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Abstract A vertex subset F is a Rj-vertex-cut of a connected graph G
if G — F is disconnected and every vertex in G — F' has at least k good
neighbors in G — F. The cardinality of the minimum Rj-vertex-cut of G is
the Ry-connectivity of G, denoted by x*(G). This parameter measures a
kind of conditional fault tolerance of networks. In this paper, we determine
R;-connectivity and Ry-connectivity of recursive circulant graphs G(2™, 2).
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1 Introduction

For graph-theoretical terminologies and notations not given here, we follow
Bondy [1]. In a network, traditional connectivity is an important mea-
sure since it can correctly reflect the fault tolerance of network systems
with few processors. However, it always underestimates the resilience of
large networks. There is a discrepancy because the occurrence of events
which would disrupt a large network after a few processor or link failures
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is highly unlikely. To overcome such shortcoming, Latifi et al [7] defined
Rp-connectivity [5] as follows. A vertex subset F is a Rj-vertex-cut of a
connected graph G if G — F is disconnected and every vertex in G — F
has at least k good neighbors in G — F. The cardinality of the minimum
Ry-vertex-cut of G is the Ri-connectivity of G, denoted by x*(G). Park
and Chwa [11] proposed an interconnection structure for multi-computer
networks as follows.

Definition 1. The recursive circulant G(N, d) has vertezx setV = {0,1,...,
N —1}, and edge set E = {(v,w) v € V,w € V| there exists i, 0 < i <
[logg N] —1, such that v+d' =w( mod N)}.

Definition 2. For a group X, let S be a subset of X such that 1x ¢ S
and S~1 = S, the Cayley graph Cay(X,S) is a graph with vertez set X
and edge set {(g,s9)| g € X,s € S}.

The hypercube is a well known model for computer networks which has
been attracted many attentions in the past four decades, for example [2, 3]
and [6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. An n-dimensional
hypercube is an undirected graph Q, = (V, E) with |[V| = 2" and |E| =
n2"~1, Each vertex can be represented by an n-bit binary string. There is
an edge between two vertices whenever their binary string representation
differs in exactly one bit position.

Combining Definition 1 with Definition 2, it can be seen that G(N,d) =
Cay(Zn,{£d®, +d',...,+dl°8a N1}), Thus, G(N,d) is vertex symmetric.
By the definition of the hypercube, we have G(2™,2) is a supergraph of
Qm, see [8, 18] for the studies of embedding a graph in recursive circulants.
Three simple examples of recursive circulants are given in Fig.1.
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Fig.1. Examples of recursive circulants

In particular, G(2™, 2) has has many advantages over the m-dimensional
hypercube, see Table.1. It can been seen that if a hypercube and recursive



circulant G(2™, 2) have the same number of vertices, the recursive circulant
G(2™, 2) has higher connectivity which increases the fault tolerance, smaller
diameter which reduces the transmission delay, etc., see [7, 11] for the
details.

Graph Dimension | Vertices | Degree | Diameter | Connectivity

Qm m 2m m m m

G(2™,2) | m am 2m—-1 | %2 2m -1
Table.1

There are many results on the Rj-connectivity of hypercubes, see [7, 9,
13, 15] for examples. Park and Chwa [11] shown that the connectivity of
G(2™,2) k(G(2™,2)) equals its regular degree 2m — 1. In this note, we
determine the Rj-connectivity of G(2™,2) for h =1, 2.

2 preliminaries

For the graphs G(cd™,d), we always assume m > 1. Park and Chwa
shown in [11] that recursive circulant G(N,d) has a recursive structure
when N = cd™,1 < ¢ < d as follows.

Property 1. Let V; be a subset of vertices in G(cd™,d) such that V; =
{v|v=i( modd)},m >1,0<i<d. The subgraph of G(cd™,d) induced
by each V; is isomorphic to G(cd™ 1, d).

G(cd™,d),m > 1, can be defined recursively on d copies of G(cd™!,d)
as follows. Let G;(V;,E;),0 < i < d, be a copy of G(cd™"!,d). We
assume that V; = {v§,},...,%}ym-1_,} and relabel v} by jd +i. Thus
V(G(cd™, d)) = UpcicaVis and E(G(cd™,d)) = Upcicq BiU X, where
X = {(v,w) | v —w = £1( mod ed™)}. Furthermore, the edges of X
form a hamiltonian cycle of G(cd™!,d), see [11] for the details. The
construction of G(22,2) on two copies of G(22,2) is shown in Fig.1.

For an edge e = (z,y) of G(2™,2), if z — y = £2¢( mod 2™)}, we say
e has label i. For G(2™,2), let V; = {v | v = i( mod 2)},¢ = 0,1. By
the Property 1, G(2™,2)[V;] is isomorphic to G(2™~1,2). For notational
convenience, we use X to denote the hamiltonian cycle of G(2™,2) con-
sisting of the edge set {(z,y) |  — y = £1( mod 2™)}, use G;(2™,2) to



denote G(2™, 2)[Vi] and assume that M; and M, are two perfect matching
of G(2™,2) such that X = M; |JM,. Let S be a vertex set of G;(2™,2).
We use Ng(z) to denote the neighborhood of the vertex z in G, Ng(S) to
denote the set | J,cs Ne(z)\ S, Nus,(S) to denote the set of the vertex ad-
jacent to a vertex of S by some edge of M;. If no confusion, the subscripts
of Ng(z) and Ng(S) are always omitted in the following.

Lemma 2.1. Let H be a triangle in G(2™,2). Then there are two edges
of H having the same label |, and another edge has label l + 1.

Proof. Assume that V(H) = {z,y, 2} with z < y < z, and (z, ), (¥, ) and
(z, z) have label i, j and k, respectively. Since H is a triangle, we have

42"+ 27 = z 4 2¥(mod2™)

Notice that %, 7, k are less than m, we have

i=j
k=i+1=j+1.

Thus, there are two edges of H having the same label I/, and another edge
has label { + 1. O

Let (z,y) be an edge of G(2™,2) with label i. Without loss of generality
we can assume y = z + 2¢, then we can see that all the common neighbors
of z and y are y + 2%,z — 2°,x + 21 if 1 < i < m — 2. By an argument
similar to above and Lemma 2.1, we have the following corollary.

Corollary 2.2. If (z,y) € E(G(2™,2)) has label i, then

2, i1 =0o0ri=m-1
N@)(IN@)| =" ’
N @ NG {3, i <icm 2

Lemma 2.3. Suppose z,y are two distinct nonadjacent vertices of G(2™, 2).
Then [IN(z) 1 N(y)| < 4.

Proof. Let z,y be two distinct nonadjacent vertices of G(2™,2). Note that
G(2™,2)) is vertex symmetry, without loss of generality we can assume
z = 0. Assume y = 2° + 27, By the definition of G(27,2)), we can see that
all the common neighbors of = and y are 2¢,27 and —2%, —2! if k,! exist,
where k,l are two integers such that —2* — 2! = 2¢ + 27( mod 2™). Note
that %, 5,k,l <m — 1, we have [N(z) N N(y)| < 4. O



In particular, it is not difficult to see that |N(z) (N (y)| = 4 if and
only if z —y = £(2™2 4+ 2™~3)( mod 2™). For example, the common
neighborhood of 0 and 2™~2 4 2m~3 js {2m~3 gm—2 _gm-1 _gm—3}

Observation 1. Let (z,y) € E(G(24,2)). Then N({z,y}) is a R:-vertez-
cut of G(24,2) (see Fig.2).
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Fig.2 G(24,2)

Lemma 2.4. Let (z,y) € E(G(2™,2)). Then N({z,y}) is a Ry-vertez-cut
of G(2™,2). Furthermore, k}(G(2™,2)) <4m — 7.

Proof. By induction on m. Let (z,y) € E(G(2™,2)) with label . If m = 4,
then the result holds by Observation 1. Suppose m > 5 in the following.
We shall show that V(G(2™,2)) — N({z,y}) contains no isolated vertex.

Case 1. i=0.

In this case, (z,y) is an edge between Gp(2™,2) and G1(2™, 2). Without
loss of generality, we assume that z € Vg,y € V;. It is sufficient to show
that each vertex z € V(G(2™,2)) — N({z,y}) U{z,y} has a neighbor in
V(G(2™,2)) — N({z,y}) U{z,y}. Without loss of generality, we assume
that z € V(Go(2™,2)). By Lemma 2.3, z and z have at most 4 common
neighbors, and note that |Ng,(sm 2)(2)| = 2(m—1)—1=2m—-3 > 7form >
5, thus there exists a neighbor of z in V(Go(2™,2)) — N({z,y}) U{z, v}



Case2. 1<i<m-1.

In this case, we have either (z,y) € E(Go(2™,2)) or (z,y) € E(G1(2™,2)).
Without loss of generality, we assume that (z,y) € E(Go(2™,2)). Note
that |[IN({z,y}) N V(G1(2™,2)| < 4 and &(G1(2™,2)) = 2(m—-1)—1 =
2m — 3 > 7 for m > 5. Hence G1(2™,2) — N({z,y}) is connected, that
is, there exists no isolated vertex in G1(2™,2) — N({z,y}). By induction
hypothesis, Ng,(am 2)({z,y}) is a Ry-vertex-cut of Go(2™, 2), that is, there
exists no isolated vertex in Go(2™,2) — N({z,y}). Thus, N({z,y}) is a
R,-vertex-cut of G(2™,2).

Note that if (z,y) € E(G(2™,2)) has label i,1 < ¢ < m — 2, then
IN(z) N N(y)] = 3 by Corollary 2.2. Thus, k}(G(2™,2)) < |N(z)| +
INW)I - l{z. 9} - IN@) N@) =2@m—1)—2-8=4m-7. O

By an argument similar to above, we have the following results.

Observation 2. For any triangle H of G(2%,2), N(H) is a Ry-vertez-cut
of G(25,2).

Lemma 2.5. For any triangle H of G(2™,2),m > 5, N(H) is a Ry-vertez-
cut of G(2™,2). Furthermore, k*(G(2™,2)) < 6m — 15.

3 Main result
Theorem 3.1. s!(G(2™,2)) =4m — 7 for m > 4.

Proof. By Lemma 2.4, x!(G(2™,2)) < 4m—7. Now we show that x!(G(2™,
2))>24m-—17.

Suppose by the way of contradiction that £!(G(2™,2)) < 4m —8. Let F
be a minimum R;-vertex-cut, then |F| < 4m — 8. Denote by F; the vertex
set F(V(Gi(2™,2)) in the following arguments. Note that x(Go(2™,2)) =
k(Go(2™,2)) = 2(m — 1) — 1, we have at least one of Go(2™,2) — Fy and
G1(2™,2) — F; is connected.

Case 1. Go(2™,2) — Fp and G,(2™,2) — F; are both connected.

We claim that Go(2™,2) — Fy is connected to G;(2™,2) — Fy. Note
that | Ny, (Go(2™,2)) NV (G1(2™,2))| = 2™, |F| =4m —8 and 2™~ ! >
4m — 8 for m > 4. If m > 5, then the above inequality is strict, that is,
there exists z € Go(2™,2) — Fo,y € G1(2™,2) — F; such that (z,y) € M;.



That is, Go(2™, 2) — Fp is connected to G1(2™,2) — F;. On the other hand,
if m = 4, then the above inequality becomes equality, but clearly there
exists z € Go(2™,2) — Fo,y € G1(2™,2) — F such that (z,y) € M2. That
is, Go(2™,2) — Fp is connects to G1(2™,2) — F}.

Case 2. One of Go(2™,2) — Fp and G1(2™,2) — F) is disconnected.
Without loss of generality, we assume that Go(2™, 2) — Fp is disconnected
and has r components, Hy, Hy,... H,,7 > 2. Since F is a R;-vertex-cut,
there exists a nontrivial component H; of Go(2™,2) — Fp such that it is
disconnected to G1(2™,2)— F. Take (z,y) € E(H;) and assume that (z,y)
has label i. Let S; = (Ngy2m,2)({z,¥})) N F, S2 = (Ngy2m,2)({z, y}))\ F
and S; = Nal(gm,g)(x)UNGl(gm’z)(y), see Fig.3. Clearly, S; € F;. By
the definition of G(2™,2), it is not difficult to see that S; has at least |S,|
neighbors in G1(2™, 2) which are not in S3. Thus |F| > |S1|+|S2| +|S3| =
4dm — 7 > 4m - 8, a contradiction. O

G0(2m’ 2) 01(2"‘,2)

Theorem 3.2. xK2(G(2™,2)) = 6m — 15 for m > 5.

Proof. By Lemma 2.5, k2(G(2™,2)) < 6m—15. Now we show that x%(G(2™,
2)) > 6m — 15. Suppose by the way of contradiction that x2(G(2™,2)) <



6m — 16. Let F' be a minimum R;-vertex-cut, then |F| < 6m — 16. De-
note by F; the vertex set F'[|V(Gi(2™,2)) in the following argument. We
denote the number of all isolated vertices contained in G¢(2™,2) — Fp and
G1(2™,2) — F; by k. Clearly, k < 3.

Casel. k=0.

If Go(2™,2) — Fy and G;(2™,2) — F} are connected. This case can be
proved by a similar argument of Case 1 of Theorem 2.4.

If one of Go(2™,2) — Fp and G1(2™,2) — F; is disconnected. Without
loss of generality, we assume that Go(2™,2) — Fp is disconnected and has
r components, Hy, Ho,... H.. Note that F is a Rs-vertex-cut, then there
exists a component H; with §(H;) > 2 such that H; is disconnected to
G1(2™,2) — F). Take a path P; of H; with three vertices, similar to Case
2 of Theorem 3.1, we can complete the proof of this case.

If Go(2™,2) — Fy and G1(2™,2) — F} are disconnected. Since there exists
no isolated vertex in Go(2™,2) — Fp and G1(2™,2) — Fy, Fo, Fy are both
R,-vertex-cuts of Go(2™,2) — Fy and G1(2™,2) — F}, respectively. Note
that |[Fo| > &!(Go(2™,2)), |Fi| = &'(G1(2™,2)), and &}(Go(2™,2)) =
k1(G1(2™,2)) = 4(m — 1) — 7 = 4m — 11 we have |F| = |Fo| + |Fy| >
8m — 22 > 6m — 16 for m > 5, a contradiction.

Case 2. k=1.

Without loss of generality, We assume that Go(2™,2) — Fp contains an
isolated vertex.

If G1(2™,2)—F; is disconnected. Note that Fy is a vertex cut of Go(2™, 2)
and Fj is a R;-vertex-cut of G1(2™,2), we have |F| = |Fo| + |Fy| 2 2(m —
1) -1+ 4(m—1)—7=6m— 14 > 6m — 16, a contradiction.

If G1(2™,2) — F; is connected. Thus, there exists a component H of
Go(2™,2)—Fp with 6(H) > 2 such that H is disconnected to G1(2™,2)—F;.
Take a path P; in H, similar to Case 2 of Theorem 3.1, we can complete
the proof of this case.

Case 3. k=2

Let z,y be the two isolated vertices of G(2™,2) — F. If z,y are both in
Go(2™,2) or G1(2™,2). We can prove this case by an argument similar to
case 2.



With loss of generality, we next assume z € Go(2™,2) and y € G1(2™,2).
Let F* = F|J{z}. Denote by F! the vertex set F'(V(G;:(2™,2)). If
Go(2™,2) — F{ is disconnected, then Fg is a R;-vertex-cut of Go(2™,2).
Hence, |F| = |F'|-1=|Fg|+|F{|-124(m-1)-7T+2(m—-1)—-1-1=
6m — 15 > 6m — 16, a contradiction. If Go(2™,2) — Fy is connected.
Similarly, let F” = F|J{y}, we have G1(2™,2) — F{' is connected. As-
sume that Go(2™,2) — F§ = By and G,;(2™,2) — F{' = B,. Note that
ING, (2m,2)(Bo))| = |Bo| + 1, [Ngy(2m,2)(B1))| 2 |B1| + 1, if Bo is discon-
nected to B;, we have

||

[Fol + |F1| 2 [Ngo(2m,2)(B1))| = 1+ |Ng,2m,2)(Bo))| — 1
|By| +|Bo| > 2™ — |F| -2=2™ -2 |F|

vV

Hence, 2|F| > 2™ — 2, this is impossible for m > 5, a contradiction. (]
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