Special minimum cuts in directed graphs

NOTE

Ottilia Fülöp*
Institute of Mathematics, Technical University of Budapest

June 8, 2010

Abstract

The purpose of this paper is to solve the odd minimum S-cut, the odd minimum \overline{T} -cut and the odd minimum (S, T)-cut problems in directed graphs using triple families. We also provide here two properties of triple families.

1 Introduction

Let $\vec{G} = (V, \vec{E})$ be a directed graph with at least two vertices. Usually, a cut of the graph is defined as a bipartition of its vertex set V into $C \subset V$ and its complement. (Sometimes, in the definition of cut instead of the bipartition the edges joining C and V - C are considered.)

For simplicity, in this paper the cut of the graph is a subset C of the nodes, the value of the cut f(C) is the number (or total capacity) of the edges leaving C.

Note that the cut value function f is submodular over the ground set V, i.e. all subsets $X, Y \subseteq V$ satisfy $f(X) + f(Y) \ge f(X \cap Y) + f(X \cup Y)$.

Grötschel et al. ([3]) define triple families as a generalization of families of odd (cardinality) sets as follows. A family \mathcal{G} of subsets of a ground set V forms a *triple family over* V if for all $X \subseteq V$ and $Y \subseteq V$ whenever three of the four sets $X, Y, X \cap Y$ and $X \cup Y$ are not in the triple family, then so is the fourth.

^{*} E-mail address: otti@math.bme.hu

2 Properties of triple families

Many problems in combinatorial optimization can be solved by minimizing a submodular function over a triple family. Before considering some applications here, let us examine triple families.

Theorem 2.1. If \mathcal{G} is a triple family over V and $C_i \notin \mathcal{G}$, $i \in \{1, ..., k\}$ such that $\bigcup \{C_j : j \in L\} \notin \mathcal{G}$ for each nonempty subset $L \subseteq \{1, ..., k\}$ then we have $\bigcap \{C_i : i = 1, ..., k\} \notin \mathcal{G}$.

Proof. By induction on k. For k=2 Theorem 2.1 follows from the definition of triple families. Let us consider $C_i \notin \mathcal{G}$, $i \in \{1, \ldots, k+1\}$ such that $\bigcup \{C_j : j \in L\} \notin \mathcal{G}$ for each nonempty $L \subseteq \{1, \ldots, k+1\}$. Supposing indirectly that $\bigcap \{C_i : i=1,\ldots,k+1\} \in \mathcal{G}$ and using the definition of triple families and the induction hypothesis we obtain $(C_1 \bigcap \cdots \bigcap C_k) \bigcup C_{k+1} \in \mathcal{G}$, i.e. $(C_1 \bigcup C_{k+1}) \bigcap \cdots \bigcap (C_k \bigcup C_{k+1}) \in \mathcal{G}$, but this set is non-member by induction, contradiction.

Similarly we can prove

Theorem 2.2. If \mathcal{G} is a triple family over V and $C_i \notin \mathcal{G}$, $i \in \{1, ..., k\}$ such that $\bigcap \{C_j : j \in L\} \notin \mathcal{G}$ for each nonempty subset $L \subseteq \{1, ..., k\}$ then we have $\bigcup \{C_i : i = 1, ..., k\} \notin \mathcal{G}$.

3 Special minimum cuts

Let S and T be two disjoint subsets of V different from \emptyset and V. We consider the following special minimum cut problems in the directed graph $\vec{G} = (V, \vec{E})$ with at least two nodes:

- The odd (even) minimum S-cut problem asks for cut C such that $S \subseteq C$, |C| is odd (even) with f(C) minimum.
- The odd (even) minimum \overline{T} -cut problem asks for a cut C such that $T \cap C = \emptyset$, |C| is odd (even) with f(C) minimum.
- The odd (even) minimum (S, T)-cut problem asks for a cut C such that $S \subseteq C$, $T \cap C = \emptyset$, |C| is odd (even) with f(C) minimum.

The third problem is a generalization of the directed odd or even minimum (s, t)-cut problem [2]. Notice that if \mathcal{G} is an arbitrary triple family over V, $(|V| \geq 2)$, then for two arbitrarily fixed nonempty disjoint subsets $S \subset V$ and $T \subset V$ (different from V), families of sets $\mathcal{G} \cap \{X \subseteq V : S \subseteq X\}$,

 $\mathcal{G} \cap \{X \subset V : X \cap T = \emptyset\}$ and $\mathcal{G} \cap \{X \subset V : S \subseteq X, X \cap T = \emptyset\}$ are not triple families over V. Thus the above mentioned three problems do not ask for minimum value cut in triple families. They ask for the minimum value S-cut, \overline{T} -cut and (S, T)-cut in triple families.

Theorem 3.1. Let $G \subseteq 2^V$ be a triple family, S and T be two disjoint subsets of the ground set V different from \emptyset and V. Let us denote $G_1 := \{X - S : X \in G, S \subseteq X\}, G_2 := \{X : X \in G, T \cap X = \emptyset\}$ and $G_3 := \{X - S : X \in G, S \subseteq X, T \cap X = \emptyset\}$, furthermore $V_1 := V - S$, $V_2 := V - T$ and $V_3 := V - (S \cup T)$. Then for all $i \in \{1, 2, 3\}$, G_i forms a triple family over V_i .

Proof. For i=3 by definition of \mathcal{G}_3 , a subset A of V_3 is not in \mathcal{G}_3 iff $A \cup S$ is not in \mathcal{G} . Let A and B be two arbitrarily fixed subsets of V_3 . Suppose that three of the four sets A, B, $A \cap B$, $A \cup B$ are not in \mathcal{G}_3 , this means that three of the four sets $A \cup S$, $B \cup S$, $(A \cap B) \cup S$, $(A \cup B) \cup S$ are not the triple family \mathcal{G} , hence so is the fourth. If we leave out S from the fourth set we obtain that the fourth set from A, B, $A \cap B$, $A \cup B$ (which is also a subset of V_3) is not in \mathcal{G}_3 . The proof for i=1 and 2 is similar. \square

Let us consider the triple family \mathcal{G}_i over V_i from Theorem 3.1. We can use our algorithm for minimizing submodular functions over triple families from [1], which may return \emptyset or V_i with $O\left(|V|^2 \cdot |\vec{E}| + |V| \cdot M(|V|, |\vec{E}|)\right)$ running time, where $M(|V|, |\vec{E}|)$ denotes the time of a (u, v)-minimum cut computation ([1], Section 4.2).

Our algorithm from [1] uses the Cheng-Hu flow-equivalent tree and a specific uncrossing procedure that we call parity uncrossing, and means a factor O(n) improvement over the running time of the previous most efficient algorithm of Goemans and Ramakrishnan for triple families [4].

In case of i=1 (i.e. the odd (even) minimum S-cut problem) if Y_0 is the output of the algorithm from [1], i.e. $Y_0 \subseteq V - S$, $Y_0 \in \mathcal{G}_1$ with $f(Y_0)$ minimum, then $C:=Y_0 \bigcup S$ is an f-minimizer over \mathcal{G} such that $S \subseteq C$.

In case of i=2 (i.e. the odd (even) minimum \overline{T} -cut problem) if Y_0 is the output, namely $Y_0 \subseteq V - T$, $Y_0 \in \mathcal{G}_2$ with $f(Y_0)$ minimum, then $C:=Y_0$ is an f-minimizer over \mathcal{G} such that $C \cap T = \emptyset$.

In the remaining case of i=3 (the odd (even) minimum (S,T)-cut problem) if Y_0 is the output of our algorithm from [1], which means that $Y_0 \subseteq V - (S \bigcup T)$, $Y_0 \in \mathcal{G}_3$ with $f(Y_0)$ minimum, then $C:=Y_0 \bigcup S$ is an f-minimizer over \mathcal{G} such that $S \subseteq C$ and $C \cap T = \emptyset$.

References

- [1] A.A. Benczúr and O. Fülöp, Fast algorithms for even/odd minimum cuts and generalizations, Lecture Notes in Computer Science 1879, Algorithms-ESA 2000, Proceedings of the 8th Annual European Symposium, Saarbrücken, Germany, September 2000, Springer-Verlag, Berlin, pp. 88-99.
- [2] O. Fülöp, Note on directed odd or even minimum (s, t)-cut problem and generalizations, Ars Combinatoria 65, 2002, pp. 145-147.
- [3] M. Grötschel, L. Lovász and A. Schrijver, Corrigendum to our paper The ellipsoid method and its consequences in combinatorial optimization, *Combinatorica* 4, 1984, pp. 291-295.
- [4] M.X. Goemans and V.S. Ramakrishnan, Minimizing submodular functions over families of sets, *Combinatorica* 15(4), 1995, pp. 499-513.
- [5] C.K. Cheng and T.C. Hu, Ancestor trees for arbitrary multi-terminal cut functions, *Ann. Op. Res.* 33, 1991, pp. 199-213.