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Abstract

Topological indices of graphs and trees in particular have been vigorously studied
in the past decade due to their many applications in different fields. Among such
indices, the number of subtrees (BC-subtrees), along with their variations have
received much attention. In this paper we provide some new evaluation results
related to these two indices on specific structures (generalized Bethe trees, Bethe
trees, dendrimers), which are some of the structures of practical interests. Us-
ing “generating functions”, we also examine the asymptotic behavior of subtree
(resp. BC-subtree) density of dendrimers.
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1. Introduction

Various topological indices have been proposed and vigorously studied in re-
cent years. The structure-based indices such as the number of subtrees (also called
the p-index in [14]), leaf-containing subtrees of a tree, Merrifield-Simmons-index
(number of independent vertex subsets), Hosoya-index (number of matchings)
have been studied [11, 14, 21, 22, 23].

The BC-tree, also known as the block-cutpoint-tree or the bicolorable tree, is
a tree (with at least two vertices) where the distance between any two leaves is
even, introduced by Harary, Plummer, and Prins [6, 7). One can find related work
in fields including but not limited to, mathematics [1, 4, 16], information Science
(3, 9, 15}, and bio-chemistry [2, 17, 18]. Naturally, a BC-subtree is a subtree
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that is also a BC-tree. The number of BC-subtrees or leaf-containing BC-subtrees
provide new structure based indices that are recently studied in [26].

A rooted tree is called generalized Bethe tree if degrees of vertices at the same
level are the same while degrees may differ at different levels. In general, we
consider the root as of level 1 and denote the generalized Bethe tree of & levels
by Bi. In particular, a Bethe tree By 4 (also called a rooted d-ary tree in other
literatures) is a rooted tree of & levels with root degree d, the vertices at level
j (2 < j < k—-1) have degrees (d + 1) and the level k vertices being pendant
vertices. Another special case of By is the regular dendrimer tree Ty 4, which
satisfies that each non-leaf vertex having degree d. It is easy to see that for any
d 2 3, To4 is a single vertex and T, 4 is the star with d + 1 vertices; the parameter
k corresponds to what is called “number of generations”.

The evaluation of various topological indices for generalized Bethe trees and
special cases are of interests, one may see [5, 10, 20) for such work on distance-
based indices. A linear-time algorithm to count the sum of weights of subtrees of
T through “generating functions” was provided in [25]. This idea was employed
in [26), where among other properties of BC-trees and BC-subtrees, enumeration
of BC-subtrees and leaf-containing BC-subtrees are provided.

Motivated by the applications of these topological indices, their behavior on
specific structures are of interests. The rest of the paper is organized as follows.
Section 2 presents some general notations and useful previous results. We provide
formulae of (leaf-containing) subtree numbers of generalized Bethe trees, Bete
trees and dendrimers in Section 3. The analogous work on (leaf-containing) BC-
subtrees is done in Section 4. As an example of applications, we apply our results
to the enumeration of subtrees and BC-subtrees for Newkome’s arborol in Section
5. Last but not least, in Section 6, with the vertex (resp. edge) generating functions
of subtrees (resp. BC-subtrees), we briefly discuss the asymptotic behavior of
subtree (resp. BC-subtree) density of dendrimers.

2. General notations and some previous works

In this section we introduce some technical notations and lemmas from previ-
ous work that will facilitate our discussion in the later sections. More details can
be found in [25, 26].

In general, for a weighted tree T = (V(T), E(T); f, g) with V(T) = {v;, v2,
...,vy} and E(T) = {e;,ea,..., es-1}. When considering the subtrees of T, we
could set its vertex-weight function f := f; and edge-weight function g := g;
with f; : V(T) » R and g, : E(T) — R (where R is a commutative ring with a
unit element 1); when considering the BC-subtrees, OLDV-subtrees (to be defined
more precisely later) and ELDV-subtrees (to be defined more precisely later) of T,
we could set its vertex-weight function f := f, and edge-weight function g := g,
with f : V(T) - R x R and g, : E(T) = R (where R is a commutative ring
with a unit element 1).



For convenience, we list main notations in Table 1.

Table 1. Main notations

Notation Meaning
L(T) Leaf setof T.
S(T) (resp. Spc(T))  Set of subtrees (resp. BC-subtrees) of T
S(T;v) Set of subtrees of T containing v.
Set of subtrees of T containing v such that all leaves
S(T;v,odd) (not v) have odd distance from v. See Eq. (1).
Set of subtrees of T containing v such that all leaves
S(T;v,even) (not v) have even distance from v, the single vertex
tree {v} itself is contained in it. See Eq. (2).
w-vodd(T}) w_vodd weight of subtree T, € S(T'; v, odd).
w_veven(T,) w_veven weight of subtree T, € S(T’; v, even).
w(Ty) (resp. wpc(T3)) Weight of T € S(T) (resp. BC-weight of T3 € S 3c(T)).
Fgc(-) function Sum of BC-weight of BC-subtrees of S gc(:).
n(-) function Cardinality of the above S (-) set of subtree.
nt(T) The number of leaf-containing subtrees of T
N5c(T) The number of leaf-containing BC-subtrees of T
ns8c(-) function Cardinality of the above S gc(-) set of BC-subtree.

For a given subtree T, of a weighted T, we define the weight of T, denoted
by w(T,), as the product of the weights of the vertices and edges in T;. The gen-
erating function of subtrees of T, denoted by F(T'; £}, 1), is the sum of weights
of subtrees of T. That is,

F(T3 fi:80= D oy T
Similarly, the generating function of subtrees of T containing v is denoted as
F(T; figiiv) =),

S(T;v,0dd) = (TIT; € S(T; V) Adr,(v,) = 1(mod 2) MIe LTHAL#V)} (1)

T.€S(Tw) w(T‘)

S(T;v,even) = {T,|T; € S(T;v) Adr,(v,]) = 0(mod 2) (VIe L(T)Al#VIV{v) (2)

To facilitate presentation of our work, we call subtree in S(T';v, odd) (re-
sp. S(T;v,even)) as OLDV-subtree (resp. ELDV-subtree). For a given vertex
vk, OLDV-subtree Ty € S(T'; v, odd), ELDV-subtree Ty € S(T; vk, even)\vy, we
assign each edge (resp. vertex) of T and T, the weight z (resp. (x,y) where x
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is the “odd” weight and y is the “even” weight). And we define w_vodd (resp.
w_veven) weight of T (resp. T3), denoted by w_vodd(T) (resp. w_veven(T3)), as
the product of the even weights of vertices in EWS O(T)) (resp. EWS E(T3)) and
weights of edges in T (resp. T,). Here

EWSO(T)) = {viv e V(T1) A dr,(v, %) = 1(mod 2)}

and
EWS E(T,) = {vlv € V(T3) A dr,(v,v) = 0(mod 2)}.

Since vi € S(T'; v, even), for the vertex vy itself, we define w_veven(v,) = y. The
generating function of S(T’; vk, 0dd) (resp. S(T'; vk, even)) of a weighted graph
T = (V(T), E(T); f2, 82), denoted by F(T'; f2, g2; vk, odd) (resp. F(T'; f5,

823 Vi, even)), is the sum of w_vodd (resp. w_veven) weight of each OLDV-subtree
(resp. ELDV-subtree) of S(T'; v, 0dd) (resp. S (T; vk, even)). That is,

F(T; f2, 82 Vi 0dd) = ) wvodd(Ty),

T, €8(T:vy,0dd)
and
F(T; f2,82; i, even) = Z w.veven(Ty).

T2€8(T;vi,even)

Similarly, for a given BC-subtree T3 of a weighted graph T, we define
BEWS (T3) = {vlv € V(T3) A dr,(v,vi) = 0(mod 2)}
and
BNEWS (T3) = (vlv € V(T3) A dr,(v,v)) = 1(mod 2)}

where v; € L(T3). The BC-weight of T3, wp(T3), is the product of the even
weights of the vertices in BEWS (T3) and weights of edges in T5.

The generating function of BC-subtrees of a weighted graph T, denoted by
Fgc(T; f2, 82), is the sum of BC-weights of BC-subtrees of T. That is,

Fpc(T; f2,82) = Z wp(T3).

TzeS pc(T)

Following the above notations and Table 1, we have
nT)=FT; L), )(T;v)=F(T;1,1;v),

n(T; v, 0dd) = F(T; (0, 1), 1;vi,0dd), n(T;v;,even) = F(T;(0,1), 1;v;, even),

and
nsc(T) = Fac(T; (0, 1), 1).

Let T = (V(T"), E(T); f1, 8)) be a weighted tree of order n > 1 and u a pendant
vertex of T. Suppose e = (u, v) is the pendant edge of T, we define weighted tree



T| = (V(T}), E(T}); f|,&}) of order n — 1 from T as follows: V(T;) = V(T)\u,
E(T]) = E(T)\e, and

HO)L + fiw)gi(e)) ifvs=v,

Silvy) otherwise.

fl’("s) = {

for any v; € V(T7), and g{(e) = g1(e) forany e € E(TY).

Lemma 1. [25] With the above notations, for arbitrary vertex u # v;, the gener-
ating functions F(T; fi,81;vi) and F(T}; f{, 83 vi) satisfy the following

F(T; fi,81:vi) = F(T|; i, &15vi)-

Let T = (V(T), E(T); f2, 82) be a weighted tree of order n > 1 with root v; and
let u # v; be a pendant vertex of T with a unique neighbor v, we define weighted
tree T, = (V(T3), E(T3); f, 85) of order n—1 from T as follows: W(T3) = V(T)\u,
E(T3) = E(T)\e, and

, _ f2(V)o(l + g2(e) fo(u)e) + gZ(e)fZ(u)e ifvs=v,
Savs)e = ,
vy otherwise.
A = {fz(V)e(l +8OfW) v =v,
Sr(vs)e otherwise.

for any vy € V(T), and g(e) = ga(e) for any e € E(T3). Here f(v), and fo(v),
are the odd and even vertex weight of (2,(v),, fo(v).) of v.

Lemma 2. [26] With the above notations, we have F(T; f,, g2;vi,0dd) = F(T};
fr1 83 vi,0dd); F(T'; f, 82; vi, even) = F(T}; f3, g4; vi, even).

Lemma 3. [2]] The path P, (resp. star Ki,.y) has ("3') (resp. 27 +n - 1)
subtrees, fewer (resp. more) than any other trees of n vertices.

Lemma 4. [26] The star Ky ,_; has 2"' — n BC-subtrees, more than any other
trees on n vertices.

Lemma S. [26] The number of BC-subtrees of the path P, is L% 1-13), less than
that of any other n-vertex tree.

3. n(.) of generalized Bethe trees, Bethe trees, and dendrimers

Let T, T,,...,Twm(m 2 1) be trees with disjoint vertex sets and w; be the root
of T; (i=1,2,...,m). A tree T on more than two vertices could be considered as
being obtained by joining a new vertex w to each of the vertices wy, wa, ..., Wn.
With Lemma 1, the following theorem is immediate.

51



Theorem 3.1. Let T be a tree on n > 3 vertices, whose structure is specified
above. Then

n(T) = 30T+ [ [+ 0T w). 3)
i=1 i=1

Next, we present a closed formula for the number of subtrees of generalized
Bethe trees.

Theorem 3.2. Let By, be a generalized Bethe tree of k + 1 levels. If d\ denotes
the degree of rooted vertex and d; + 1 denotes the degree of vertices on ith level

(1 <i<k) then
k-1

k
n(Bie1) = Z Riv Mgy +my + r[ d;, (CY)

i=1 i=1

where niyy = didy ...d;, mg = 2% and my_; = (1 +mp ) fori=1,2,...,k—1.

Proor. For convenience, denote by n; the number of vertices on the ith level of
Bis1. Then we have ny = 1 and n; = dydads ... di-y fori = 2,3,...,k+ 1. Let
V41 be the root of B, and ! be an arbitrary leaf vertex, the path connecting v;.
and / is denoted by Vs Vivi-1 . . ., vi({). Define Ag.) to be the tree By, itself and
A,_j the component that contains v;-; after the deletion of edge (vk-j, k- j+1) from
Ak+|_j forj: 01,... ,k— 2.

By Theorem 3.1 and for j = 0, 1,...,k — 1, the subtrees in the set S (A+;-;)
could be characterized into two categories:

(i) containing vertex vi,|-

(ii) not containing vertex vi.-;.

Obviously, the number of subtrees of case (ii) equals

djn(Ax-j)- ®)
From Lemma 1, the number of subtrees of case (i) equals
(1 + (A ve= ). ©®)
Andfor j=0,1,...,k -2 we have
NAge1-ji Vis1-) = (1 + 7(Ax-j5 Vi )1 ¢)]

and
(A2 va) = 2%. 8)

For simplicity, define m; = (Axs2-ji Vis2-j) (= 1,2,.. ., k).
Then with the above notations and combining Egs. (5) to (8), we have the
formula of subtrees number of a generalized Bethe tree By, as in Eq. (4). O



By definition we know that T; 4 is a generalized Bethe tree of k+ 1 levels, with
Theorem 3.2, the following corollary follows after simple algebra.
Corollary 3.3. The subtree number of dendrimer T} 4 is

k-1
NTea)=d Y (d = 1)2m; +my +d(d = 1¥2Q2* +d - 1),
i=2

where my = (1+mp)?, my = 2% and my—; = (1 +myey_)8 " fori=1,2,...,k=2.

Let v be the root vertex of Bethe tree By 4 and A the tree By 4 itself. Similar
to the the proof of Theorem 3.2, suppose the path connecting v, and / (an arbitrary
leaf vertex) is vgvi—1 . .. vi(!) and denote by A_; the component of Ag. - \(Vi—j, Vk-ji1)
that contains vi-; and define m; = n(Ag+1-j; Vis1-j) for j=1,2...,k=1. Theorem
3.2 and simple algebra indicate the following.
Corollary 3.4. The subtree number of Bethe tree By 4 is

k=3
(Ba) = ), d'(1 + mis)* +my +d*2Q7 + d),
i=1
where my_y =24 andm; = (1 + mi Y fori=1,2,...k=2.
Noting that the number of leaf-containing subtrees of a Bethe tree or den-

drimer is simply the number of subtrees of the tree minus that of the “skeleton”
(obtained from removing all leaves), it is easy to obtain the formulas for n*(.).

Corollary 3.5. The leaf-containing subtree number of dendrimer Ty 4 equals
k
0 (Tid) = d@d=2) ) (@d=Dmy+my +(d - 1= ms)(1 +m)*™ +d(d - 1¥"2(d-2), ©)
i=3

where my = (1 + mp)?, my = 2% and my_; = (1 + myy )4 fori=1,2,...,
k-2

Proor. By Corollary 3.3, we have

k=1
WTea) =d ) (d = D2my +d(1 + ms)*™" +my +d(d - }?Q@ +d = 1), (10)

i=3
and
k=2
MThera) = d ) (A = 1) Py + (L4 my) +d(d = 1} +d = 1)
i=2
k-1 an
=d )@= 1m+ (1 +m) +dd - 1)@ +d - ).
i=3
Subtracting Eq. (11) from Eq. (10) yields Eq. (9). 0O
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4. npc(.) of the generalized Bethe trees, Bethe trees, and dendrimers
Similar to the previous section, Lemma 2 implies the following theorem For

simplicity of notations, we employ the convention that ]'] a, = 1and Z a =0if
=i t=i
j<i.

Theorem 4.1. Let T be a tree on n > 3 vertices rooted at w with children w;’s (i =
1,2,...,m) and let T; be the connected component of T\w that contains w;, then

Nac(T) = Z nac(T) + Z (n(r., wi, odd) ﬂ (1 + (T3 wj, 0dd))
i=l1 J=ivl
(12)

m=i

+ n(Ti; wi, even) Z [ Z n (T wj,, even)]).

s=l irlSji<jpc<jysm k=1

Proor. For the sake of convenience, first we define T'; the tree T itself and denote
T the component of Ti*!=!\(w, w;) that contains w for i = 1,2,...,m. Obvi-
ously, TC is the isolated vertex w. Fori = 1,2,...,m, the BC-subtrees of 7+
could be characterized into two categories:

(i) containing the edge ¢; = (w;, w);

(ii) not containing the edge ¢; = (w;, w).

It is easy to see that the generating function corresponding to case (ii) is
Fsc(Ti; f2.82) + Fac(T™™; f, 82) and the number equals

18c(T7) + 18c(Ty, ™). (13)
On the other hand, the generating function corresponding to case (i) is
82(e)F(Ti; f2, 82; Wi, odd)F(Tyy™"; 2, 82; w, even) + g2(e))F(T; f2, 82; Wi, even)

Tm ',fz,gz, w, Odd)

which equals
(Ti; wi, odd)y(T ™ w, even) + (T wi, even)n(Tr~"; w, odd). (14)

By Lemma 2, we have

m
(T w,even) = [ [ (1+n(T 3 wj,0dd)) (15)
=i+l
and
m—i
(T i w,odd) = Z[ Z l_[ Ty w,,‘,even)] (16)
s=l i+1gji<ja<<jSm k=
Combining the Egs. (13) to (16), we have Eq. (12). O
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With Theorem 4.1, the formulae for the BC-subtree number of generalized
Bethe trees Bi.;, Bethe trees By 4 and Ty 4 could be obtained.

Theorem 4.2. Let By, be a generalized Bethe tree of k + 1 levels, then

k=2 dju=1_

ry s« "

n8c(Bin) = E njs1 E E N\ g Tiv2even * mj+2.add(| + mj+2,odd)
=0 r=1 s=1

Jj=

k=1
+ m,*z,,,iJ +[]a@%-d-b
where ny = 1, njyy = didy. ”dj (G 2 1), Myosg = 2% = 1, Myeren = 1 and

4
d, s
Mjodd = ZI (.\-j)m;”'em,n Mjeven = (1 + mj+l,odd)dj Jor j=2,3,... k-1
5=

Proor. With the same notations as specified in Theorem 3.2, By Theorem 4.1
and Lemma 2, for j =0, 1,...,k — 1, BC-subtrees in the set S gc(A+1-;) could be
characterized into two categories:

(i) containing the vertex vi.i—j;

(i) not containing the vertex vi.i_;.

It is easy to know that the number of BC-subtrees of case (ii) equals

dj.118c(Ar-j). an
By Theorem 4.1, the number of BC-subtrees of case (i) equals
dju) -1 r
Z [Z (r)F(Ak-;'; (0, 1), 1; vi-j, even)™' + F(A,_j; (0, 1), 1; vy, 0dd)
r=1 s=1 S (18)

XL+ F(Agji 0,1, Vi 0dd)) | + F(Aecsi (0,1, 14 00D,

By Lemma 4, we have

N8c(A2) = Fpc(A2; (0,1),1) = 2% —dj — 1. (19)
With Lemma 2, for j =0, 1,...,k - 2, we have the following recurrent formulas
djsl

dj,
F(Ak+|—j; (0, l)r l; Vk#l—j) Odd) = Z( ls I)F(Ak-j;(Oy 1)9 l; vk-j, even)sv (20)
s=1

FAe1-j3 (0, 1), I; vy j, even) = (1 + F(A;: (0, 1), 13Vk-j,0dd))dj*', @2n

and
F(A2:(0,1),1;v2,0dd) = 2% — 1, F(A3; (0, 1), 1; v2, even) = 1. (22)

For simplicity, denote

mj,odd = F(A’H'z—j; (0’ l)’ l; vk+2—j$ Odd) (j = ]72v s vk); (23)
Mjeven = F(Are2-ji (0, 1), 1; vie2-j, even) (j = 1,2,...,k). (24)
The conclusion then follows from Eqgs. (17) to (24). a



Again, the number of BC-subtrees of more specific structures follow as im-
mediate consequences. We skip the details here.

Corollary 4.3, The BC-subtree number of dendrimer Ty 4 is

k-2 d-2
N r
Nec(Tea) =d ) (d - 1Y~ [ Z [ Z ( )mj:% ven * Ms2d(1 + M 112041 ]
=1
d-1 A L .
+m j+2.0dd] + Z [ Z ( s)'"ielm + mz.odd(l + mz.add) ] + M2,0dd
r=1 = s=1

+d(d - D224 - 4).

d-1
— nd-1 = = d-1 =
where Mypgq = 297" = 1, My ven = 1 and mjgqq = gl( )mm evem Mieven =

(1 + Mjsroaa)™ for j=2.3,.. k=1 '

Corollary 4.4. The BC-subtree number of Bethe tree By 4 is
Nec(Bra) = Z d’ [ ( ) M523 even * M2, ndd(l + mi*z'l'd")r] + mi+2mdd]
j=0 r=1 = s=1

where my._, 0dd —(% “ e —teven = 1 and mjoaa = dl (i)m;“'m,,. Mjeven =
(1 +m_,'+|',,dd) Jor j=1,2,... k-2

From Corollary 4.3 we also have the following.
Corollary 4.5. The leaf-containing BC-subtree number of dendrimer Ty 4 is

k=2
Moc(Tea) = dd - 2) ) (d = 1Y [Z [ Z ( )m Seteven + (L4 Mj1200a)

=

d-2
X mj+2.ndd] + mj+2,ndd] +(d - 1)[ Z [ z ( ) ;::zm l +m;y ndd)
d-1 r
s+1 -
X M3pdd | + Miondd | + mum + my ndd(] + m;_,,dd)
r=1 = 5=l

+ M ndd — M3.evenM2,0dd — M3 ,0ddM2even + d(d - 2)(d - l)k-S(zd—l - d)

d-1

— nd-1 - — d-1 _

where myoqq = 2°7° = 1, Myeven = 1 and mjpaq = Zl( )mju even® Mjeven =
5=

(A +mjuroaa)? ) for j=2,3,... k=1

Basing on the above results, the values of n(.), 7*(.), 7sc(.) and 7g-(.) can be
efficiently calculated for any (generalized) Bethe trees or dendrimers. It is easy
to see that number of subtrees or BC-subtrees grow exponentially as the number
of levels (of the tree) increases, so does the leaf-containing subtrees (resp. BC-
subtrees) number.



5. Newkome’s arborol

As an application, we apply our results to Newkome’s arborol [19], synthe-
sized by Newkome and others (see Fig. 1). Note that T has 36 vertices of degree
one and 253 vertices in total. The vertex whose degree is greater than two is
called branching vertex. It is obvious that there are three types of branching ver-

Figure 1. The molecular graph T of Newkome's arborol.
tices: a, B and y (see Fig. 1). The neighbours of a, 8 and ¥ are denoted as a;,
Bi and vi for i = 1,2,3,4 respectively. Denote T; the connected component of
T\ U(a, a;) that contains a; (i = 1,2, 3,4), obviously T; (i = 1, 2, 3,4) are identi-
cal w:th each other. Slmllarly, denote T ; (resp. T,,,;) the connected component

of T\ U(ﬁ Bi) (resp. 71,3\ U(y, 7:)) that contains ; (resp. ;) (i = 1,2,3,4).
By Theorem 3.1, we have

n(T) = 4n(Ty) + (1 + n(T1; a1)); (25)
Ty = 39(T1y) + 9(T14) + 91 + (T1.1: 8000, (26)

and
M(T11) = 39(Ty0.1) + 7Ty 1a) + 9 + (Ty00571))°. 27

By Lemma 3, we have n(T,14) = n(T14) = 36, n(T},1,) = 6; by Lemma 1, we
have n(T\,1,1571) = 3, 7(T1;81) = 72 and (T @y ) = 373256. Hence, combining
Egs (25) to (27), we have n(T) = 14012316 + 3732574,
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Similarly, by Theorem 4.1, we have

n8c(T) =4nsc(T)) + n(T1; @y, 0dd)* + (Ty; @, even)* + 4p(Ty; @, 0dd)
+4(n(Ty; a1, odd)® + n(Ty; ay, even)®) + 6(n(T}; ay, odd)? (28)

+1(Ty; @), even)?),

18c(T1) =3nc(T11) + 15c(T1a) + 50T 113 1, 0dd) + (T 1By, even)’)
+4 + 15()(T1; 81, 0dd) + n(Ty 1 By, even)®) + 15n(T 13 Br,0dd)  (29)
+ 125(T 1. By, even),

n8c(T1) =308c(Tra) + 1sc(Tia) + STy Y1, 0dd)® + (T 05
y1,even)®) + 4 + 15T 113 y1,0dd)’ + q(Tia.05 71, even)?)  (30)
+ 150(T 31571, 0dd) + 120(T 1.1 71, even).

By Lemma 5, we have ngc(T,14) = n8c(T14) = 12, 75c(T100) = 15 by
Lemma 2, we have (T 1,1; v1,0dd) = 1, (T1,1.15 71, even) = 2, (T1,1; B1, 0dd) =
30, 7(Ty.1; 81, even) = 12, i(Ty; @y, 0dd) = 2200 and n(T; @), even) = 29795.
Therefore, ngc(T)) = 160444, Combining Egs. (28) to (30), we have ngc(T) =
297954 + 2200* + 4(2200° + 29795%) + 5356142726.

6. The asymptotic behavior of subtree and BC-subtree densities of dendrimer-
S Tk,d

For a tree T of order n and k subtrees (not including the empty tree) of orders
k

ny,ny, ..., 0 letu(T) = % Y. n; denote the average order of subtrees of T and call
i=

D(T) = ”(n—r) the subtree density of T. It is not hard to see that the subtree density
of a tree is also the probability that a vertex chosen at random from T will belong
to a randomly chosen subtree of 7.

These two invariants were introduced by Jamison [12], who showed that D(T") >
% for any tree T, among trees of a fixed order, and there also exist trees with D(T')
arbitrarily close to 1. For trees whose internal vertices have degree at least three
(i.e. series-reduced trees), Jamison [12] conjectured that D(T) > -;- Vince and
Wang [24] proved this conjecture and gave a sharp upper bound D(T) < % for
such trees. Meir and Moon [13] determined the average density over all trees
of order ntobe 1 — e~! = 0.6321 as n — oco. Haslegrave [8] presented simple
necessary and sufficient conditions for a sequence of series-reduced trees to have
average subtree density tending to or 3

We define the BC-subtree densny S|mtlarly Suppose tree T has k BC-subtrees

of orders my,my, ...,ny, then let ppc(T) = ¢ Z m; denote the average order of

BC-subtree of T. If T has order n, call Dgc(T) = &C(—T the BC-subtree density of
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T. In the following, we first discuss the subtree and BC-subtree densities of path
P, and star K| ,_; as simple examples. Then we consider the asymptotic behavior
of subtree and BC-subtree densities of dendrimers T} 4.

Lemma 6. {25] The vertex generating functions of subtrees of P, and K, ,_| are
n . n-1 .

FPyx,1)= Y (n=i+1)x'and F(Kyp-15x,1)=nx+ 3, (”;')x‘“ respectively.
i=1 i=1

Lemma 7. [26] The edge generating functions of BC-subtrees of P, and K -,

f$1-1 n-1

are Fac(Pa; (0,1),5) = 3, (n = 20)y* and Fac(Kyn13(0,1),5) = 3, (') re-

i=1 i=2
spectively.

From Lemmas 3 and 6, we have the subtree density of P, and K, as:

3(n—i+1)i L
DPn =l=1 = e o — (31)
(Pr) n(n;l) 3 3n
and )
n E! (n;l)(i"' D 2" e p =14 (n—1)2"2
D(Kl,n-l) = n(2n_| +n— 1) - n(zrl—l +n- 1) (32)

From Lemmas 4, 5 and 7, we have the BC-subtree density of P, and K ,-; as:

rgl-1 .
Dac(Py) = AN e o R (33)
T s - nl2]
and
" n=1\,.
Dsc(K. )-Ei(")(HI)_2”"—n+(2"‘2—l)(n—1) 34)
Ty T B S n2"T Zn) -
By Egs. (31) and (33), we have '!Ln; Dpgc(Py) = %, Jgg D(Py) = %
and .
= = O(mod 2),
D n)— n) = 3” "
sc(Pu) = D(Py) {3;(';;},) n = 1(mod 2). (35)
By Egs. (32) and (34), we have lim Dpc(Kin-1) = 3, lim D(Kyn-1) = 3
and
- 1)"22n-3) -
Dac(Kip1) ~ DKy o) = oD @R =3) = nt 1) (36)

n(2*1 — )2t +n-1)



From Egs. (35) and (36), we know that the BC-subtree densities of P, and
K »-1 are bigger than their corresponding subtree densities.

Weighting each vertex and edge by y and 1 respectively, with Theorem 3.2
and Corollary 3.3, we get the vertex generating function of subtrees of T;q (see
[25] for details) as

k
FTeaiy, 1) =d ) (d = 1)2m;+ my +dd - 1y, (37)
i=2

where m; = y(1+my)?, my,y = yandmy_; = y(1+myyy )% fori =0,1,...,k-2.

Similarly, weighting each vertex and edge by (0, 1) and y respectively, from
Theorem 4.2 and Corollary 4.3 we obtain the edge generating function of BC-
subtrees of T 4 (see [26] for details)

k-2 d-2 r

}: : ZE: r

FBC(de; ©.D. = 4 @- l)!-l[ [ (S)m;:;.ewny“l tY Mj20dd
J=1 r=1 " 5=l

d-1 r
r r
+ Z [ (s)m;::mlys” + y(l +y- m2,udd) (38)

r
(1+y- mju2,0aa) ] +Y Mji20dd

r=] = s=1
Sfd-1
mz.ndd] +YMypgq +d(d - 1) Z( s ))”~
5=2
d-1 d-1

d-1Y,,s _ _ d-1\, 5,1 _
where Mhodd = z:I( ) )y" M even = I and Mjodd = Z ( 5 )ysm;'+l.even’ Mjeven =
5=

(1 +y-mjyoaa)®! for j=2,3,...,k—1.
It is easy to see that the total number of vertices of Ty 4 is

did-1;-1
”(Tk.d)=((—d-_—)5———)'-

By the definitions of subtree and BC-subtree densities and Egs. (37) to (39),
we have the subtree density and BC-subtree density of Ty 4 respectively as

(39)

OF(Txa;y, 1)
ady y=1
D(Tig) = 40
Tka) = F oL D) X n(Tea) “0)
and
O(Fpc(Tia; (0, 1),y) X y)y

a I:I

Dpc(Tia) = Y z (41)

Fpc(Tra: (0, 1), 1) x n(Teq)

Since both the vertex generating function of subtrees and the edge gener-
ating function of BC-subtrees of dendrimer T4 are implicit, recursive and the
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values increase faster than exponential growth, computations of the D(T;4) and
Dpc(Ty,4) are memory-consuming and time-consuming. We present the cases of
d =3,4,5,6,7,8 and maximum level & to 20, 14, 13, 12, 11, and 10 respectively
(see Fig. 2). More complex asymptotic analysis can be done but we stop here to
keep the manuscript within a reasonable length.

) .',.,,_.,-.' ....... Tororroe \ .
e é \
b : ’ \\\
] 5 N
| fowi it an e e e s .
(a) d = 3 and k is from 3 to 20. (b) d=4and kis from 3 to 14.
\\ """""""" H T EmEn) 0 e
P\ ‘ A\
HEAN A
\.“_m___ . ‘ : \\
; S
B B e At RIS S SE R R Tt 14
(c) d=5andkis from 3o 13. (dyd=6andkis from3to 12,
T __:;ar_gvs_:! LTy gyt S
: ‘\‘ AN
AN A\
b N
(e) d=7andkisfrom3toll, (f) d = 8 and k is from 3 to 10.

Figure 2. Asymptotic subtree (BC-subtree) densities of Ty 4 withd = 3 t0 8.

7. Concluding remarks

We provide some new evaluation results on number of (leaf-containing) sub-
trees (resp. BC-subtrees) of generalized Bethe trees, Bethe trees and regular den-
drimer tree Ty 4. At the same time, through vertex (resp. edge) generation func-
tion of subtrees (resp. BC-subtrees) of dendrimers T} 4, we consider the subtree
(resp. BC-subtree) density of T} 4 with low order of 4 and k.

As future work, we plan to further examine the subtree and BC-subtree den-
sities, hoping to provide bounds on these values of special structures. We would
also like to extend our current work to other categories of trees of similar nature.
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