

Suppose that T; € €(k;) is a subgraph of G3 € ¥(k) that has common
vertex u; with a cycle C of G3 (i = 3,4). If us and u4 are in ¢-position on
Cand1<t< I_%J, then we call the process of moving T from u4 to us

the inner transformation of G3, and denote the resulting graph by Gy, as
in Fig. 3.

Fig. 3. Inner transformation

Lemma 2.3. Let G; and u; (3 = 3,4) be defined as above. Then we have
W(G3) > W(G,).

Proof. By Lemma 2.1, we have

W(G3) =W (T3 U C) + W(Ty) + ([V(T3 U C)| — 1)dg, (u4]Ty)
+ ([V(Ty)| - 1)dg, (ua|T3 U C),

W(Ga) =W (T3 UC) + W(T4) + (|[V(Ts U C)| - 1)dg, (us|T4)
+(IV(T4)| - 1)dg, (us|T3 U C).

Since dg, (u4|Ty) = dg,(u3|Ty), we have
W(Gs) — W(G4) = (IV(T4)| — 1)(dg, (u4|T3 U C) — dg, (us|T3 U C)).

Note that

dg, (u4]T3 U C) = (|V(T3)| — 1)dg, (ua, u3) + dg, (u3|T3) + dg, (ua|C),
dg,(us|T3 U C) = dg, (u3|T3) + dg, (u3|C) and dg, (u4|C) = de,(u3|C).
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Therefore, we have

W(G3) — W(G4) = (JV(Ta)| - D(IV(T3)| — 1)dg,y(ua,u3) > 0. O

We easily observe that a graph G € ¥(k) can be transformed into some
F}, through a finite number of steps of flower or inner transformation. Thus,
by Lemmas 2.2 and 2.3, we have the following

Theorem 2.2. IfG € ¥(k) and k > 3, then W(G) > W (F},), with equality
if and only if G & Fy.

A cycle C in an h-cactus chain is internal if it contains two cut-vertices.
An internal cycle C is para if the two cut-vertices on C are in | % ]-position.
Denote by Ly the pare-h-cactus chain of length k& whose internal cycles are
all para.

Suppose that Ly, is a subgraph of G5 € ¥ (k) that has a common vertex
u; with cycle C of G5 (i = 5,6) and that u; € V(Ly,) is the farthest vertex
from us. If us and ug are in t-position (0 < ¢ < |%]), then we call the
process of moving Ly, from ug to uy the lengthening transformation of Gs,
and denote the resulting graph by Gs, as in Fig. 4.
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Fig. 4. Lengthening transformation.

Lemma 2.4. Let G; (i = 5,6) and u; (j =5,6,7) be defined as above, and
Ty = Gs\{Lks, Lis }- If dgo(us|Tg) = de, (ue|Tp), then W(Gs) < W(Ge).

Proof. By Lemma 2.1, we have

W(Gs) =W (Tg U Li,) + W(Li,) + (IV(Tg U Lk, )| — 1)dg, (uelLk,)
+ (IV(Lis)| = 1)da, (us|To U Lis,),

W(Gs) =W(Tg U Li,) + W (L) + (|V(Ty U Li,)| — 1)dge (uz|Lig)
+ ([V(Lie)| — 1)dea(ur|To U Ly, ).
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Since dg, (ue|Lr,) = dge(u7|Lis), we have
W(Ge) — W(Gs) = (IV(Lke)! — 1){dgs (ur]To U Li;) — das (us|To U Lis))-

Note that

dg (ue|TgU L) = dos(ue|To) + dgs (us|Lis ) + (IV (Lis)| = 1),
do, (ur|TgU L) = daq(us|Tg) + [§1ks(IV(T) — 1) + da, (ur|Li,)-

Since dg,(us|T§) = dg, (us|T3), we have

W(Ge) —W(Gs) = (|V(Lke)} — 1){dgs(us|Tp) — de, (us|Tp)
+ (|2)(k— ks — kg) — t)(h — 1)ks) > 0. O

We easily observe that a graph G € €(k) can be transformed into somne
Ly through a finite number of steps of the lengthening transformation.
Thus, by Lemma, 2.4, we have the following

Theorem 2.3. IfG € €(k) and k > 3, then W(G) < W(Ly), with equality
if and only if G =2 L.

An internal cycle C in an h-cactus chain is ortho if the two cut-vertices
on C are in 1-position. Denote by Hj the ortho-h-cactus chain of length
k whose internal cycles are all ortho. Now we give explicit expression of

Wiener indices of Fi, Ly and H.

Remark 2.1. The Wiener index of the h-cactus star F). is given by

R2(h—1)k? _ K2(h—2)k if h is even;
W(Fi) = ; (Y ’
(Fi) { (h—l)"'gh+l)k2 _ (h—2)(h—81)Ql+1)k’ if h is odd.

Proof. Let C be an h-cycle in F. Then F), = Fy_, UC. Let z be the
cut-vertex of F. By Lemma 2.1, we have

W(Fi) = W(C) + W(Fi-1) + (h = 1)d(z|Fk—1) + (h = 1)(k — 1)d(z|C).

If h is even, then W(C) = &, d(z|C) = & and d(z|Fi_,) = &=

and so B Rk —1)(k—1)
W (F) = W(Fr-1) + =7t ( 2) .

R2(h=1)k? _ h%(h-2)k
1 8

Using iteration method, we obtain W(Fy) =

Similarly, we can prove that W(Fy) = (h—l)%h+l)k2 - (h_z)(h_sl)(h+l)k

if his odd. O
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We also have the following Remarks 2.2 and 2.3

Remark 2.2. The Wiener index of the para-h-cactus chain L is given by

A(h—1)2k* | (h2—h)k® _ (h3-2h%2—2h)k . . )
W(Ly) = B 1 oL fhiseven
(h—llz) k + (h—lz) k _ @ +6h ;121h+lgu€" ifh is Odd.

Remark 2.3. The Wiener index of the ortho-h-cactus chain Hj is given
by

WHY AR | A Dh-DE? 4 (5h°+6;;—8h)'°, if h is even;
k) = 3 3,42 2 3
(h=Dhk® | (BO+h :h+1>k — GA-URFOMOR if h is odd.

?

Theorem 2.4. Suppose that G € €(k) is an h-cactus chain. Then
W(H;) < W(G), with equality if and only if G = Hj.

Proof. Suppose that T; € €(k;) is a subgraph of h-cactus chain G that
has a common vertex v; (i = 1,2) with cycle C so that G =Ty UC U T3,
as in Fig. 5.

() 4 }3

Suppose that v3 € C is adjacent to v;. Then we denote by G’ the graph
obtained from G by moving T from vs to v3. If v; and v, are in t-position
1<t ]_%J), then, by Lemma 2.1, we have

W(G) = W(T1) + W(CUT) + ([V(Ti)] ~ 1)de(n1|C U T3)
+ ([V(T2)| + h — 2)dg(v1|Th)
= W(T1) + W(T2) + (h — 1)dc(v2|T2) + (|V(T2)| — 1)da(v2|C)
+ W(C) + ([V(Th)| = )de(n1|CUTL) + (|V(T2)| + h — 2)dg(v1|T1)
=W(T) + W(C) + W(T2) + ([V(T2)| — 1)de(v:|C)
+ (IV(T)| = 1)(de(ni|C) = t) + t(|V(T1)| — DIV (T2)|
+(IV(TW)| + h = 2)dg(v2|T2) + ([V(T2)| + h — 2)dg(v1|T1)-
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Similarly, we can obtain

W(G') = W(T1) + W(C) + W(T3) + (IV(T2)| — 1)dg (v3|C)
+ (IV(T1)] — )(da(w|C) — 1) + (IV(T1)| - DIV(T2)|
+(IV(T1)] + h - 2)de (vs|T2) + ([V(T2)] + h — 2)dg: (v1|Th)-

Note that dg(v2|C) = dg- (1)3[0), de(ve|Te) = de (v3]|T2) and dg(vi Ty) =
dg/(v1]|T1). Therefore, we have

W(G) - W(G") = (t - )(IV(T)| - )(IV(T2)| - 1) 2 0.

This shows that the assertion is true. O
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