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Abstract

We determine the crossing numbers (i) of the complete graph K,
with an edge deleted for n < 12 and (ii) of the complete bipartite
graph K » with an edge deleted for m € {3,4} and for all natural
numbers 7, and also for the case m =n = 5.

1 Introduction

Let G be a graph whose sets of vertices and edges are denoted by V(G)
and E(G) respectively. By a drawing of G, denoted D(G), we mean a
representation of G in the plane where the vertices of G are represented by
distinct points and each edge of G by a simple continuous arc connecting the
corresponding pair of points. We further assume that, in such a drawing,
(i) no edge passes through any vertex other than its endpoints, (ii) any two
edges do not touch each other and they cross each other at most once and
(iii) no three edges cross at the same point.

Let D = D(G) be a drawing of a graph G and let e € E(G). With
respect to D, the responsibility of e, denoted 5 (e) (or just r*(e) if we do not
wish to emphasize the drawing D), is defined to be the number of crossings
made by e with the other edges of G. If v € V(G), the responsibility of v,
denoted rp(v) (or just r(v)), is defined to be the sum of the responsibilities
of all edges incident to v. That is, 7(v) = 3,y () 7" (w), where N(v)
denotes the neighborhood of v.
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If the drawing D(G) of G achieves the minimum number of crossings,
then D(QG) is called an optimal drawing of G. The crossing number of G,
denoted cr(G), is the number of crossings in an optimal drawing of G.

A well-known conjecture, called Guy’s Conjecture, asserts that the cross-
ing number of the complete graph K is Z(m) = } | 7| 1™ 2 )L™ %)
Guy's Conjecture is known to be true for m < 12 (see [7]).

As for the complete bipartite graph Ko », it has been conjectured that
cr(Km,n) = Z(m,n) where Z(m,n) = ||| ™5 ]13]1"3"]. This conjec-
ture, called Zarankiewicz’s Conjecture, is known to be true for m < 6 and
all n, (see [5]) and also for m € {7, 8} with n < 10 (see [10]).

In the present paper, we attempt to determine the crossing numbers of
graphs which are very close to being complete graphs or complete bipartite
graphs. These are graphs that are obtained by deleting an edge from each
of K,, and Ky .

Incidentally, we note the following. Much work been done on showing
the existence of an edge whose deletion does not reduce the crossing number
too much. See [2], 3], [6], [8] and [9]. Here, we look for an edge whose
deletion reduces the crossing number by the most. This might be a generally
interesting problem. Of course, in this case, every edge of K, or K, n
reduces the crossing number by the same amount. But then this could be
a starting point for a more general problem.

2 Complete graphs
We begin with the following lemma. Let Z*(m) = Z(m) — (173 ).
Lemma 1 For any edge e in K,, cr(K, —e) < Z*(n) where n > 5.

PRroor: Consider the case n = 2m first.

Take a cylinder and place m vertices 71, 2,. .., Tm on the circular edge
of the top surface (in a clock-wise manner) and join any pair of vertices (so
that the edges appear on the top face). Do the same to the bottom face
with another m vertices y1,¥2,...,¥m so that z; is vertically above y; for
alli=1,2,...,m.

Now foreachi = 1,2,...m, join z; to ¥i, Yi+1,. -+, Ym, Y1, - - - , Yi—1 Where
each vertex y; appears to be on the bottom left position of z;. In so doing,
all edges z;y; appear to be on the “left-hand side” of z;y; (see Figure 1 for
the case m = 5). This gives a drawing D of K»,, having Z(2m) crossings.
Moreover, rh(Tmym) = (™5}).
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Figure 1: Part of the drawing of Ko viewed from the side of the cylinder.

For n = 2m + 1, to the drawing D, we add the vertex ym+1 on the
bottom face of the cylinder so that it lies in between y; and y,, (and join
it to all the y;s). Join ym41 to all the xs which appear to be on the top
right position of y,+1. This gives a drawing D’ of K41 with Z(2m + 1)
crossings. Moreover 1}, (ZmyYm) = (’;‘)

This completes the proof. a

Lemma 2 Letujus € E(K,) and let D be an optimal drawing of Kn—uju
on the plane with ¢ crossings. Then either rp(u;1) +rp(u2) < 2(c—Z(n—
1)) or else er(Kn-1) < Z(n —1).

PRroOF: Assume that er(K,-;) = Z(n - 1).

Note that K, —u is Kp—1. If rp(u1) > ¢=Z(n—1), then er(K;; —u;) =
c—7p(u1) < c—(c—Z(n—1)) = Z(n—1) which contradicts the assumption.
Hence rp(u;1) < ¢— Z(n —1) and similarly rp(u2) < e— Z(n —1). But this
implies that rp(u1) + rp(u2) < 2(c— Z(n —1)). O

Theorem 1 Suppose cr(Kn,) = Z(m) for m € {n — 1,n}. Then for any
edge e in K,,

2 o 2 o] < o 7

for any natural number n > 5.

PROOF: It follows easily from Lemma 1 that cr(K,, — e) < Z*(n).

Suppose e = ujup. Let K = K, — e and suppose cr(K,;) = c. Let D
be an optimal drawing of K, in the plane with ¢ crossings. Then K; —u;
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is K,—1. By Lemma 2, we have

'I'D(ul) + ’I'D(‘UQ) < 2(0 - Z(n - 1)) (1)
Let S = V(K,) — {u1,u2} and let v € S. We shall show that
Z(n) —c— [" ; 3J < rh(urv) + rh(vus). (2)

Now, from the optimal drawing D of K, we can obtain a drawing D’ of
K, by adding the edge ujus using the so called embedding method. Recall
that this can be done by drawing the edge uju2 so that it is “as close as
possible” to the path ujvus as is shown (by the dotted line) in Figure 2.
(See [3] for more detail for the embedding method.)

Clearly, the responsibility of ujus in D’ comes from the number of
crossings made by (i) ujuy and some edges incident to v, and by (ii) ujug
with all edges which cross with u,v and vuy (see Figure 2).

To minimize the responsibility of ujus in case (i), we draw wjus so that
it crosses with at most | ";%| edges (that are incident with v).

Note that in case (ii), the number of crossings is 7} (u1v) + rp(vuz). If
rh(urv)+1}h (vug) < Z(n)—c—| 252, then a drawing of K,, with less than
Z(n) crossings is produced, a contradiction. This proves the inequality in

(2).

Figure 2: Adding a new edge uus close to the path ujvus.

Summing the inequality in (2) over all vertices v in S we have

S (Z(n) —c— [”;3J) < Y (rp(urv) + rh(vua)).

vES veES



Since 7p(u) = X ,enw)Th(uw), We have 3 . orh(u1v) = rp(ur)
and 3 .s7h(vu2) = 7p(uz). Therefore it follows from the inequality in
(1) that

n—3

(n—2)(Z(n)—c—[ ) J) < 2(c- Z(n—1))

and this implies

c> [n—i—g (Z('n) - [?—;—3J) + %Z(n— 1)-|

and the proof is complete. O

Remark 1 We note that the gap between the lower and upper bounds in
Theorem 1 is a linear function of the form cn for some positive number
c<1/8.

Theorem 2 Suppose n > 3 is a natural number such that cr(Kan-1) =
Z(2n —1). Then, for any edge e of Kon, cr(Kz, —e) = Z*(2n).

PROOF: Suppose cr(Kon —€) = ¢ < Z*(2n) = Z(2n) — (";"). Let D be
an optimal drawing of Ks, — e in the plane with ¢ crossings. Suppose
e = ujup and let A = rp(u;) + rp(uz). Then, by Lemma 2, we have

A < 2(c-Z(2n-1)). (3)

Let S = V(Kan) — {u1,u2}. We claim that there is a vertex v € S such
that
rp(v) 2 ¢—Z(2n—1)+1+rp(urv) + rp(vue). (4)

To see this, assume on the contrary that there is no such vertex in S. Then
rp(v) < ¢—Z(2n - 1) +7p(u1v) + rp(vue) (5)

for any vertex v € S. By summing up the inequality in (5) over all vertices
in S, we have

Z'I’D('v) < Z(c -Z(2n-1))+ Z(rb(ulv) + rp(vug)).

vES veES veS

That is,
4c—A < (2n-2)(c-Z(2n-1))+ A

which yields
2¢ < (n—-1)c—-2Z(2n—-1))+ A



and hence
2¢c < (n=1)(c—Z(2n—-1))+2(c—Z(2n-1))
by the inequality in (3). Therefore

e> " lzn-1).

“n-1
It is routine to check that ?*1Z(2n — 1) = Z*(2n) and this contradicts
the assumption that ¢ < Z*(2n).

Now, let v € S be a vertex that satisfies the inequality in (4). Now
add the edge ujuz to the drawing D (again using the embedding method)
so that it is “as close as possible” to the path ujvu; (see Figure 2) and
produce a drawing D’ of K3, with

c+rp(uv) + rp(vug) +d

crossings, where d is the number of crossings made by ujus with some edges
incident to v in D.

Note that, in this drawing D’ of K2n, the responsibility of v is given by
Tp(v) =rp(v) +d.

If we delete the vertex v from the drawing D’ of Ko, we get a drawing
of Kon—) with

c+rp(wv) + rp(vug) + d — (rp(v) +d) = ¢’

crossings. But then

cl

= c+rp(u1v) +rp(vug) —rp(v)
< c+rp(uv) +rplvug) —
(c—Z(2n —1) + 1 + rp(uyv) + rp(vug)) by (4)

Z(2n-1) -1,

a contradiction since er(K2,—1) = Z(2n—1). Hence cr(Ka, —e) > Z*(2n).
Combining this with Lemma 1, we have cr(K2,) = Z*(2n).

Remark 2 Note that Theorem 2 gives a precise formula only for graphs

with even number of vertices while Theorem 1 provides a lower bound for
graphs with odd number of vertices.

Corollary 1 For any edge e in K, cr(K,—e)= Z*(n) for each natural
number n < 12.
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Proor: If n < 11 and n # 10,12, the result follows from Theorem 1 since
the upper bound equals the lower bound. For n = 10, 12, the result follows
from Theorem 2. 3

Conjecture 1 Let e be an edge in Km. Then cr(Kp, — e) = Z*(m).

3 Complete bipartite graphs

We now turn our attention to complete bipartite graphs. In what follows,
let the vertices of K,, , be denoted by ai,...,am,b1,...,b, where a; is
adjacent to b; for every 1 < i < m and 1 < j < n. Further, unless
otherwise stated, we shall assume that e = a;b;.

Let Z*(m,n) = Z(m,n) — | 251 || 232 ].
Lemma 3 For any edge e in Ky, cr(Kmn—e) < Z*(m,n).

PRrooOF: For ease of reference, we recall the following drawing of K, »
having Z(m,n) crossings due to Zarankiewicz [11].

Place the vertices of K, , at the coordinators (¢,0) and (0, j) where
-12] <i<[%], —|3] <i<[%] and4,j# 0. Then join (4,0) to (5,0)
with straight line segment. Then one can verify that the responsibility of
the edge (0,1)([%1,0) is [™;']|252]. This proves the lemma. ]

Theorem 3 Suppose e is an edge in Km n. Then

n-2

[(vertn s dtertnnd] < (K —€) < Z%(m,m).

PROOF: The upper bound follows from Lemma 3.

Consider a drawing D of K, n — e. If we delete a vertex b; from D,
we obtain either a drawing of K, n—y when j = 1 or else a drawing of
Kin—1—ewhen j # 1 (there are n—1 such j). Since any crossing a;b;, axb;
occurs in n — 2 of these drawings (where neither b; nor b is deleted), we
have

(n—2)er(Kman—€) 2 (n—1)er(Kmn-1—€) + cr(Kmn-1)

and this proves the lower bound. O
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Corollary 2 Suppose n > 3 is a natural number. Let e be an edge in K, .
Then
(i) er(K3sn—e)=2*(3,n) and (ii) cr(Ksn —e)=Z*(4,n).

PROOF: (i) Since K3, — e contains a subgraph K3 -1, we have cr(K3 » —
e) > er(Kan-1) = Z(3,n — 1) = Z*(3,n) and the proof then follows from
Theorem 3.

(ii) Evidently,

[(n -1)Z*(4,n—1) + Z(4,n— 1)

o ]=Z'(4,n)

if n > 4. Since er(K4,3 —e€) = cr(K3 4 —e) = Z*(3,4) = Z*(4, 3) by (i), the
result follows from Theorem 3 and by induction on n. 0

Remark 3 Alternatively, we may prove Theorem 3 in the following way.
Suppose cr(Km n —e) = ¢ where e = a1b;. Let D be a drawing of K, n — €
with ¢ crossings. Then

TD(bl) <c-— CT(Km,n—l)

otherwise (K n — €) — by (which is isomorphic to Ky, ,—1) has less than
cr(Km,n-1) crossings. Likewise,

rp(bi) <c—cr(Kmn-1—€)
for any i = 2,...,n. As such, we have

2c= i"D(bi) Sc—cer(Kmn-1) + (n = 1)(c = er(Kmn-1 =€)

i=1

and this implies the lower bound in Theorem 3. O

Proposition 1 cr(Ks 5 —e) = Z*(5,5) for any edge e in Ks 5.

PRroor: By Theorem 3 and Corollary 2, we have 11 < er(Ks s — ) < 12.

If er(Ks,5 — €) # Z*(5,5), then er(Ks5 — e) = 11. Let D be a drawing
of K55 — e with 11 crossings. From the proof of Remark 3, we have

rp(ai), rp(b1)) < 11— CT(K5,4) =3 (6)
rpla;), rp(b;) € 1l —cer(Ksqa—€)=5 (N



for2 <i<5. Assuch, 22 = 2cr(Kss—e) = Yo, rp(a:) = Yoo, 7(b) <
23 which means that rp(a;) € {2,3}. This implies that there is an edge
albj such that rb(albj) =0.

We claim that r;(bja;) + rp(aiby) > 2 for every i € {2,...,5}.

To see this, assume that r} (bja;)+7rh(aiby) < 2 for some i € {2,...,5}.
Now we can obtain a drawing D’ of K 5 by joining a new edge a1b; so that
it is as close to the path a;b;a;b; as possible. Further, this new edge can
be drawn in such a way that it crosses at most twice with edges of the form
bjar (where r # 1) and at most once with edges of the form a;bx (where
k # 1,7). But this implies that the number of crossings in D’ is at most
4 + 11 which is impossible (since cr(Ks5) = 16).

It follows from the claim that 3, (rp(bja:) + rp(aibi)) > 8. That is,
rp(b;) +rp(b1) = 8. This together with (6) and (7) imply that rp(b;) =5
and rp(b;) = 3. Consequently, rp(b;ja;) + rp(aiby) = 2 for all i > 2. This
means that we can obtain a drawing D’ of K55 by joining a new edge a;b;
so that it is as close to the path a;bja;b; as possible for some ¢ > 2 and
that it is routine to check that the responsibility of a1b; in D’ is at most 4.
However this is a contradiction (since cr(Ks5) = 16). This completes the
proof. a

Conjecture 2 Let e be an edge in Kmn. Then cr(Kmn —e) = Z*(m,n).
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