Extending matchings in planar odd graphs *

Shaohui Zhai^{1,†} Xiaofeng Guo²

¹School of Applied Mathematics, Xiamen University of Technology, Xiamen Fujian 361024, China ²School of Mathematical Sciences, Xiamen University, Xiamen Fujian 361005, China

Abstract

Let n and k be two non-negative integers. A graph G with $1 \le n \le |V(G)| - 2$ is said to be n-factor-critical if any n vertices of G are deleted then the resultant graph has a perfect matching. An odd graph G with $2k \le |V(G)| - 3$ is said to be near k-extendable if G has a k-matching and any k-matching of G can be extended to a near perfect matching of G. Lou and Yu [Australsa. J. Combin. 29 (2004) 127-133] showed that any 5-connected planar odd graph is 3-factor-critical. In

^{*}The Project is Supported by NSFC (No. 11101345, 11171279) and Fujian Provincial Department of Science and Technology (2012J05012).

[†]E-mail address: shzhai@xmut.edu.cn.

this paper, as an improvement of Lou and Yu's result, we prove that any 4-connected planar odd graph is 3-factor-critical and also near 2-extendable. Furthermore, we prove that all 5-connected planar odd graphs are near 3-extendable.

Keywords: k-extendable graphs, near k-extendable graphs, n-factor-critical graphs.

1 Introduction

All graphs we considered in this paper are simple and finite. For the terminology and notation not defined in this paper, the reader is referred to [2, 7].

Let G be a graph with vertex set V(G) and edge set E(G). G is said to be an odd (even) graph if it has an odd (even) number of vertices. Let S be a subset of V(G). Denote by $c_o(G-S)$ the number of odd components of G-S. A matching M of G is a subset of E(G) such that any two edges of M have no vertices in common. A matching of size k is called a k-matching. Let d be a non-negative integer. A matching M of G is called a defect-d-matching if it exactly covers |V(G)| - d vertices in G. In particular, a matching M of G is also called a perfect matching (resp. a near perfect matching) of G if it covers all vertices (resp. |V(G)| - 1 vertices) in G. Berge [1] proved the following result.

Theorem 1.1 [1] Let G be a graph and let d be an integer such that $0 \le d \le |V(G)|$ and $|V(G)| \equiv d \pmod{2}$. Then G has a

defect-d-matching if and only if for any subset S of V(G)

$$c_o(G-S) \le |S| + d.$$

Let n be a non-negative integer. A graph G is called n-factor-critical for $0 \le n \le |V(G)| - 2$ if the subgraph G - S has a perfect matching for any subset S of V(G) with |S| = n. This concept was introduced by Favaron [3] and Yu [12], independently, which is a generalization of the notions of the factor-critical graphs and the bicritical graphs (the case of n = 1 and n = 2) [7]. Yu [12] proved the following theorem.

Theorem 1.2 [12] Let G be a graph of order p and n an integer such that $0 \le n \le p-2$ and $n \equiv p \pmod{2}$. Then G is n-factor-critical if and only if for each subset $S \subset V(G)$ with $|S| \ge n$, $c_o(G-S) \le |S|-n$.

Let G be an even graph and k a non-negative integer with $2k \leq |V(G)| - 2$. G is said to be k-extendable if G has a k-matching and any k-matching of G can be extended to a perfect matching of G. The concept of k-extendable graphs was introduced by Plummer [8] in 1980.

In general, Liu and Yu [4] at the first time introduced (n,k,d)-graphs. For a graph G, and three non-negative integers n,k and d such that $n+2k+d \leq |V(G)|-2$ and, |V(G)| and n+d have the same parity, if when deleting any n vertices from G the remaining subgraph of G contains a k-matching and each k-matching of the subgraph can be extended to a defect-d-matching of the subgraph, then G is called a (n,k,d)-graph. It is easy to see that k-extendable graphs (resp. n-factor-critical graphs) are just the (0,k,0)-graphs (resp. (n,0,0)-graphs).

As a generalization of k-extendable graphs to odd graphs, an odd graph G with $|V(G)| \geq 2k + 3$ is said to be near k-extendable [13] if G has a k-matching and any k-matching of G can be extended to a near perfect matching of G. Clearly, a near k-extendable graph is just a (0, k, 1)-graph. Zhai and Guo [13] improved the characterization of (n, k, d)-graphs in [4], and consequently obtained a characterization of near k-extendable graphs. Furthermore, a characterization of near k-extendable bipartite graphs and the relations between near k-extendable graphs and n-factor-critical graphs are also investigated in [13].

Theorem 1.3 [13] A graph G is near k-extendable if and only if the following conditions hold:

- (1) For any $S \subseteq V(G)$, then $c_o(G-S) \leq |S| + |V(G)| 2k$,
- (2) For any $S \subseteq V(G)$ such that $|S| \ge 2k$ and G[S] contains a k-matching, then $c_o(G-S) \le |S| 2k + 1$.

Theorem 1.4 [13] Any (2k-1)-factor-critical graph with order $p \ge 2k+3$ is near k-extendable.

An further topic is the extendability of planar graphs. Lou [5] and Plummer [9] independently proved that all 5-connected planar even graphs are 2-extendable. Lou and Yu [6] proved that any 5-connected planar odd graph is 3-factor-critical.

Theorem 1.5 [5, 9] Any 5-connected planar even graph is 2-extendable.

Theorem 1.6 [6] Any 5-connected planar odd graph is 3-factor-critical.

In this paper, as an improvement of Theorem 1.6, we prove that any 4-connected planar odd graph is 3-factor-critical, and so, by Theorem 1.4, any 4-connected planar odd graph is also near 2-extendable. Furthermore, we prove that all 5-connected planar odd graphs are near 3-extendable.

2 Extending matchings of planar odd graphs

By Euler's Formula of planar graph, Douglas [2] gave the following result.

Theorem 2.1 [2] If G is a simple planar graph with at least three vertices, then $|E(G)| \leq 3|V(G)| - 6$. If also G is triangle-free, then $|E(G)| \leq 2|V(G)| - 4$.

A graph G is called *hamiltonian connected* if, for any two vertices, there is a hamiltonian path joining them.

Tutte [11] firstly proved the following theorem in 1956. Later, Thmassen [10] obtained a simple proof of it in 1983.

Theorem 2.2 [10, 11] Any 4-connected planar graph is hamiltonian connected.

By the above theorem, the following lemma is obvious.

Lemma 2.3 Any 4-connected planar odd graph is factor-critical.

We now give an improvement of Theorem 1.6 as follows.

Theorem 2.4 Any 4-connected planar odd graph is 3-factor-critical.

Proof. Let G be a 4-connected planar odd graph. To the contrary, suppose that G is not 3-factor-critical, then, by Theorem 1.2, there exists a subset $S \subset V(G)$ with $|S| \geq 3$ such that $c_o(G-S) > |S|-3$, by parity, $c_o(G-S) \ge |S|-1$. By Lemma 2.3, G is also factor-critical, and so $c_o(G-S) \leq |S|-1$ by Theorem 1.2. Combining the above two inequalities, we have $c_o(G-S)=|S|-1\geq 2$. Then S is a vertex cut of G. Since G is 4-connected, $|S| \geq 4$. Let B be the graph obtained from G by deleting all edges of G[S] and all even components of G-S, and contracting each odd component to a single vertex, respectively. Clearly, B is bipartite and every vertex of B - S is adjacent to at least four distinct vertices in S. Since $|B - S| = c_o(G - S) =$ |S|-1, we have $|E(B)| \ge 4(|S|-1) = 4|S|-4$. On the other hand, B is a triangle-free and simple planar graph, by Theorem $2.1, |E(B)| \le 2|V(B)| - 4 = 2(|S| + |S| - 1) - 4 = 4|S| - 6,$ contradicting the above inequality.

Now it follows that any 4-connected planar odd graph is 3-factor-critical. \Box

By Theorem 1.4 and Theorem 2.4, we have the following corollary.

Corollary 2.5 Any 4-connected planar odd graph is near 2-extendable.

Furthermore, for 5-connected planar odd graphs, we obtain the following result.

Theorem 2.6 Any 5-connected planar odd graph is near 3-extendable

Proof. Let G be a 5-connected planar odd graph, then G is near 2-extendable by Corollary 2.5. Suppose that G is not near 3-extendable. Then there exist three independent edges e_1, e_2 and e_3 which do not lie in any near perfect matching of G. Let $G' = G - V(e_1, e_2, e_3)$, then G' has no near perfect matching. Thus, by Theorem 1.1, there exists a subset $S' \subset V(G')$ such that $c_o(G'-S') > |S'|+1$, by parity, $c_o(G'-S') \ge |S'|+3$. Let $S = S' \cup V(e_1, e_2, e_3)$. Then $|S| \ge 6$ and $c_o(G - S) = c_o(G' - S)$ $S' \ge |S'| + 3 = |S| - 3$, that is $c_o(G - S) \ge |S| - 3$. Since G is near 2-extendable, by Theorem 1.3, $c_o(G-S) \leq |S|-3$. Hence, we have $c_o(G-S) = |S|-3$. Let B be the graph obtained from G by deleting all edges of G[S] and all even components of G-S, and contracting each odd component to a single vertex, respectively. Clearly, B is bipartite and every vertex of B-S is adjacent to at least five distinct vertices in S. Since $|B - S| = c_o(G - S) =$ |S| - 3, we have $|E(B)| \ge 5(|S| - 3) = 5|S| - 15$. On the other hand, B is a triangle-free and simple planar graph, by Theorem $|E(B)| \le 2|V(B)| - 4 = 2(|S| + |S| - 3) - 4 = 4|S| - 10 = 2$ 5|S| - 15 - (|S| - 5), contradicting the above inequality.

Therefore, any 5-connected planar odd graph is near 3-extendable. \Box

References

[1] C. Berge, Sur le couplage maximum d'un graphe, C.R. Acad. Sci. Paris 247 (1958) 258-259.

- [2] B.W. Douglas, Introduction to Graph Theory second edition, Prentice Hall/Pearson 2001.
- [3] O. Favaron, On *n*-factor-critical graphs, Discuss. Math. Graph Theory 16 (1996) 41-51.
- [4] G. Liu and Q. Yu, Generalization of matching extensions in graphs, Discrete Math. 231 (2001) 311-320.
- [5] D. Lou, N-extendability of graphs, Ph.D.Thesis, University of Otago, 1992.
- [6] D. Lou and Q. Yu, Sufficient conditions for n-matchable graphs, Australsa. J. Combin. 29 (2004) 127-133.
- [7] L. Lovász and M.D. Plummer, Matching Theory, Annals of Discrete Math. 29 (1986).
- [8] M.D. Plummer, On *n*-extendable graphs, Discrete Math. 31 (1980) 201-210.
- [9] M.D. Plummer, Extending matchings in planar graphs IV, Discrete Math. 109 (1992) 207-219.
- [10] C. Thmassen, A theorem on paths in planar graph, J, Graph Theory 7 (1983) 169-176.
- [11] W.T. Tutte, A theorem on paths in planar graph, Trans. Amer. Math. Soc. 82 (1956) 99-119.
- [12] Q. Yu, Characteriazations of various matchings in graphs, Australsa. J. Combin. 7 (1993) 55-64.
- [13] S. Zhai and X. Guo, Extending matchings in odd graphs, Acta Mathematica Scientia, 29 (2009) 365-372.