FINDING A BIPLANAR IMBEDDING OF C,, x C,, x C} x Pp,

JOSHUA K. LAMBERT

ABSTRACT. Determining the biplanar crossing number of the graph Cp, X
Cn X Cn x P, was a problem proposed in a paper by Czabarka, Sykora,
Székely, and Vrio [2]. We find as a corollary to the main theorem of this paper
that the biplanar crossing number of the aforementioned graph is zero. This
result follows from the decomposition of C, x Cpn X C; X Pp, into one copy
of C,.2 X P, I — 2 copies of C, 2 X P, and a copy of C,,2 X Porm.

1. INTRODUCTION

In today’s society, economical circuit design has become a topic of interest.
With wire crossings causing short circuits, it is desirable for chip designers to
look to graph theory for a solution. The notion of a crossing number leads to the
minimizing of crossings in a circuit design. More formally, the crossing number
of a graph G, denoted by v(G), is the minimum number of crossings in a drawing
of a graph G in the plane [9]. Designers use this information and place cross-
ing wires on different layers of a printed circuit board. Drilling holes through a
printed circuit board, commonly referred to as vias, allow designers to escape the
possibility of a wire crossing [6). Yet a problem with this method is that too many
vias increase the area, resulting in a greater chance for a faulty chip.

Another problem with using vias is the costly nature of the wear and breaking
on the mechanical bits used in drilling small vias. Therefore chip designers have
used another method that once again has a direct correlation with graph theory.
Designers embed their circuits onto two or more circuit boards, trying to avoid
crossings at all costs. If no crossings occur on any of the circuit boards, then the
circuit design directly relates to the thickness of a graph. When properly defined,
the thickness of a graph G, denoted by 8(G), is the minimum number of planar
graphs whose union is G [10]. On the other hand, if the circuit designers use
vias on the different circuit boards, the designers are dealing with the k-planar
crossing number of a graph. In other words, they are looking at the minimum of
v(G1) +v(G2) + - - - + ¥(Gy), where the minimum is taken over all edge disjoint
subgraphs G1,Ga, -+ ,Gr of Gsuchthat G = G, UGy U --- U Gy, [9].

For the purposes of this paper, we will concern ourselves with the case when
k = 2, which commonly is referred to as the biplanar crossing number. If the
biplanar crossing number happens to be zero, then we refer to such a drawing as a
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biplanar imbedding. One easily finds that a graph has a biplanar imbedding if and
only if the graph has thickness less than or equal to two.

2. PURSUIT OF A PROBLEM

When looking for reasons as to why finding a biplanar imbedding of C, x C;, x
Cy x P, is of interest in the mathematical community, we must first consider
some of the results in the field. In [2], the authors mentioned how the biplanar
crossing number of C x C; x Cp, is zero. Also in that paper, we found the
thickness of Cj, X C; x Cy, X Cy, to be greater than or equal to three. This implies
that the biplanar crossing number of the aforementioned graph must be greater
than or equal to one. Serving as a middle ground between these two problems,
Czabarka, Sykora, Székely, and Vrio asked for the biplanar crossing number of
Cpn X Cp x C, % P,. In this paper, we will answer that question and generalize
the result to help find the biplanar crossing number for the more general case of
Cir xCy x Cp x P,.

2.1. The First Plane. Before beginning to find a planar graph to be imbedded
on the first plane of our biplanar imbedding, we must develop a useful notation to
help keep track of all the edges that are coming from the proper vertices. We will
again use the idea behind the notation used in [5].

Remark 2.1.1. We begin by giving each vertex in C,, x C, x C; x P, the label
Va,By,0 Where0 < a <n-1,0<<n~-1,0<y<!-1ad0 <
d < m — 1. Notice that we can think of , 3,+, § respectively corresponding to
the vertices vq,vg, U, vs in the graphs Cy, Cp, Ci, Py,. With this in mind, one
notices that the edges of C, x Cp, x C; x Py, are of the form va,8,4,6 — Va+1,8,7,5

Va,8,7,6 ~ Va,B8+1,7.6> Ver,8v,8 ~ Ve, 8,v+1,6> AN Va,8,4.56 = Va,p,+,6+1 Where we
consider (¢ +1) mod n, (8+1) mod n, (y+1) mod land 1 < (6+41) < m—2.

Now we look to lay the groundwork for our biplanar imbedding.
Lemma 2.1.2. The graph Cy,2 X Py, is a subgraph of Cp, x Cp, X Cy X Pp.

Proof. We will find our desired subgraph as an imbedding in R2. We begin by
placing the vertices of C,, X C, x C; x P, in a format resembling a grid. When
considering the vertex vq g5, @ and 8 will help determine the y-coordinate of
our vertex in R?, whereas v and § determine the x-coordinate. We will start with
determining the y-coordinate of each vertex.

In order to lay the groundwork for our proof, we determine where to place
vertices of the form v g,0,0. Of these vertices, we first find which ones are best
suited for the coordinate (0,n3). This requires some familiarity with modular
arithmetic. We place the vertex v, g,0,0 at (0, 03) if and only if @+ 8 = 0 mod n.
Our next step will be to find where to place all the vertices such that o« + 8 #
0 mod n. This requires us to consider the permutation (0,1,--- ,a — 1,0, +
1,---,n—2,n-1).



Suppose that @ + 8 # 0 mod n for the vertex vy g,0,0, but the vertex v; g00
has the desired result of i + 8 = 0 mod n. We will coin the term distance between
i and « to represent the corresponding number of places between i and o when
rotating the permutation (0,1,--- ,a—1,o,a+1,--- ,n—2,n— 1) sothatiis
the leading term. Suppose the distance between ¢ and « is j. Then we will place
the vertex vq,g,0,0 at the coordinate (0, n3 + ). A cause for concern might be the
case where j > n, but once considering the distance in a permutation one finds
the maximum value j can attain isn — 1.

One can easily find the y-coordinate of v, g, s by looking at the corresponding
y-coordinate of v, g,0,0. Hence we should move forward towards finding the x-
coordinate of va,5,4,6. In a similar manner to finding the y-coordinate, we will
first consider vertices of the form v 0,,,5. The two cases to consider here are
when 4 is odd or even. In the case where § is even, we find the corresponding
coordinate for vg,0,,5 is ({6 + -y, 0). Likewise, when § is odd we have vg g 4,5 is
located at (16 + 1 — v — 1,0). Hence one can find the exact coordinate of va,g,4,5
by considering the y-coordinate of va,g,0,0 and the x-coordinate of vg g +,s-

Now we must look for edges to form in our graph in the first plane of our
biplanar imbedding. When considering the edges mentioned in Remark 2.1.1, one
easily finds that we can form edges between the coordinates (z, j) and (4,5 + 1)
where 0 < ¢ <!m —1and 0 < j < n? — 2. Similarly, one also notices that we
can add edges from (a,b) to (a+1,b) with0 <a <Im—2and0 < b < n? — 1.
Thus far we have formed a graph that resembles a grid, but there are more edges
waiting to be added.

With our subgraph in sight, we now look to add edges from (i, 0) to (i,n% —1).
Before doing this though we must show that such an edge exists in the original
graph of C, x C,, x C; x Pp,. Once again we must consider the permutation
0,1,---,a-1l,a,a+1,--- ,n — 2,n — 1). Recall that the y-coordinate of
Va,8,v,6 is at nf if and only if & + 8 = 0 mod n with the maximum value 8
can obtain being n — 1. Hence the vertex v1,n—1,4,6 has a y-coordinate of n2 —
n. Therefore 1 is the corresponding lead term in the permutation (0,1,--- ,a —
l,a,a+1,--- ,n—2,n— 1), implying 1 and 0 must have a distance of n — 1
in this instance. Thus, v n—1,,6 must have a y-coordinate of (n? — n) 4+ (n — 1)
which equals n2 — 1. Recalling from Remark 2.1.1, we find an edge between
0,0,7,6 and vo,n—1,4,5. Hence we have our desired edge from (3, 0) to (i,n? — 1),

as well as our desired subgraph, C,,2 x Pj,.
a

In order to develop a better understanding for Lemma 2.1.2, we should famil-
iarize ourselves with the subgraph we have just constructed. As a result, we will
consider the following example.

Example 2.1.3. Consider the graph Cy x Cq x Cs x P3. Lemma 2.1.2 claims
that we should find a copy C6 x Pys as a subgraph which could be imbedded in
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FIGURE 1. The subgraph Cig x Pys of C4 x Cy x Cs x P as
constructed in Lemma 2.1.2
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the first plane of our biplanar imbedding of Cy x C4 x Cs x P3. Figure 1 helps
display the desired subgraph described in the proof of Lemma 2.1.2.

Before moving to the next section of this paper, it is important to discuss the
edges formed in Lemma 2.1.2,

Remark 2.1.4. As illustrated in Example 2.1.3, we can consider the edges formed
parallel to the y-axis along with those edges parallel to the x-axis. We begin by
looking at the edges formed parallel to the y-axis in Lemma 2.1.2. In this case, we
have constructed all of the edges of the form vq g 4,5 — Va+1,8,4,6, With the only
exception being when (a + 8) = —1 mod n. Such an exception yields edges of
the form v, 8,v,6 — Va,3+1,,6-

Now we can consider the edges parallel to the x-axis. The majority of these
edges are of the form va, 8,v,6 —Va,8,v+1,5, With the only exception occurring when
v = I —1. This leads us to the two types of edges of the form v, 8,4,6 — Va,8,7,6+1
constructed in Lemma 2.1.2. If § is even, then we find v = | — 1. Similarly, if
d is odd, then we have v = 0. This complete list of all the edges formed in
Lemma 2.1.2 will become useful in our upcoming lemmata.

2.2. The Second Plane. In order to produce a biplanar imbedding of C,, x Cy, X
Ci x P, we will use the subgraph produced in the proof of Lemma 2.1.2 to obtain
the resulting graphs on the second plane. From this point forward we will refer to
the graph produced in the proof of Lemma 2.1.2 as G;. Without further ado, we
look to producing the remaining graphs in our biplanar imbedding.

Lemma 2.2.1. The vertices labeled v g5 with1 < i < | — 2 produce | — 2
disjoint copies of Cp2 X Py, in Cp, X Cp X Cy X Py — E(Gy).

Proof. Consider the vertices v, 3,;,5 With 1 < ¢ < I — 2 in G;. Notice all such
vertices have degree 4 in Gy, implying that the aforementioned vertices have either
degree 3or4in C,, x C,, X C; x Py, — E(G)). We now look to find one copy of
an X Pm.

In order to produce one copy of Cp2 X Pr, in C,, x Cy, x C; X Py, — E(G)),
we begin by finding a cycle from the vertices labeled v, g,; 5 regardless of the
value for 7 and 8. Our desired cycle begins with constructing a series of paths.
- Once again we look to modular arithmetic for our desired paths. Each path begins
at the vertex vq k,is Where a + k = Omodn and 0 < k < n — 1. With the
second coordinate of our vertex always considered modulo n, we can create the
pathvg ki 6 —Va k+1,i,6—* * * —Va,k4n—1,i,5» Which Remark 2.1.4 states is missing
from G;. Since we looked at the second coordinate modulo n, one immediately
finds that the vertex va,k4+n—1,:,s coincides with vg x—1,1 5.

Continuing from this point, we notice from Remark 2.1.4 that the edge be-
tween vy k—1,i,5 and Vg 41 k-1,i,s is missing from G';. Thus we can create the path

Va,k,i,6 ~Va,k+1,i,6 —* * "~ Va,k—-1,5,6 —Va+1,k—1,i,6 —Va+1,k,i,6 —" ' "~ Va+1,k—2,i,6
in Cp, x Cp, x C; X P, — E(G;). When beginning our path at vg g,;,5, Wwe imme-
diately obtain the path vg 05,6 — -+ — Vo,n—1,i,6 — V1,n=1,i,6 — " ** — V1,n—2,i,6 —



V22,08 = — Un—1,1,i,§ — *** — Un—1,0,i,5 On n? vertices. By realizing that
0,0,4,5 and vn_1,0,;,6 do not have an edge in Gy, we obtain the desired cycle C,:.

In order to finish our proof, we must find a path from the vertices vq g,:,6
regardless of the values given for a and 3. The desired path of length m is given
by ¥a,8,i,0 — Va,8,i,1 = - * —Va,B,i,m—1. Notice that such a path can be constructed
for each value of o and 3, implying that we have constructed a copy of Cp2 X Pr,.
Since a copy exists for each value of ¢, there exists { — 2 disjoint copies Cp,2 X P,
inCnanxC’, XPm—E(Gl). O

Before beginning the final piece of our biplanar imbedding, we shall consider
an example for a complete understanding of the proof of Lemma 2.2.1. In the up-
coming example, we once again consider the graph constructed in Example 2.1.3.

Example 2.2.2. Let us once again consider the graph C4 x Cy4 x Cs x P; along
with its associated subgraph, Ci1g X Pys. Figure 2 helps to demonstrate how
Lemma 2.2.1 constructs Cg from the figure constructed in Example 2.1.3.

The sequence of paths mentioned in the proof of Lemma 2.2.1 is obtained in
Figure 2 with “x” indicating where each path begins. In the three columns of
Figure 2 where shapes appear, the vertices surrounded by the objects “ (" and
“ @ give two examples of the path Vo k,i5 — Va,k+1,4,6 — *** — Va,k+n—1,i,6 iN
Lemma 2.2.1, while the vertices surrounded by “ A" demonstrate an example of
the path v k—1,i,6 — Va+1,k—1,i,5 in Lemma 2.2.1.

For Figure 2, the vertices enclosed by * ()" help demonstrate the path vg 0,1,6—
v0,1,1,6 — Y0,2,1,6 — V0,3,1,6 where 0 < § < 2. Meanwhile the vertices surrounded
by “ 3" help indicate the path v1 31,6 — V1,0,1,6 — V1,1,1,6 — V1,2,1,5 missing from
Ci6 X Pys. Finally, we find the vertices with the attached shape “ A" describe
the path va1,1,56 — V3,1,1,6. These paths help become a part of the C\¢ described
in Lemma 2.2.1.

Figure 2 also allows us to picture the desired path Ps to be obtained from our
subgraph C1¢ x Pis. Any row consisting of three of the same shapes help indicate
our desired path P;. Hence Figure 2 gives us ten examples of P;. Combining
this result with the one from the previous paragraph allows us to see exactly how
Ci6 x Pj is constructed from the graph Cig X Py5 given in Example 2.1.3.

After seeing the construction of C,2 x P, in the form of an example, we are
ready to move towards finishing our desired biplanar imbedding.

Lemma 2.2.3. The vertices labeled v, g ;5 with j € {0,1 — 1} produce a copy of
an X Pgm in Cn X Cn X Cz X Pm - E(Gl)

Proof. Recall from the proof of Lemma 2.2.1 that we constructed a cycle of length
n? for arbitrary values 7 and &. The same construction can be applied to find Cp2
regardless of our values of j and 8. Thus, we need only look for a path of length
2m where o and 8 are arbitrary. In order to complete our task we must consider
the two cases when m is odd or even.
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FINDING A BIPLANAR IMBEDDING OF C., x C,, x Ct x Py,
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FIGURE 2. Finding the subgraph Cyg X P3 of C4x CyxCs x P3
as constructed in Lemma 2.2.1
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In the case where m is odd, we can construct the path v, g1—1,0 ~ Va,8,0,0 —
Y4,8,0,1 — Ve, B,1—1,1 — Va,B,1-1,2 — " ** — Va,8,l-1,m~1 — Va,8,0,m—1. When care-
fully considering the aforementioned path, we find that all of the given edges are
missing from G, as we desired. Moving to the case where m is even, we find
the edges needed in C,, x Cp, X C) X P, — E(G1) come in the form of the path
Vea,B,0-1,0 — Va,8,0,0 = Va,8,0,1 — Ya,8,-1,1 —*** ~ Va,8,0,m—1 ~ Va,B,I-1,m—1-

Notice in either case, we have constructed a path of length 2m. Piecing this
information together with our cycle of length n2, we have constructed a copy of
C.nz X sz in Cn X Cn X CI X Pm - E(Gl)

0

Although we have not completely touched on the subject, the idea behind these
proofs can be easily extended to find a biplanar imbedding of C;, x Cy, X Cy X P,
Unfortunately, the resulting decomposition of C,, X Cg,, X C; X Py, does not fit in
the scope of this paper. Hence we move forward with the results obtained in the
previous lemmata.

2.3. The Results. Considering the proofs of Lemma 2.1.2, Lemma 2.2.1, and
Lemma 2.2.3, we find all edges are accounted for in the graph C,, X C,, X Cy x Py,,.
This leads us to the next stream of resuits.

Theorem 2.3.1. The graph C,, x C, x Cy X Py, can be decomposed into one copy
0of Cp2 X Py, | — 2 copies of Cp2 X Py, and a copy of Cp2 X Pom.

Theorem 2.3.2. There exists a biplanar imbedding of C,, x Cp, X Cy X Pp,.

Proof. Just place the copy of C,2 X P, obtained in Lemma 2.1.2 on the first
plane, while putting the { -- 2 copies of Cp,2 % P, from Lemma 2.2.1 and copy of

Cp2 X Pa,, in Lemma 2.2.3 on the second plane.
O

Theorem 2.3.3. The biplanar crossing number of C,, x Cp, x Cp X Py, is zero.

Last, but certainly not least, we give the answer to the motivating question
behind this paper.
Corollary 2.3.4. The biplanar crossing number of C, x Cy, x Cp, X Py, is zero.
2.4. Open Problem. Using the results from this paper along with those obtained
in [5], we have made significant progress towards finding the biplanar crossing
number of Cy x C} x C,, x P,. The significance of such a result is that it would

tell us the middle ground between the biplanar graph Ci x C; x Cy, and the
thickness-three graph Cy x C; x Cy, x Cp,.
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