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Abstract Key distribution is paramount for wireless sensor networks
(WSNs). The design of key management schemes is the most impor-
tant aspects and basic research field in WSNs. A key distribution
scheme based on symplectic geometry over fields is proposed, a 2-
dimensional subspace in symplectic geometry represents a node, all
2s-dimensional non-isotropic subspaces represent key pool, and guar-
antees every pair of nodes has shared key, so as to improve the net-
works connectivity. The performance analysis shows that the scheme
has good connectivity and higher resilience to node compromise com-
pares with other key pre-distribution schemes.
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1 Introduction

Recent advancements in micro-electro-mechanical systems and low power
and highly integrated electronic devices have led to the development and
wide application of wireless sensor networks (WSNs)ll, WSNs which inte-
grate wireless communication technology, sensing technology and computer
technology are considered as one of the most important technologies in the
21th century.
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1.1

Wireless Sensor Networks

A WSNI[23] is an ad hoc network consisting of spatially distributed sensor
nodes that autonomously gather data and use wireless communication to
transmit the information that they collect. The typical characteristics of a
WSN are:

1.

Highly constrained nodes. The nodes are very small battery-powered
devices and are highly constrained with respect to memory storage
and power. They are thus limited in their computational and com-
munication ability.

Lack of central control. Once deployed, most WSNs do not feature
any central control node. Thus all network functionality must be
achieved through co-operation between the nodes.

. Requirement to form a network to a sink. In most WSNs the assump-

tion is that the sensor nodes will take readings and then attempt to
communicate this data back to a sink, which is a more powerful de-
vice that will periodically connect to the WSN and request data. The
location of this sink in the network is typically not fixed (it could, for
example, be a portable laptop).

. Hop-based communication. Most WSNs use radio communication to

connect between nodes. The constrained nature of the nodes means
that in most cases the communication range of a node will be much
smaller than the network diameter. Thus nodes communicate by
hopping, meaning that a node passes data to a node within range,
who then passes it onto a node within its range, etc.

Dynamic network structure. It is generally assumed that WSNs are
highly dynamic. Nodes are often assumed to regularly sleep to con-
serve battery power. Nodes expire once their battery is drained. In
some WSNs the nodes are mobile, although in most current applica-
tions they are static.

Nodes vulnerable to compromise. The constrained nature of sensor
nodes mean that strong security protection such as tamper-resistance
is usually not viable. Thus it is normally assumed that sensor nodes
can be fairly easily captured and that any sensitive information (such
as keys) that is stored on them is likely to be exposed.

Sensor networks consist of many tiny and inexpensive sensing devices,
which have low battery power, low computation speed, limited memory ca-
pability and limited resources, and are scattered randomly in large numbers
over a target area.
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Sensor networks are increasingly used in numerous fields such as mili-
tary, medical and industrial sectors. They are more and more involved in
several sensitive applications which require sophisticated security services.
Due to the resource limitations, existing security solutions for conventional
networks could not be used in WSNs. So, the security issues become one
of the main challenges for the resource constrained environment of WSNs,

Key management is a corner stone service for many security services
such as confidentiality and authentication which are required to secure com-
munications in WSNs. The establishment of secure links between nodes is
a challenging problem in WSNs. Unfortunately, public key based solutions,
which provide efficient key management services in conventional networks,
are unsuitable for WSNs because of resource limitations.

1.2 Key Pre-distribution Schemes for WSNs

Key management problems in WSNs have been extensively studied in the
literature and several solutions have been proposed. According to the key
distribution method of nodes, the key pre-distribution schemes (KPSs) for
WSNs can be divided into probabilistic key management schemes and de-
terministic key management schemes.

Probabilistic key pre-distribution scheme is a key pre-distribution scheme
model of probability results. In this scheme, keys are drawn randomly from
a key pool and placed in the sensor nodes prior to deployment which en-
sure that the probability of any two nodes have shared key is higher than
a certain value. The set of keys in a node is called a key chain. Random
key pre-distribution schemes have the following two kinds:

1. Basic random key pre-distribution schemes.

The study of KPSs for WSNs began in the paper by Eschenauer and
Gligor!®! in 2002. They proposed a basic random key pre-distribution
scheme with computational security and “good” connectivity of nodes.
The KPS for WSN can be thus regarded as consisting of the following
three stages:

(a) Key pre-distribution. Each node is pre-loaded with a key ring of
k keys randomly selected from a large key pool denoted by S.
After the deployment step, each node exchanges with each of its
neighbors the list of key identifiers that it maintains in order to
identify the common keys.

(b) Shared key discovery. If two nodes within communication range
of one another wish to deploy a cryptographic service, they first
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need to determine if they have any keys in common. The default
method is to broadcast their node allocations to one another, but
more efficient techniques can sometimes be found. If they have
key identifiers in common then a session key can be generated
from the common keys associated with these identifiers by means
of a suitable key derivation function.

(c) Path-key establishment. If two nodes fail to identify common
keys during shared key discovery, then they need to find a se-
cure path between one another by employing intermediate nodes
which can. Obviously, the shorter this secure path the better.

In the basic random key pre-distribution scheme, there exists a math-
ematical relationship among the probability p of shared keys between
two nodes, the key pool S and the key ring length &:

S|

(1 X )2(IS|-k+ 3
1

P=" (1_]2_k)(lsl-2k+%)'
S|

2. g-composite random key pre-distribution scheme

Based on the basic Eschenauer-Gligor scheme, Chan, Perrig, and Song!”]
proposed a g-composite random key pre-distribution scheme, which in-
creases the security of key setup such that an attacker has to compromise
many more nodes to achieve a high probability of compromising commu-
nication. The relationship among the probability p of shared keys between
two nodes, the key pool S and the key ring length k as follows:

&= C(181,9) C (IS] - i, 2(k — ) C (2(k = ), (k = ©))
C2(1S1,k)

p=1-

i=0

Deterministic key pre-distribution schemes ensure that each node can
establish a pair-wise key with all its neighbors. The main drawback of this
scheme is the non scalability because the number of the stored keys is equal
to the network size which is very restrictive.

Camtepe and Yener!®! proposed a new deterministic key pre-distribution
scheme based on symmetric balanced incomplete block design (SBIBD),
they introduced a mapping from the SBIBD to the pool based on key
distribution. The scheme has total secure connectivity because each pair
of two key rings shares exactly one common key.. However, the SBIBD
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scheme does not scale to very large networks. Indeed, using key rings of
n + 1 keys we can generate only n2 + n + 1 key rings.

Blundo et al.[®) proposed several schemes which allow any group of
t parties to compute a common key while being secure against collusion
between some of them. These schemes focus on saving communication
costs while memory constraints are not placed on group members. When
¢t = 2, one of these schemes is actually a special case of Bloms schemel1%]
which uses one key space for all nodes to make sure that any pair can
compute its pairwise key in this key space.

Liul'V proposed a key pre-distribution scheme based on polynomial. Lee
and Stinson!'? proposed a key pre-distribution scheme by using regular
graphs. These models can establish key path effectively and ensure the
network security. However, the probability of dual key establishing between
sensor nodes is low, which costs higher communication overhead.

Chakrabarti et al.l'l provided a scheme where they randomly choose =
number of blocks which merged to form a new node. They chose the blocks
randomly, so for some cases they could not avoid the occurrence of inter
node connectivity.

Aldar!'” introduced a graph theoretical framework to study the funda-
mental tradeoffs between key storage, average key path length and resilience
of key pre-distribution schemes for wireless sensor networks. Based on the
proposed framework, a lower bound on key storage and an upper bound on
the compromising probability are given.

S Khalid et al.[!8l evaluated various existing deterministic, probabilistic
and hybrid type of key pre-distribution and dynamic key generation al-
gorithms for distributing pair-wise, group-wise and network-wise keys. In
addition, they proposed a key pre-distribution scheme using combinato-
ria] design and traversal design which improve the resiliency and achieve
sufficient level of security in the network.

In this paper, we first use symplectic geometry over finite field to con-
struct a key pre-distribution scheme for wireless sensor networks. A 2-
dimensional subspace in symplectic geometry represents a node and the 2s-
dimensional non-isotropic subspaces orthogonal to the 2-dimensional sub-
space represent the keys.

Then we study and compare the connectivity and security of our scheme
with respect to existing schemes. We study the security of such a network in
terms of a parameter, which consider the proportion of nodes disconnected,
when m nodes are compromised. We show that our design results in much
better connectivity and security compared to (5], [12], [13], [16].
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1.3 Organization

This paper is organized as follows. Section 2 presents the mathematical
structures that are used in this paper. Section 3 we present our new key
pre-distribution scheme. Section 4 we discuss the connectivity and security
of our scheme and compare our scheme with several other existing ones.
Section 5 we conclude with some open problems.

2 Symplectic Geometry

Assume that F, is a finite field with ¢ elements, where g is a prime power.

Let 10
0 v
K= ( 0 )

be a 2v x 2v matrix over Fq. The 2v x 2v matrices T over Fq such that
TK 'T = K form a group with the matrix multiplication as its composition,
where *T denotes the transpose of T. This group is called the symplectic
group of degree 2v over F,, and denoted by Spa.(F,), i.e.

Spaw(F,) = {T € GLA(F,)|TK ‘T = K}.

Let ]F((,z") be the 2v-dimensional row vector space over IF,. An action of
Spa(F,) on F2) defined as follows:

F) x Spy,(Fy) — F@)
((xlyst"')xzu))T) Land (xl’xZa"':xml)T-

The vector space ]F.(,2") together with the action of Spa,(F,) is called the
2v-dimensional symplectic space over F,.

Let P be an m-dimensional vector subspace of I[“((,z"), we also use the
same symbol P to denote the m x 2v matrix with rank m over F,. An
m-dimensional subspace P is called a subspace of type (m, s), if the rank
of PK P be 2s. In particular, subspaces of type (m,0) are called m-
dimensional totally isotropic subspace, and subspaces of type (2s,s) are
called 2s-dimensional non-isotropic subspace.

The following theorems will be used in the later proof process and The-
orem 2.1-2.5 are adopted from [15].

Theorem 2.1 There exists subspace of type (m,s) in 2v-dimensional
symplectic space lF.(,z"), if and only if 2s < m < v+s. Moreover, a subspace
of type (m,, s)) contained in a given subspace of type (m,s), if and only if
max(0,a) < min(B,7), wherea =m; —s—s1, f=m—2s, y =my — 2s1.
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Theorem 2.2 The number of all subspaces of type (m, s) in 2v-dimensional
symplectic space ]F.(,z") is denoted by N(m, s;2v), then

14

II @-v

N(m, s;20) = g#(te-m)  =vhemmd] :
[I*-1 I] ¢ -1)

Theorem 2.3 The number of all subspaces of type (my, s1) in 2v-dimensional
symplectic space IFf,z") contained in a given subspaces of type (m,s) is de-
noted by N(my, s1;m, s; 2v), then

N(my,s1;m,s; 2v)

s B
mngy 11 @ -1 I @ -1

i=k—a+1 i=f—k+1 251 (k—o)+(m1~k)(B~k)

sy 1=k k ! |
k=max(0,cx) H(q21 _ 1) H(q1 — 1) 1—‘[((‘1t —_ 1)

i=1 i=1 =1

Theorem 2.4 Let0 < m < n, then the number of m-dimensional vector
subspaces in IF,(,") is denoted by N(m,n), then

n

II «-1
N(m,n) = i=":nm+l

[T -1
i=1

Let v be an arbitrary non-zero vector, a vector u in 2v-dimensional
symplectic space ]Ff,z") is orthogonal to vector v, if uKvt = 0. Let PL
denote the dual subspace of P, i.e.,

Pt ={y e F*) | yKz* = 0,for allx € P}.

Obviously, PL is a (2v — m)-dimensional vector subspace of Fi2”),
We call P is orthogonal to @, if P C Q+.

Theorem 2.5 Suppose that P is a subspaces of type (m, s) in 2v-dimensional

symplectic space I[“f,z"), then the dual subspace of P is a subspaces of type
(v —m,v+s—m).
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Theorem 2.6 Suppose that P is a subspaces of type (m, s) in 2v-dimensional

symplectic space IF.(,z"), then the number of all subspaces of type (m’,s') or-
thogonal to P is N(m L8120 — m, v + 8 —m;20).

Proof. Let P be a subspaces of type (m, s) in 2v-dimensional symplectic
space lFé,z"). Without loss of generality, let

I 0 0 0 0 0
P= 0 0 0 I 0 0
0 Im=2) o 0 0 0

s m—2s v+s-m s m-2s v+s-m

Assume that Q is a subspace of type (m’,s') orthogonal to P, then
Q C P*. In addition, PL is a subspaces of type (2v — m,v + s — m).
Then we need to calculate the number of all subspaces of type (m',s')

in 2v-dimensional symplectic space IF'((,z"') c,ontained in a given subspaces of
type (2v — m,v + s —m), that is, N(m ,s ; 2v — m,v + s — m; 2v).

3 The Construction of Key Pre-distribution
Schemes

Let g be a power of prime number, and ]F,(,zv)(u > 5) be the 2v-dimensional
2v
row vector symplectic space over Fq. There are 9q_—'11 1-dimensional sub-

spaces in 2v-dimensional symplectic space IF'((,2"). We choose the smallest ¢

2u_1
such that n < [F—=5].

Choice of parameter

Nodes Let n be the total number of nodes that the network can sup-
port. The nodes of the senor network are denoted by Py, Ps,---, and Py,
respectively.

There are N(2,2v) 2-dimensional subspaces in 2v-dimensional symplec-
tic space lFf,z"). Since n << N(2,2v), we take n distinct 2-dimensional
subspaces, which are denoted by Wy ,Ws,.--,W,_, and W, and assign
W; to the node P;, i =1,2,---,n.

Key pool Let s be a fixed integer, 1 < s < v. Each subspace of type
(2s, s) in 2v-dimensional symplectic space IF}(,Z") represents a key, the set of
all subspaces of type (2s, s) in symplectic space IFS2") is a key pool, so the
size of the key pool is N{(2s, s;2v).



Key chains For each sensor assign keys to sensor P; corresponding
to the subspaces of type '(2s, s) orthogonal to the subspace W;, so the key
chain in the node P, is the set of all the subspaces of type (2s, s) orthogonal

to W; in symplectic space F{**).

We use (P;) to denote the set of all keys of a node P;, i.e. (F;) is the
key chain of the node P;. The set of shared keys of two nodes P; and P;is
denoted by (P;) N (P;). We also let 7; = |(P;)| and Ai; = [(P:) N (B)]-

Additional, we also note that (P;) N (P;) is the set of all subspaces of
type (2s, s) orthogonal to the subspace W; + W; in symplectic space IFf,z").

4 Analysis of Our Scheme

This section analyzes our scheme, calculating the number of keys required
for each node, the number of shared keys in two nodes, the connectivity
and security of the network.

4.1 Memory requirement

The following Lemmas 4.1 and 4.2 help us to calculate the number of keys
in each node.

Lemma 4.1 If W; is a subspace of type (2,0), then the number of keys
in node P; is N(2s,s;,2v — 2,v — 2; 2v).

Proof. If W is a subspace of type (2, 0), then the keys in node P; are the
subspaces of type (2s,s) orthogonal to the subspace of type (2,0). Hence
the number of keys in node n; is N(2s, s; 2v — 2, v — 2; 2v) by Theorem 2.6.

Lemma 4.2 If W; is a subspace of type (2,1), then the number of keys
in node P; is N(2s,s;2v —2,v — 1;2v).

Proof. If W, is a subspace of type (2, 1), then the keys in node P; are the
subspaces of type (2s, s) orthogonal to the subspace of type (2,1). Hence
the number of keys in node P; is N(2s,s;2v — 2,v — 1;2v).

From Lemmas 4.1 and 4.2 it follows that:

Theorem 4.1 The number of keys in node P; ist;, thenr; = N(2s,s; 20—
2,v—2;2v) or N(2s,8;2v —2,v —1;2v).



The following Lemmas 4.3, 4.4 and 4.5 help us to calculate the number
of keys in common between any two nodes P; and P;.

Lemma 4.3 If both W; and W; are subspaces of type (2,0), i # j, then
W: + W; is a subspace of type (3,0), (3,1), (4,0), (4,1) or (4,2).

Proof. From our construction, we know that for any W;, Wj, i # j, then
W; # W;. By the dimension formula, dim(W; + W;) > 3. It means that
W; + W; may be a subspace of type (3,0), (3,1), (4,0), (4,1) or (4,2).

Since Spa,(F,) acts transitively on each set of subspaces of the same
type, without loss of generality, we can determine the types of W; 4- W;
according to the matrix representations of W; and W;.

1 If
Y X
7100 0 0 0\
W’=(0 10 0 0 0)*
v v
710 0 00 0 0
Wi‘(o 0 0 001 0)’
then W; + W; is a subspace of type (3,0).
2. If , ,
7100 -0 0 0\
W’=<o 10 0 0 0)’
710 -0 000 - 0Y)
Wj—(o O --- 0 010 --- 0)’
then W; + W; is a subspace of type (3,1).
3. If
X X
7100 -0 0 --- 0\
Wi:(o 10 -0 0 - o)’
v 14
70010 -0 0 - 0Y)
Wi=<0001---0 0---0)’
then W; + W; is a subspace of type (4,0).
4. If
. e
7100 --- 0 0 0
W"(o 10 -0 0 o)’
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>

” Y nY

v
1

00 0 00 --- 0

Wf‘(ooo---o 01...0)’
then W; + W; is a subspace of type (4,1).
5. If
X X

7100 .- 0 0 .- 0)

Wf=(01o- 0 0-.-0)’
1 v

70 ... 0 100 ... 0\

Wf:(o v 0 010 - 0>'

then W; + W; is a subspace of type (4, 2).

Lemma 4.4 If W; and W; are subspaces of type (2,0) and (2,1), re-
spectively, then W; + W; is a subspace of type (3,1) or (4,1).

Proof. Similar to Lemma 4.3, we can prove that W; + W; is a subspace
of type (3,1) or (4,1).

1 If
v v_
7100 -0 0 0\
W"(o 10 ---0 0 o)’
v v
710 -0 00 --- 0
then W; 4+ W; is a subspace of type (3,1).
9. If
v v
7100 --- 0 0 0\
W"(o 10 --0 0 0)’
Z_ v
7001 -0 000 - 0
Wj‘(ooo---o 001---0)’

then W; + W; is a subspace of type (4,1).

Lemma 4.5 If both W; and W; are subspaces of type (2,1), i # j, then
W; + W; is a subspace of type (3,1) or (4,2).
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Proof. Similar to Lemma 4.3, we can prove that W; + W; is a subspace
of type (3,1) or (4,2).

1. If
v v
~ A et e
w10 -0 00 -0
i=loo0o ...0 10 - 0)
v v
711 --0 00 - 0Y
Wi:(oo---o 10.--0)’
then W; + W; is a subspace of type (3,1).
2. I
z 4
710 -0 00 0\
W“(o 0 -+ 0 10 0)’
e _x
01 -0 00 0\
WJ‘(O 0 0 01 0)’

then W; + W, is a subspace of type (4,2).
From Lemmas 4.3, 4.4 and 4.5 it follows that:

Theorem 4.2 The number of keys in common between any two nodes
P; and P; are listed as follows in the Table 1:

i W, Wj Wi + Wj A,j = I(P.) N (PJ)! s and v
3, 0) N(28,8;2v -3, v-3;2v) s<v-3
3,1) N(2s,8,2v -3, v—-2,2v) s<v-2
(2,0) (2,0) 4, 0) N(2s,8,2v -4, v—4;2v) s<v-—-4
4, 1) N(2s,s;2v — 4,v - 3;2v) s<v-3
4, 2) N(2s,52v —4,v—-2;2v) s<v-2
3,1 N(2s5,8;2v -3, v—2;2v) s<v-2
(2,00 (2,1 :
4,1 N(2s,82v —4,v—-3;2v) s<v-3
3,1) N(2s,82v -3, v—2;2v) s<v-2
21n @
4, 2) N(2s,8;2v —4,v-2;20) s<v-2

Table 1: The number of shared keys in nodes P; and P;

Theorem 4.3 If m nodes are compromised, and m < q%°, then no nodes
will be disconnected.
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Proof. Let Py, Py, - -, P,, be the m nodes which are compromised, then
the keys in the m nodes becomes fully ineffective which can’t be used by
other nodes. Let P, be an uncompromised node.

From table 1, there are at most A keys in common between two nodes
P;and P; (1,7 =1,2,---,m,i # j), where

v—2

T -1

A=N(2s,520 - 3,0 —220) = =777! gPetv=s,

[I@*-1)
i=1

In addition, by Theorem 4.1, there are at lest u keys in the node P;, where

v—-2
II @-y

p=N(2ss82v-2,v-2; 2v) = i=v=—s—1 q2s(u—s).

s

[Te* -1
i=1

Since m < ¢%*, mA < p. Hence the network will be security.
We now demonstrate this Theorem with the following example.

Example 4.1 We compare our scheme with Samiran-Sushmita’s scheme,
as exhibited in the following table 2.

Our scheme Samiran-Sushmita’s schemel!3! J
o Telelm<i T n Ta] meth
682 4 1 m<16 870 59 m< 15

| 1640 |3 ]2] m<sr | 1080 | 80 | m<22 |
|10923|4|2|m<255|13572|233 m < 59

Table 2: compare our scheme with Samiran-Sushmita’s scheme

Analyzing the data in the table 2, it is clear to see that our scheme has
more compromise nodes with closing numbers of nodes under the situation
of network security, so it has a better connectivity.

4.2 Connectivity

Two nodes within communication range can exchange information securely,
if they have a common key. In most probabilistic schemes, this is not
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possible, since key chains are chosen randomly. In our scheme, any two
nodes share at least one key, which has full connectivity and reduces delays
occurring in multihop communications.

We compare the connectivity with several other existing ones, as exhib-
ited in the following table 3.

Schemex eg.clsl  c.yl8l  Lpl2  cMm.ril®  ppiBpl®  samiran(!3 Our

Conncctivity No Yes No No Yas Yes Yes

Table 3: Comparison of the connectivity for different schemes

4.3 Security

If a node is captured by the enemy, then the information stored in the node
is no longer safe. Once the node P; is captured which stores the shared
keys between node P; and P;, the connection between P; and P; will be
destroyed. Define the loss probability:

the number of nodes disconnected

the total number of nodes

This paper studies the security of the wireless sensor networks by mea-
suring the proportion of nodes disconnected, when m nodes are compro-
mised, and it is defined as follows.

fail(1l) =

Fail(m) = 1— (1 — fail(1))™.

We compare the proportion of nodes disconnected with several other
existing ones, as exhibited in the following table 4.

Schemes Lee-Stinsonl12] Samiran-Sushmital13l Our schome
n 1187 1187 1980 1980 1640 1640 10923 10923
m 15 20 15 20 15 20 20 40
fail(m) 0.1732 0.2874 0.1081 0.1837 0.1281 0.1788 0.0354 0.1378

Table 4: The proportion of nodes disconnected in different schemes

Clearly, our scheme works best when it is a large network with ten thou-
sands of nodes. In addition, the sensor nodes are consist of a 2-dimensional
subspace in a symplectic space, this structure increases the security of the
network. In most of the existing schemes, the global connectivity of WSN
are only about 0.6, but in this paper, the global and local connectivity are
1, so it can ensure high network security connectivity when reducing the
number of shared key between adjacent nodes appropriately.
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5 Conclusion

Wireless sensor networks are increasingly widespread, their security prob-
lems draw more and more people’s attention, where the key pre-distribution
is the most important safety problem in wireless sensor networks. Because
wireless sensor nodes have resource constraints, traditional key distribution
method is unsuitable for wireless sensor networks. In the current scenario,
the existence of a shared key and the key path length can not be guaran-
teed in some random pre-distribution schemes based on probabilities, it is
difficult to support large-scale networks.

In this paper, the characteristic and the research actuality of wireless
sensor networks are described, and the existing random-based key pre-
distribution schemes, such as Eschenauer-Gligor scheme and Chan-Perrig-
Song scheme are discussed. We present the deterministic pre-distribution
scheme based on symplectic spaces which ensure the establishment of keys
between neighboring nodes to have higher probability, and solve the secu-
rity problems in the original schemes.
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