Balanced *House*-systems and Nestings

Paola Bonacini, Mario Gionfriddo, Lucia Marino Catania University, Italy.

bonacini@dmi.unict.it,gionfriddo@dmi.unict.it lmarino@dmi.unict.it

Abstract

A G-design is called balanced if the degree of each vertex x is a constant. A G-design is called strongly balanced if for every i=1,2,...,h, there exists a constant C_i such that $d_{A_i}(x)=C_i$ for every vertex x, where A_i s are the orbits of the automorphism group of G on its vertex-set and $d_{A_i}(x)$ of a vertex is the number of blocks containing x as an element of A_i . We say that a G-design is simply balanced if it is balanced, but not strongly balanced. In this paper we determine the spectrum for simply balanced and strongly balanced House-systems. Further, we determine the spectrum for House-systems of all admissible indices nesting C_4 -systems.

AMS classification: 05B05.

Keywords: G-design; $C_5 + ch$; balanced; strongly balanced.

1 Introduction

Let λK_v be the complete undirected graph defined on the vertex set X, having λ edges for every pair of vertices. Let G be a subgraph of λK_v . A G-decomposition of λK_v is a pair $\Sigma = (X, \mathcal{B})$, where \mathcal{B} is a partition of the edge set of λK_v into subsets isomorphic to G. A G-decomposition of λK_v is also called a G-design of order v, index λ , and the classes of the partition \mathcal{B} are said to be the blocks of Σ [10, 11, 12].

A G-design is called balanced if for each vertex $x \in X$, the number of blocks of Σ containing x is a constant. Observe that if G is a regular graph then a G-design is always balanced, hence the notion of a balanced G-design becomes meaningful only for a non-regular graph G.

Let G be a graph and let $A_1, A_2, ..., A_h$ be the orbits of the automorphism group of G on its vertex-set. Let $\Sigma = (V, \mathcal{B})$ be a G-design. We define the degree $d_{A_i}(x)$ of a vertex $x \in X$ as the number of blocks of Σ containing x as an element of A_i . We say that $\Sigma = (X, \mathcal{B})$ is a strongly balanced G-design if, for every i = 1, 2, ..., h, there exists a constant C_i such that $d_{A_i}(x) = C_i$, for every $x \in X$.

Clearly, since for each vertex $x \in X$ the relation $d(x) = \sum_{i=1}^{h} d_{A_i}(x)$ holds, it follows that a strongly balanced G-design is a balanced G-design. We say that a G-design is simply balanced if it is balanced, but not strongly balanced [5, 7, 8].

A cycle of length 5 with a *chordal* (edge joining two not adiacent vertices) will said to be an *house-graph*, denoted by H_5 . If $H_5 = (V, E)$, with $V = \{a, b, c, d, e\}$ and $E = \{\{a, b\}, \{b, c\}, \{c, d\}, \{d, e\}, \{a, e\}, \{a, c\}\}\}$, we will denoted such a graph by [(a), b, (c), d, e] or also [b, (c), d, e, (a)], [(c), d, e, (a), b] or similar. We can see that H_5 admits three orbits: $A_1 = \{b\}$, $A_2 = \{a, c\}$, $A_3 = \{d, e\}$.

An H_5 -design or H_5 -system $\Sigma = (X, \mathcal{B})$ of order v and index λ is said to be C_4 -perfect, if the family of all the C_4 -cycles having, for every block H_5 , edges $\{a, c\}, \{c, d\}, \{d, e\}, \{e, a\}$ generates a C_4 -design $\Sigma' = (X, \mathcal{B}')$ of order v and index μ . In these cases, Σ' is said to be nested in Σ and also that Σ is nesting Σ' . Further, we say that Σ has indices (λ, μ) .

In this paper we will determine the spectrum for strongly balanced H_5 -designs, for simply balanced H_5 -designs, and the spectrum for C_4 -perfect H_5 -designs.

Some balanced G-designs when G is a path are studied in [1,5,9]. Strongly balanced G-designs were first introduced in [3], in which the spectrum of simply balanced and strongly balanced P_5 and P_6 -designs were determined, where P_k denotes a path with k vertices. The spectrum of simple and strongly balanced P_k -designs has been determine in [5] and 4 - kite-designs has been determined in [7]. For nested G'-designs see [2,3,4,6,9,11].

2 Balanced H_5 -designs

In this section we determine the spectrum for strongly balanced H_5 -designs and simply balanced H_5 -designs. We will consider the case of H_5 -designs

having index $\lambda = 1$. Observe that it is well known the spectrum of H_5 -designs. Indeed, an H_5 -design of order v exists if and only if $v \equiv 0,1,4$ or 9 (mod 12).

The following examples give a strongly balanced H_5 -design, a simply balanced H_5 -design and a not balanced H_5 -design, all of order v = 13.

Example 2.1. Strongly balanced H_5 -design of order 13.

Let $\Sigma = (X, \mathcal{B})$ be the H_5 -design defined in Z_{13} , where $\mathcal{B} = \{[(i), i+4, (i+1), i+7, i+2] \mid i \in Z_{13}\}.$

We can verify that Σ is an H_5 -design of order 13. Further, Σ is strongly balanced. Indeed, for every vertex $x \in X$ it is: $d_{A_1}(x) = 1$, $d_{A_2}(x) = 2$, $d_{A_3}(x) = 2$.

Example 2.2. Simply balanced H_5 -design of order 13.

Let $\Sigma = (X, \mathcal{B})$ be the H_5 -design defined in Z_{13} , where

$$\mathcal{B} = \{ [(i+2), i+1, (i+4), i+11, i+6] \mid i = 0, 1, ..., 9 \} \cup \{ [(0), 12, (2), 9, 4], [(1), 8, (3), 10, 5], [(1), 11, (12), 3, 0] \}.$$

We can verify that Σ is an H_5 -design of order 13. Further, since every vertex of Σ has degree 5, Σ is balanced. However, Σ is not strongly balanced. Indeed:

$$d_{A_1}(0) = 0, d_{A_2}(0) = 2, d_{A_3}(0) = 3,$$

$$d_{A_1}(1) = 1, d_{A_2}(1) = 2, d_{A_3}(1) = 2.$$

Example 2.3. Not balanced H₅-design of order 13.

Let $\Sigma = (X, \mathcal{B})$ be the H_5 -design defined in Z_{13} , having the following blocks:

$$[(0), 1, (2), 10, 3], [(0), 4, (5), 7, 6], [(0), 7, (8), 4, 9],$$

$$[(0), 10, (11), 1, 12], [(1), 3, (4), 6, 5], [(1), 8, (6), 9, 7],$$

$$[(9), 2, (5), 10, 1], [(4), 2, (7), 12, 10], [(11), 4, (12), 3, 2],$$

$$[(7), 3, (11), 6, 10], [(11), 8, (9), 3, 5], [(2), 12, (6), 3, 8],$$

 Σ is an H_5 -design of order 13. We can see that d(0) = 4 and d(3) = 6. Therefore it is not balanced.

Theorem 2.4. The necessary condition for the existence of a balanced H_5 -design of order v is $v \equiv 1 \pmod{12}$, $v \geq 13$.

Proof - Let $\Sigma = (X, \mathcal{B})$ be a balanced H_5 -design of order v. This means that all the vertices of Σ have the same degree C. Considering that: $5 \cdot |\mathcal{B}| = C \cdot v$, because of every block of Σ contains five vertices, and that: $|\mathcal{B}| = v(v-1)/12$, because of v(v-1)/2 is the total number of pairs of elements of X and in every block there are six of these pairs, it follows:

$$C = \frac{5(v-1)}{12},$$

from which: $v \equiv 1 \pmod{12}$, $v \ge 13$, necessarily.

In what follows, to simplify, for every vertex x of an H_5 -design of order v, we will indicate by U_x (upper), M_x (middle), L_x (lower), the degrees:

$$U_x = d_{A_1}(x), M_x = d_{A_2}(x), L_x = d_{A_3}(x).$$

Theorem 2.5. If $\Sigma = (X, \mathcal{B})$ is a strongly balanced H_5 -design of order v, then:

$$\forall x \in X, \quad U_x = \frac{v-1}{12}, M_x = L_x = \frac{v-1}{6}.$$

Proof - Since each vertex x has degree $d_{A_1}(x) = U$, it follows: $U \cdot v = \frac{v(v-1)}{12}$, from which: $U = \frac{v-1}{12}$. Similarly, each vertex has also degrees $d_{A_2}(x) = M$ and $d_{A_3}(x) = L$. Therefore: $M \cdot v = L \cdot v = 2 \cdot \frac{v(v-1)}{12}$, from which: $M = L = \frac{v-1}{6}$.

Theorem 2.6. The necessary condition for the existence of a strongly balanced H_5 -design, having order v, is $v \equiv 1$, (mod 12), $v \geq 13$.

Proof - From conditions of Theorem 2.5.

The previous Theorems are completed by the following characterizations.

Theorem 2.7. There exists a strongly balanced H_5 -design if and only if $v \equiv 1 \pmod{12}$, $v \geq 13$.

Proof - The necessity follows from Theorem 2.6. For the sufficiency, let $\Sigma = (X, \mathcal{B})$ be the H_5 -design defined in \mathbb{Z}_{12k+1} , where the blocks are obtained by the following k base blocks in modulo 12k+1, $k \geq 1$:

$$[(2i+1), 0, (4k-2i-1), 8k+2i+2, 4k-2i+1],$$

for every $k \ge 1$ and i = 0, 1, 2, ..., k - 1.

Since each difference 1, 2, 3,..., 6k is covered exactly once, Σ is an H_5 -design of order v = 12k + 1. Further, it is possible to verify that for every vertex $x \in X$ we have:

$$U_x = k, M_x = 2k, L_x = 2k.$$

Therefore, Σ is a strongly balanced system.

Theorem 2.8. There exists a simply balanced H_5 -design if and only if $v \equiv 1 \pmod{12}$, $v \geq 13$.

Proof - For v = 13, the H_5 -design considered in Example 2.2 is balanced, but not strongly balanced.

Let v = 12k + 1, $k \ge 2$, and define $\Gamma = (\mathbb{Z}_{12k+1}, \mathcal{C})$ having for blocks all the translates of the following base blocks:

$$[(2i+1), 0, (4k-2i-1), 8k+2i+2, 4k-2i+1],$$
 for $i=0, \ldots, k-2;$ $[(2k-1), 0, (2k+1), 10k, 2k+3].$

We can verify that Γ is an H_5 -design of order v = 12k+1. Further, because of used construction, Γ is strongly balanced. Now, consider the following two block of C:

$$C_1 = [(2k-1), 0, (2k+1), 10k, 2k+3],$$

$$C_2 = [(2k-3), 12k-1, (2k-1), 10k-2, 2k+1].$$

If

$$B_1 = [(2k-1), 10k-2, (2k+1), 10k, 2k+3],$$

$$B_2 = [(2k-3), 12k-1, (2k-1), 0, 2k+1],$$

and $\mathcal{B} = \mathcal{C} - \{C_1, C_2\} \cup \{B_1, B_2\}$, we can verify that also $\Sigma = (\mathbb{Z}_{12k+1}, \mathcal{B})$ is an H_5 -design of order v = 12k + 1.

Further, in Σ it happens that every vertex $x \in \mathbb{Z}_{12k+1}$ has degree: $d(x) = 5k = \frac{5(v-1)}{12}$, therefore Σ is balanced.

To prove that Σ is not strongly balanced, it is sufficient to examine the vertices x = 0 and y = 10k - 2. We have:

$$U(0) = k - 1, M(0) = 2k, L(0) = 2k + 1;$$

$$U(10k-2)=k+1, M(10k-2)=2k, L(10k-2)=2k-1.$$
 Therefore, Σ is a simply balanced system.

3 C_4 -perfect H_5 -designs

We begin this section determining some necessary existence conditions for C_4 -perfect H_5 -designs, briefly C_4 -perfect- H_5 -D. In what follows, if $\Omega = (X, \mathcal{B})$ is a C_4 -perfect H_5 -design of order v and index λ , nesting a C_4 -design $\Sigma = (X, \mathcal{D})$ of index μ , we will say that Ω has indices (λ, μ) .

Theorem 3.1. If $\Omega = (X, \mathcal{B})$ is a C_4 -perfect H_5 -design of order v, nesting a C_4 -design $\Sigma = (X, \mathcal{D})$, having indices (λ, μ) , then: $2\lambda = 3\mu$.

Proof - Since $|\mathcal{B}| = \frac{v(v-1)}{12} \cdot \lambda$, $|\mathcal{D}| \frac{v(v-1)}{8} \cdot \mu$, and necessarily $|\mathcal{B}| = |\mathcal{D}|$, it follows:

$$\frac{v(v-1)}{12} \cdot \lambda = \frac{v(v-1)}{8} \cdot \mu,$$

Hence: $2\lambda = 3\mu$.

We begin to consider the first case: $\lambda = 3, \mu = 2$.

Theorem 3.2. Let $\lambda = 3$, $\mu = 2$. There exists a C_4 -perfect- H_5 -D of order v and indices (3,2) if and only if $v \equiv 0,1 \mod 4$, $v \geq 5$.

Proof. Let v = 4k + 1, $k \ge 1$. Let us consider the following k base blocks:

$$[B_i = [(0), 2i + 2, (4i + 3), 8i + 4, 4i + 1]$$
 for $i = 0, ..., k - 1$.

If $\Sigma = (\mathbb{Z}_{4k+1}, \mathcal{B})$ is the system having for blocks all the translates of the blocks B_i , then we can verify that Σ is a C_4 -perfect- H_5 -D of order v = 4k + 1.

Let v = 4k, $k \geq 2$. Let us consider $\Sigma = (\mathbb{Z}_{4k-1} \cup \{\infty\}, \mathcal{B})$, where $\infty \notin \mathbb{Z}_{4k-1}$ and \mathcal{B} has for blocks all the translates of the following base blocks in which ∞ is a *fixed* point:

$$C = [(\infty), 0, (1), 3, 2];$$

$$D_i = [(2i), 0, (4k-2i-2), 2i+1, 4k-2i],$$
 for any $i \in \{1, ..., k-1\}.$

We can verify that Σ is a C_4 -perfect- H_5 -D of order v = 4k.

Now, we consider the case: $\lambda = 6, \mu = 4$.

Theorem 3.3. Let $\lambda = 6$ and $\mu = 4$. There exists a C_4 -perfect- H_5 -D of order v and indices (6,4) for every integer $v \geq 5$.

Proof. If $v \equiv 0, 1 \pmod{4}$ the C_4 -perfect- H_5 -D of order v can be obtained by the systems constructed in Theorem 3.2 by a repetition of blocks.

If v = 4k + 3, $k \ge 1$, consider the system $\Sigma = (\mathbb{Z}_{4k+3}, \mathcal{B})$, having for blocks all the translates of the following base blocks:

$$B_i = [(i), 0, (2i), i-1, 4k+2],$$
 for any $i = 2, ..., 2k;$ $C = [(1), 0, (2), 4, 3];$ $D = [(1), 0, (2k+2), 2k+3, 2].$

We can verify that Σ is a C_4 -perfect- H_5 -D of order v and indices (6,4). If v = 4k + 2, $k \ge 1$, consider the system $\Sigma = (\mathbb{Z}_{4k+1} \cup \{\infty\}, \mathcal{B})$, with $\infty \notin \mathbb{Z}_{4k+1}$, having for blocks all the blocks of the C_4 -perfect- H_5 -D of indices (3,2) and order v = 4k + 1 given in Theorem 3.2 and the translates of the following base blocks, where ∞ is a fixed point:

$$A = [(\infty), 0, (1), 3, 2];$$

$$B = [(\infty), 0, (2k+1), 2k+3, 2k+2];$$
if $k \ge 2$: $C = [(k), 0, (3k), k+1, 3k+2];$

if
$$k \geq 3$$
: $D_i = [(i), 0, (2k+1-i), 4k-3i+3, 2k-i+2]$, for any $i \in \{2, \ldots, k-1\}$.

We can verify that Σ is a C_4 -perfect- H_5 -D of order v=4k+2 and indices (6,4).

In conclusion, from the previous Theorem it follows that:

Theorem 3.4. There exists a C_4 -perfect- H_5 -D of order $v, v \geq 5$, and indices (λ, μ) , for every pair of indices (λ, μ) such that $2\lambda = 3\mu$.

References

[1] A.Amato, M.Gionfriddo, L.Milazzo, 2-Regular equicolourings for P₄-designs, Discrete Mathematics 312 (2012), 2252 – 2261.

- [2] L.Berardi, M.Gionfriddo, R.Rota: Perfect octagon quadrangle systems, Discrete Math, 310, 1979 1985 (2010).
- [3] L.Berardi, M.Gionfriddo, R.Rota, Perfect octagon quadrangle systems with an upper C_4 -system, Journal of Statistical Planning and Inference 141 (2011), 2249 2255.
- [4] L.Berardi, M.Gionfriddo, R.Rota, Perfect octagon quadrangle systems II, Discrete Mathematics 312 (2012), 614 620.
- [5] L.Berardi, M.Gionfriddo, R.Rota: Balanced and strongly balanced P_k -designs, Discrete Mathematics, 312, 633 636 (2012).
- [6] L.Gionfriddo, M.Gionfriddo: Perfect dodecagon quadrangle systems, Discrete Mathematics, 310, 3067 – 3071 (2010).
- [7] M.Gionfriddo, S.Kucukcifci, L.Milazzo, Balanced and strongly balanced 4-kite designs, Utilitas Mathematica, 91 (2013), 121 129.
- [8] M.Gionfriddo, S.Milici, Strongly balanced four bowtie systems, Applied Mathematical Sciences 8 (2014), 6133 6140.
- [9] M.Gionfriddo, G.Quattrocchi, Colouring 4-cycle systems with equitably coloured blocks, Discrete Mathematics 284 (2004), 137 148.
- [10] S.Kucukcifci, C.C.Lindner, Perfect hexagon triple systems, Discrete Mathematics 279 (2004), 325 335.
- [11] C.C.Lindner: Graph decompositions and quasigroups identities, Le Matematiche XLV, 83 – 118 (1990).
- [12] C.C.Lindner, A.Rosa, Perfect dexagon triple systems, Discrete Mathematics, 308 (2008), 214 219.