Characterizing $K_{r+1} - C_k$ -graphic Sequences *

Lili Hu1,2

- School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, China.
- Department of Mathematics, Central China Normal University, Wuhan, 430079, China.

E-mail address: jackey2591924@163.com

Abstract

For given a graph H, a graphic sequence $\pi=(d_1,d_2,\cdots,d_n)$ is said to be potentially H-graphic if there exists a realization of π containing H as a subgraph. Let $K_{r+1}-C_k$ be the graph obtained from K_{r+1} by removing the k edges of a k-cycle. In this paper, we first characterize potentially $A_{r+1}-C_k(3\leq k\leq r+1)$ -graphic sequences which is analogous to Yin et.al characterization [19] using a system of inequalities. Then we obtain a sufficient and necessary condition for a graphic sequence π to have a realization containing $K_{r+1}-C_k$ as an induced subgraph.

Key words: graph; degree sequence; potentially $A_{r+1} - C_k$ -graphic sequences; potentially $K_{r+1} - C_k$ -graphic sequences Mathematics Subject Classification(2000): 05C07

1 Introduction

We consider finite simple graphs. Any undefined notation follows that of Bondy and Murty [1]. The set of all non-increasing nonnegative integer sequence $\pi = (d_1, d_2, \dots, d_n)$ is denoted by NS_n . A sequence $\pi \in NS_n$ is said to be graphic if it is the degree sequence of a simple graph G of order n; such a graph G is called a realization of π . The set of all graphic sequences

^{*}Research is Supported by NSF of China(11401290) .

in NS_n is denoted by GS_n . A graphic sequence π is potentially H-graphic if there is a realization of π containing H as a subgraph. Let C_k and P_k denote a cycle on k vertices and a path on k+1 vertices, respectively. Let G-H denote the graph obtained from G by removing the edges set E(H) where H is a subgraph of G. In the degree sequence, r^t means r repeats t times, that is, in the realization of the sequence there are t vertices of degree r.

In the research of degree sequences, an important question is to characterize the potentially G-graphic sequences without zero terms, where G is a simple graph. $Erd\ddot{o}s$ and Gallai[3] gave a characterization for π to be graphic. Rao [14] and Kézdy and Lehel [10] independently gave a characterization for a sequence π to be potentially K_{r+1} -graphic. Lai and Hu in [12] proposed the following question: Characterizing $K_{r+1} - H$ -graphic sequences for the graph $H \subseteq K_{r+1}$ and $H \neq K_{r+1}$. For $K_{r+1} - H =$ C_k , Luo [13] characterized the potentially C_k -graphic sequences for each k=3,4,5. Chen [2] characterized the potentially C_6 -graphic sequences. If $\pi = (d_1, d_2, \dots, d_n) \in GS_n$ has a realization G with the vertex set V(G) = $\{v_1, v_2, \cdots, v_n\}$ such that $d_G(v_i) = d_i$ for $1 \leq i \leq n$ and $v_1 v_2 \cdots v_r v_1$ is a cycle of length r in G, then π is said to be potentially C''_r -graphic. Recently, Yin[16] characterized the potentially C_r'' -graphic sequences. Let $r \geq 3$ and S(r) be the set of all circular arrangements of $1, 2, \dots, r$. Let $\alpha = i_1 i_2 \cdots i_r \in S(r)$ and $\pi = (d_1, d_2, \cdots, d_n)$ be a graphic sequence with $n \geq r$. If π has a realization G with vertex set $V(G) = \{1, 2, \dots, n\}$ such that $d_G(i) = d_i$ for $1 \le i \le n$ and $i_1 i_2 \cdots i_r i_1$ is a cycle of length r in G, then π is said to be potentially C_r^{α} -graphic. Yin and Wang[17] characterized the potentially C_r^{α} -graphic sequences for each $\alpha \in S(r)$. An extremal problem on potentially C_k -graphic sequences was investigated by Lai [11].

For the case $H=C_k(k\geq 3)$, Yin et.al[18-19] characterized the potentially K_6-C_3 and $K_{r+1}-C_3$ -graphic sequences. Hu and Lai[6-9] characterized the potentially K_5-C_3 , K_5-C_4 , K_6-C_4 and K_6-C_6 -graphic sequences. Xu and Lai[15] characterized the potentially K_6-C_5 -graphic sequences. In this paper, we first characterize potentially $A_{r+1}-C_k(3\leq k\leq r+1)$ -graphic sequences which is analogous to Yin et.al characterization [19] using a system of inequalities. Then we obtain a sufficient and necessary condition for a graphic sequence π to have a realization containing $K_{r+1}-C_k$ as an induced subgraph.

2 Preparations

The following definitions will be useful for us to prove our main theorems. If $\pi = (d_1, d_2, \cdots, d_n) \in GS_n$ has a realization G with the vertex set $V(G) = \{v_1, v_2, \cdots, v_n\}$ such that $d_G(v_i) = d_i$ for $1 \leq i \leq n$ and $G[\{v_1, v_2, \cdots, v_{r+1}\}] = K_{r+1} - C_k(3 \leq k \leq r+1)$ such that $d_{K_{r+1}-C_k}(v_i) = r$ for $1 \leq i \leq r+1$ and $d_{K_{r+1}-C_k}(v_i) = r-2$ for $r+2-k \leq i \leq r+1$, then π is said to be potentially $A_{r+1} - C_k$ -graphic. For given graphs H_1, H_2, \cdots, H_k , π is said to be potentially $\{H_1, H_2, \cdots, H_k\}$ -graphic if there is a realization of π containing one of H_1, H_2, \cdots, H_k as a subgraph. Let H be a simple graph. We say that H satisfies the odd-cycle condition if between any two disjoint odd cycles there is an edge. We need the following

Theorem 2.1 [5] If $\pi = (d_1, d_2, \dots, d_n)$ is a graphic sequence with a realization G containing H as a subgraph, then there exists a realization G' of π containing H as a subgraph so that the vertices of H have the largest degrees of π .

Theorem 2.2 [4] Assume that H = (V(H), E(H)) satisfies the odd-cycle condition, where $V(H) = \{v_1, v_2, \dots, v_n\}$. There exists a subgraph $G \subseteq H$ such that every vertex v_i has degree d_i , if and only if

(1) $\sum_{i=1}^{n} d_i$ is even,

results.

(2) for every $A, B \subseteq V(H)$ such that $A \cap B = \emptyset$, we have

$$\sum_{v_i \in A} d_i \leq |\{(v_i, v_j) : v_i v_j \in E(H), v_i \in A, v_j \in V(H) \setminus B\}| + \sum_{v_i \in B} d_i$$

Theorem 2.3 [3] Let $\pi = (d_1, d_2, \dots, d_n) \in NS_n$, where $\sum_{i=1}^n d_i$ is even. Then π is graphic if and only if

$$\sum_{i=1}^{t} d_i \leq t(t-1) + \sum_{i=t+1}^{n} \min\{t, d_i\}$$

for each $t, 1 \le t \le n$.

Lemma 2.4 [19] If $\pi = (d_1, d_2, \dots, d_n)$ has a realization containing H as an induced subgraph so that the vertices of H have the largest degrees of π , then there exists a realization G of π with the vertex set $V(G) = \{v_1, v_2, \dots, v_n\}$ such that $d_G(v_i) = d_i$ for $1 \le i \le n$, $G[\{v_1, v_2, \dots, v_{|V(H)|}\}] = H$ and $d_H(v_1) \ge d_H(v_2) \ge \dots \ge d_H(v_{|V(H)|})$.

3 Main Theorems

Theorem 3.1 Let $n \ge r+1$, $3 \le k \le r+1$, $\pi = (d_1, d_2, \dots, d_n) \in GS_n$ with $d_{r+1-k} \ge r$ and $d_{r+1} \ge r-2$. Then π is potentially $A_{r+1} - C_k$ -graphic if and only if

$$\begin{split} \sum_{i=1}^{p} (d_i - r) + \sum_{i=r+2-k}^{r+1-k+q} (d_i - r + 2) + \sum_{i=r+2}^{s+r+1} d_i &\leq s(s-1) + 2(p+q)s \\ &+ \sum_{i=p+1}^{r+1-k} \min\{s, d_i - r\} \\ &+ \sum_{i=r+2-k+q}^{r+1} \min\{s, d_i - r + 2\} \\ &+ \sum_{i=s+r+2}^{n} \min\{p + q + s, d_i\} \end{split}$$

for any p, q and $s, 0 \le p \le r+1-k, 0 \le q \le k$ and $0 \le s \le n-r-1$.

Proof: First we prove the necessity. Assume that $\pi=(d_1,d_2,\cdots,d_n)\in GS_n$ satisfies the conditions of Theorem 3.1, and, G is a realization of π with the vertex set $V(G)=\{v_1,v_2,\cdots,v_n\}$ such that $d_G(v_i)=d_i$ for $i=1,2,\cdots,n$ and $G[\{v_1,v_2,\cdots,v_{r+1}\}]=K_{r+1}-C_k$ so that $v_{r+2-k}v_{r+3-k},v_{r+3-k},v_{r+3-k},v_{r+4-k},\cdots,v_rv_{r+1}$ and $v_{r+1}v_{r+2-k}\not\in E(G)$. For $0\le p\le r+1-k,0\le q\le k$ and $0\le s\le n-r-1$, denote $P=\{v_i\mid 1\le i\le p\},P'=\{v_i\mid p+1\le i\le r+1-k\},\ Q=\{v_i\mid r+2-k\le i\le r+1-k+q\},\ Q'=\{v_i\mid r+2-k+q\le i\le r+1\},\ S'=\{v_i\mid r+2\le i\le s+r+1\},\ S'=\{v_i\mid s+r+2\le i\le n\}$. The removal of the edges induced by $\{v_1,v_2,\cdots,v_{r+1}\}$ results in a graph G' in which all degrees in $\{v_1,v_2,\cdots,v_{r+1-k}\}$ are reduced by r=1. Hence,

$$m = \sum_{i=1}^{p} (d_i - r) + \sum_{i=r+2-k}^{r+1-k+q} (d_i - r + 2) + \sum_{i=r+2}^{s+r+1} d_i - (s(s-1) + 2(p+q)s)$$

is the minimum number of edges of G' with exactly one endvertex in $P \cup Q \cup S$ and

$$M = \sum_{i=p+1}^{r+1-k} \min\{s, d_i - r\} + \sum_{i=r+2-k+q}^{r+1} \min\{s, d_i - r + 2\} + \sum_{i=s+r+2}^{n} \min\{p + q + s, d_i\}$$

is the maximum number of edges of G' with exactly one endvertex in $P' \cup Q' \cup S'$. Thus, $m \leq M$ is true.

Now we prove the sufficiency. Let $n \geq r+1$ and $\pi = (d_1, d_2, \cdots, d_n) \in GS_n$ with $d_{r+1-k} \geq r$, $d_{r+1} \geq r-2$. Let $\pi' = (d'_1, d'_2, \cdots, d'_{r+1-k}, d'_{r+2-k}, \cdots, d'_{r+1-k}, d'_{r+2-k}, \cdots, d'_{r+1}, d'_{r+2}, \cdots, d'_n)$ where $d'_i = d_i - r$ for $1 \leq i \leq r+1-k$, $d'_i = d_i - r+2$ for $r+2-k \leq i \leq r+1$ and $d'_i = d_i$ for $r+2 \leq i \leq n$. Let H be the graph obtained from K_n with the vertex set $V(K_n) = \{v_1, v_2, \cdots, v_n\}$ by deleting all edges between v_i and v_j for any $i, j \in \{1, \cdots, r+1\}$. It is easy to see that π is potentially $A_{r+1} - C_k$ -graphic if and only if H has a subgraph G with the degree sequence π' such that every vertex v_i has degree d'_i . Notice that H satisfies the odd-cycle condition, we may use Theorem 2.2.

Let $T_1 = \{v_1, v_2, \cdots, v_{r+1-k}\}$, $T_2 = \{v_{r+2-k}, \cdots, v_{r+1}\}$ and $A, B \subseteq V(H)$ such that $A \cap B = \emptyset$. Let $A_1 = A \cap T_1$, $A_2 = A \cap T_2$, $A_3 = A \setminus \{T_1 \cup T_2\}$, $B_1 = B \cap T_1$, $B_2 = B \cap T_2$, $B_3 = B \setminus \{T_1 \cup T_2\}$ and set $p = |A_1|$, $q = |A_2|$, $s = |A_3|$, $b_1 = |B_1|$, $b_2 = |B_2|$, $b_3 = |B_3|$. For simplicity, we denote

$$K(p,q,s) = \sum_{i=1}^{p} (d_{i}-r) + \sum_{i=r+2-k}^{r+1-k+q} (d_{i}-r+2) + \sum_{i=r+2}^{s+r+1} d_{i}$$

$$L(p,q,s) = s(s-1) + 2(p+q)s + \sum_{i=p+1}^{r+1-k} \min\{s,d_{i}-r\}$$

$$+ \sum_{i=r+2-k+q}^{r+1} \min\{s,d_{i}-r+2\}$$

$$+ \sum_{i=s+r+2}^{n} \min\{p+q+s,d_{i}\}$$

$$K'(A,B) = \sum_{v,\in A} d'_{i} = \sum_{v,\in A_{1}} (d_{i}-r) + \sum_{v_{i}\in A_{2}} (d_{i}-r+2) + \sum_{v_{i}\in A_{3}} d_{i}$$

$$L'(A,B) = |\{(v_{i},v_{j}): v_{i}v_{j}\in E(H), v_{i}\in A, v_{j}\in V(H)\setminus B\}| + \sum_{v_{i}\in B_{1}} (d_{i}-r) + \sum_{v_{i}\in B_{2}} (d_{i}-r+2) + \sum_{v_{i}\in B_{3}} d_{i}$$

$$= \sum_{v_{i}\in B_{1}} (d_{i}-r) + \sum_{v_{i}\in B_{2}} (d_{i}-r+2) + \sum_{v_{i}\in B_{3}} d_{i}$$

Clearly, $K'(A, B) \leq K(p, q, s)$ and

$$|\{(v_i,v_j): v_iv_j \in E(H), v_i \in A, v_j \in V(H) \setminus B\}|$$

$$= 2(p+q)s+s(s-1)+s(r+1-k-p-b_1)+s(k-q-b_2)+(p+q+s)(n-(r+1)-s-b_3)$$

$$= 2(p+q)s+s(s-1)+\sum_{i=p+1}^{r+1-k-b_1}s+\sum_{i=r+2-k+q}^{r+1-b_2}s+\sum_{i=s+r+2}^{n-b_3}(p+q+s)$$

Thus,

$$\begin{split} L'(A,B) &= 2(p+q)s + s(s-1) + \sum_{i=p+1}^{r+1-k-b_1} s + \sum_{i=r+2-k+q}^{r+1-b_2} s + \sum_{i=s+r+2}^{n-b_3} (p+q+s) \\ &+ \sum_{v_i \in B_1} (d_i-r) + \sum_{v_i \in B_2} (d_i-r+2) + \sum_{v_i \in B_3} d_i \\ &\geq 2(p+q)s + s(s-1) + \sum_{i=p+1}^{r+1-k-b_1} s + \sum_{i=r+2-k+q}^{r+1-b_2} s + \sum_{i=s+r+2}^{n-b_3} (p+q+s) \\ &+ \sum_{i=r+2-k-b_1}^{r+1-k} (d_i-r) + \sum_{i=r+2-b_2}^{r+1} (d_i-r+2) + \sum_{i=n+1-b_3}^{n} d_i \\ &\geq 2(p+q)s + s(q-1) + \sum_{i=p+1}^{r+1-k} \min\{s, d_i-r\} + \sum_{i=r+2-k+q}^{r+1} \min\{s, d_i-r+2\} \\ &+ \sum_{i=s+r+2}^{n} \min\{p+q+s, d_i\} \end{split}$$

Since $K(p,q,s) \leq L(p,q,s)$, we have $K'(A,B) \leq L'(A,B)$. By Theorem 2.2, H has a subgraph G with the degree sequence π' such that every vertex v_i has degree d_i' .

This completes the proof.

=L(p,q,s)

Theorem 3.2 Let $n \ge r+1$, $3 \le k \le r+1$, $\pi = (d_1, d_2, \dots, d_n) \in GS_n$ with $d_{r+1-k} \ge r$ and $d_{r+1} \ge r-2$. If π is not potentially $\{K_{r+1}, K_{r+1} - H(H \subseteq C_k \text{ and } H \ne C_k)\}$ -graphic, then π is potentially $K_{r+1} - C_k$ -graphic if and only if π is potentially $K_{r+1} - C_k$ -graphic.

Proof: Clearly, we only need to show that if π is potentially $K_{r+1} - C_k$ -graphic, then π is potentially $A_{r+1} - C_k$ -graphic. This is the immediate consequence of Theorem 2.1 and Lemma 2.4.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, The Macmillan Press Ltd., 1976.
- [2] G.Chen. Potentially C₆-graphic sequences, J. Guangxi Univ. Nat. Sci. Ed. 28 (2003), no. 2, 119-124.
- [3] P.Erdos and T.Gallai, Graphs with given degrees of vertices, Math.Lapok, 11(1960),264-274.
- [4] D.R.Fulkerson. A.J.Hoffman and M.H.Mcandrew, Some properties of graphs with multiple edges, Canad.J.Math., 17(1965) 166-177.
- [5] R.J. Gould, M.S. Jacobson and J. Lehel, Potentially G-graphic degree sequences, in Combinatorics, Graph Theory and Algorithms, Vol. 2 (Y. Alavi et al., eds.), New Issues Press, Kalamazoo, MI, 1999, 451-460.
- [6] L.L.Hu and C.H.Lai, On potentially $K_5 C_4$ -graphic sequences, Ars Combinatoria. 99(2011), 175-192.
- [7] L.L.Hu and C.H.Lai, On potentially $K_5 E_3$ -graphic sequences, Ars Combinatoria, 101(2011)359-383.
- [8] L.L.Hu and C.H.Lai, On potentially 3-regular graph graphic sequences, Utilitas Mathematica,80(2009),33-51.
- [9] L.L.Hu and C.H.Lai, A Characterization On Potentially $K_6 C_4$ -graphic Sequences, Ars Combinatoria, 113(2014), 161-174.
- [10] A.E. Kézdy, J. Lehel: Degree sequences of graphs with prescribed clique size. In: Combinatorics, Graph Theory, and Algorithms, Vol. 2 (Y. Alavi, eds.). New Issues Press, Kalamazoo Michigan, 1999, pp. 535-544.
- [11] C.H.Lai, The Smallest Degree Sum that Yields Potentially C_k -graphic Sequences, J.Combin. Math. Combin. Comput. 49(2004), 57-64.
- [12] C.H.Lai and L.L.Hu, Potentially $K_m G$ -graphical sequences: A survey. Czechoslovak Maths Journal, 59(2009),1059-1075.
- [13] R.Luo. On potentially C_k -graphic sequences, Ars Combinatoria 64(2002):301-318. Zbl 1071.05520

- [14] A.R. Rao, An Erdös-Gallai type result on the clique number of a realization of a degree sequence. Unpublished.
- [15] Z.H.Xu and C.H.Lai, On potentially $K_6 C_5$ -graphic sequences, Utilitas Mathematica, 86(2011), 3-22.
- [16] J.H.Yin, Degree sequences of graphs containing a cycle with prescribed length. Czechoslovak Math. J. 59(2) (2009), 481-487.
- [17] J.H.Yin and Y.Wang, A characterization for a graphic sequence to have a realization containing a desired cycle, accepted by Utilitas Mathematica.
- [18] M.X.Yin, A characterization for a sequence to be potentially $K_6 E(K_3)$ -graphic, accepted by Ars Combinatoria.
- [19] M.X.Yin, Y.Wang, J.H.Yin and C.Zhong, On a characterization for a graphic sequence to be potentially $K_{r+1} E(G)$ -graphic, accepted by Ars Combinatoria.