Automorphism groups of a family of Cayley
graphs of the alternating groups *

Yun-Ping Deng'
Department of Mathematics, Shanghai University of Electric Power, Shanghai 200090, PR China

Abstract

Let A, be the alternating group of degree n with n > 5. Set S = {(1i}), (1D ]
2 £1i,j £ n,i # j}. In this paper, it is shown that the full automorphism
group of the Cayley graph Cay(A,, §) is the semi-product R(A,) = Aut(4,, S),
where R(A,) is the right regular representation of A, and Aut(A,.S) = (¢ €
Aut(A,) | S* =S} = S,
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1 Introduction

For a graph I, we denote its vertex set, edge set and full automorphism group
respectively by V(I'), E(I') and Aut(I'). Let G be a finite group with identity el-
ement ¢ and let  be a finite set. An action of G on Q is defined as a mapping
QxG - Q, (a,g) — af suchthate® = a and (a8)" = a8" fora € Qand g,h € G.
The subgroup K = (g€ G | a® = g, for any @ € Q) of G is called the kernel of G
acting on Q. If K = {e}, then the action of G on Q is called faithful.

Let G be a finite group with identity element e and let S be a subset of G not
containing e with S = S~!. The Cayley graph Cay(G, S) of G with respect to §
is defined as the graph with vertex set G and edge set {{g, sg} | geG, seS}. Let
us set A = Aut(Cay(G, S)), then A = R(G)A,, where R(G) is the right regular
representation R(G) of G, i.e., the action of G on itself by right multiplication, and
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A, is the stabilizer of the vertex e in A. Furthermore, Aut(G,S) = {¢ € Au(G) |
§% = S} is a subgroup of A,. Let Ns(R(G)) be the normalizer of R(G) in A. By
Godsil [6], Na(R(G)) = R(G) = Aut(G, §).

Let S, and A, denote the symmetric group and the alternating group of de-
gree n, respectively. In the past few years the problem of determining the full
automorphism groups of Cayley graphs has received considerable attention. This
is mainly due to the fact that Cayley graphs, especially of S, and A,, are widely
used as models for interconnection networks [8, 9]. A major consideration in
constructing interconnection networks is the symmetry, which is mainly charac-
terized by their full automorphism groups. Therefore, one important problem is
to determine the full automorphism groups of Cayley graphs of S, and A,. This
problem has been studied extensively by a number of researchers. For example,
for any minimal generating set S of transpositions of S ,, Feng [4] showed that the
full automorphism group of Cay(S,,S) is the semi-product R(S ) % Aut(S,,S),
which generalized the results of Godsil and Royle {7, Theorem 3.10.4] and Zhang
and Huang [10]. Furthermore, Ganesan [5] showed that if S is a generating set
of transpositions of S, such that the girth of the transposition graph of S is at
least 5, then the same result as {4] holds. Zhou [11] completely determined the
full automorphism group of Cay(A,, T), where T = {(12i), (1i2) | 3<ic<n).
In [4, 5,7, 10, 11], one common technique to determine the full automorphism
groups of Cayley graphs is to prove the uniqueness of cycles of certain length
passing through several given vertices. Another technique to determine the full
automorphism groups of Cayley graphs can be found in [1, 2]. In [1], Deng and
Zhang determined the full automorphism group of the derangement graph I', by
proving the faithfulness of the actions of Aut(I",) on the set Q of all maximum-size
independent sets of I',, and some particular subset of the power set of Q. Similarly,
Deng and Zhang (2] determined the full automorphism group of the pancake graph
P, by proving the faithfulness of the action of Aut(P,) on the set of all efficient
dominating sets of P,,.

In this paper, combining the above two techniques, we demonstrate an ap-
proach to obtain the full automorphism groups of Cayley graphs by proving the
following main result:

Theorem 1.1 Let AT, = Cay(A,,S), where S = {(1ij), (1ji) |2 < i, j<n i# j)
Then Aut(AT',) = R(A,)) > Aut(A,, S) for n > 5. Furthermore, Aut(A,,S) = {c(o) |
19 = 1,0 € Sy} = S,-1, where ¢(0) is the automorphism of A, induced by the
conjugacy of 0.

The rest of this paper is organized as follows. In Section 2, we give an equiv-
alent condition of efficient dominating set i‘n a Cayley graph, and thereby charac-
terize all the independent sets of size (”—'2'—) of AT,.. In Section 3, we present the

proof of Theorem 1.1.
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2 The independent sets

Let G be a finite group with multiplicative notation. We define the product of
two subsets M, N of G by MN = {mn | m € M,n € N}. If each x € MN has a
unique representation in the form x = mn with m € M and n € N, then the product
MN is called direct, denoted by M x N.

Lemma 2.1 Let G be a finite group and let M, N be subsets of G. Then G = M XN
ifand only if M-'M N NN~ = (e} and |G| = |M||N|.

Proof. (=) Let G = M X N. Suppose to the contrary that M~'M N NN~ # {e}.
Then there exist distinct elements m; and m, in M and n; and n; in N such that
m;'m; = nn;', and thus myn, = myny, which contradicts G = M x N. Hence
M'MNNN-T = (e}. Suppose that MM NNN-! = (e} and |G| # IM||N|. Clearly
|G| > IM|IN| = |MN]|, thus some element of G is not in M N, which also contradicts
G=MXxN.

(<) Suppose that M-'M N NN~ = {e} and |G| = IMIINI Assume that mjn, =
myny with my,my; € M and ny,ny € N. Then m2'm| = mny 'e M-'"MNNN-! =
{e}, which implies m; = my and n, = n,. Thus the product MN is direct, and so
IMN| = |M||N|. Since |G| = |M||N|, we have |G| = |MN|. Hence G = M x N. Il

A subset D of vertices in a graph is called an efficient dominating set if D is an
independent set and each vertex not in D is adjacent to exactly one vertex in D.

Lemma 2.2 For any Cayley graph Cay(G S),Disan eﬂiczent dominating set of
Cay(G,S) ifand only if S™'S N DD} = {e} and |D| = ,SM

Proof. It follows from the definitions of a Cayley graph and an efficient dom-
inating set that D is an efficient dominating set of Cay(G,§) & G\ D =
SxD & S 'SnDD‘ = {e}, |IG\D| = [SIID| (by Lemma2.1) & S-'SnDD"! =
{e}, 1D| = F;. The assertion holds l

Proposition 2.3 [3]. Let ST, denote the star graph Cay(S,,C,), where C, =
{(18) | 2 < i < n}. Then all the efficient dominating sets of ST, are Dy = {c € S, I
=k}, k=1,2,---,n

Theorem 2.4 All the mdependent sets of size 5"—'—— of AT, (n23)are By =o€
Ad|17 =k} k=1,2,

Proof. First for any u,v € By, we have 1" = ¢ = | = w! ¢ S (where
= {(1if), (1)) | 2 < i, j < n, i # j}) = uis not adjacent to v in AT,. Thus By
is an independent set. Note that |Bi| = (L-z_ll Hence By (k = 1,2,:--,n) are the

independent sets of size £512.
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Next we claim that B, (k = 1,2,---, n) are the only independent sets of size
('"2—”! of AT,.. Let /; be an independent set of size ("'2”! .Then I I," NS = 0.Let (i))
be a transposition in S, and set [ = [y UL;(ij) (€ S,). Then 117! = (LVL G )HUH U
(ij)l,") = 1.1,‘l ] I,(ij)I,“l U Il(ij)I," U LhGHEHITY = LITY U LGHIT. Since
LGHI' €S, \Asand S C A, we have [)(i)I7' NS =0, and thus II"' NS = 0.
Set ST, = Cay(S, C»), where C, = {(1)) | 2 < i < n}. Since C;'C, = S U {e},
we have C;'C, N II"! = {e). Note that /] = (n - 1)! = w’f;j, .By Lemma 2.2, I is
an efficient dominating set of S T,. By Proposition 2.3, we have I = D, and thus
I, = B, for some k. The assertion holds. [ ]

3 Proof of Theorem 1.1

Lemma 3.1 The action of A, on S is faithful.

Proof. Let A¥ be the kernel of A, acting on S. We shall show that A7 fixes all
neighbors of s forany s € §S. Let s = (lij) € S and set E = {1,2,---,n}\ {1, j}.
Then the neighborhood of s is N(s) = {e, (1ji), (1k}), (jki), (1 j)(ik), (1k)(i ), (1klij) |
k,l € E,k # l}. Clearly, A¥ fixes e, (1i) and (1kj), which all belong to {e} U S. In
order to show that A¥ fixes other neighbors of s, we first prove the following four
‘claims.

Claim 1. C| = (e, (1i}), (1ji), (1ki)), Ca = (e, (1i}), (jki), (1ki)), C3 = (e, (1i}),
(1j)(ik), (1ki)) are the only 4-cycles in A, passing through e, (1) and (1ki).

One can easily check that for any x € N(s), x is adjacent to (1ki) if and only if
x € {e, (1ji), (jki), (1,/)(ik)}. Hence Claim 1 holds.

Claim 2. C; = (e, (1i)), (1j)(ik), (1ik)), Cs = (e, (1ij), (1k)(i ), (1ik)) are the
only 4-cycles in AT, passing through e, (1j) and (1ik).

One can easily check that for any x € N(s), x is adjacent to (1ik) if and only if
x € {e, (1)(ik), (1k)(ij)}. Hence Claim 2 holds.

Claim 3. Cg = (e, (1i)), (1klij), (1ijkl), (1kD)) is the unique S-cycle in AL,
having the form (e, (1)), x, y, (1kI)) with x € By, y € B;.

First note that N((1i/)) N By = ((1kj), (1k)(i j), (1kpij) I p # 1,i,j,k} and
N((1kD)) N B; = {(1iD), (1i)(kD), (1igkl) | q # 1,k,1,i). Then it is easy to check that
for any x € N((1ij)) n By, y € N((1kD) N B;, x is adjacent to y if and only if
x = (1klij) and y = (1ijkl). Hence Claim 3 holds.

Claim 4. A} fixes B; setwise for any i € {1,2,---,n}.

Since any o € A} must permute the independent sets of size @ of AT,
by Theorem 2.4, A} naturally acts on {By, By, -+, B,}. Clearly, ({e} U S) N B; #
0, BinB; =0foranyije€(l1,2,---,n} withi # j. Since A} fixes each element
of e} U S, A} fixes each B; setwise.

Next we show that A} fixes each element of {(jki), (1,)(ik), (1k)(i ), (1klij) |
k,l € E,k # I}. By Claim 1, any o € A} permutes C), C2, C3, and thus per-
mutes (1 i), (i), (1/)(ik). Clearly, A fixes (1ji) because (1ji) € S. Since (jki) €
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By, (1)(ik) € Bj, by Claim 4, A} fixes (jki) and (1j)(ik). By Claim 2, any o~ € A}
permutes C4, Cs, and thus permutes (1/)(ik), (1k)(ij). Since A} fixes (1)(ik), A}
also fixes (1k)(ij). By Claims 3 and 4, A} fixes (1kli j).

In conclusion, A} fixes all neighbors of s for any s € S. By the connectedness
of AT, A} fixes all vertices of AL, and thus A¥ = 1, that is, the action of A, on S
is faithful. Il

Lemma3.2 LetS, =SNByandQ = {52,53,---,5 ). Then A, induces an action
on Q and this action is faithful. In particular, |A.| € (n — 1).

Proof. Clearly any o~ € A, must permute the independent sets of size ('"T”' of Al,,.
By Theorem 2.4, A, naturally acts on { By, B3, - -, B,}. Note that A, fixes e, e € B,
ande ¢ B;,i = 2,3---,n. It follows that A, fixes B; setwise. Thus A, acts on
{B2, B3,- -, Bn}. Since A, also acts on S and S, = S N B, A, induces an action
on Q ={S5,,53,-+-,5,}. In order to show that the action of 4, on Q is faithful, we
first prove the following two claims.

Claim 1. For any i # %, each vertex in S, is adjacent to exactly one vertex in
Sk

In fact, for any (1ij) € S;, we have N((1ij)) NS = {((1i), (1 k) | k# 1,i,j}=
IN((1ij) N S,] = 1. Hence Claim 1 holds.

Claim 2. For any 2 < i # j # k < n there is a unique 6-cycle whose vertices
belong to §; U S ; U S. We denote such a 6-cycle by C; .

In fact, since §;,S j, S; are independent sets, then by Claim 1 and its proof,
one can easily check that C; jx = ((1i)), (1ji), (1ki), (1ik), (1jk), (1kj)) is such a
unique 6-cycle.

Next we shall show that the action of A, on Q is faithful. Assume that ¢ € A,
such that Sf = §y for each k € {2, 3, -, n}. Then by Claim 2, ¢ setwise stabilizes
each C; j. By the proof of Claim 2, for any (1ij) € S, we have {(1if), (1)} =
Cijk N Cij for any k # [ (since n > 5). It follows that ¢ setwise stabilizes
{(1j), (1ji)}. Since (1ij) € S; and (1ji) € S}, ¢ fixes (1ij). In consideration of
arbitrariness of (1ij) in S, ¢ fixes all vertices in S. By Lemma 3.1, we have ¢ = 1,
which implies that the action of A, on Q is faithful. Thus |A.} < (n - 1)!.H

Proof of Theorem 1.1: For o € §,, let ¢(o) denote the automorphism of A,
induced by the conjugacy of o Clearly, Aut(A,,S) = {¢ € Aut(4,) | §*=5)2
(@) | 19 = Lo € Su) = Sy Hence (1= 1)! = [(c(0) | 17 = 1,0 € S,)l <
[Aut(A,, S)| < 1A.] < (n—1)! (by Lemma 3.2), and thus A, = Aut(4,,S) = {c(0) |
19 = 1,0 € S,;}. So Aut(AT',) = R(A,) = Aut(4,, S).
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