The commutativity degree of 2-generated groups of nilpotency class 2

M. Hashemi

Department of Mathematics, Faculty of Science, University of Guilan, Rasht, Iran.

Email: $m_{\text{-}}$ hashemi@guilan.ac.ir

Abstract

Let G be a finite group. The commutativity degree of G, written d(G), is defined as the ratio

$$\frac{|\{(x,y)|x,y\in G, xy = yx\}|}{|G|^2}.$$

In this paper we examine the commutativity degree of groups of nilpotency class 2 and by using the numerical solutions of the equation $xy \equiv zu \pmod{n}$, we give certain explicit formulas for some particular classes of finite groups. A lower bound for d(G) is obtained for 2-generated groups of nilpotency class 2.

AMS Subject Classification: 11b39, 20K05. Keywords: Commutativity degree, Finite groups.

1. Introduction

In the last years there has been a growing interest in the use of probability in finite group theory. One of the most important aspects that have been studied is the probability that two elements of a finite group G commute. This is denoted by d(G) and is called the commutativity degree of G. In obtaining the properties of d(G), Gustafson [5] proved that for a non-abelian finite group G, $d(G) \leq \frac{5}{8}$, and P. Lescote [8] studied the groups where $d(G) \geq \frac{1}{2}$ and classified these groups. In [4], H. Doostie and M. Maghaseedi gave some explicit formulas of d(G) for some particular finite groups G. Also, Moghaddam and et al in [9] studied the n-nilpotency degree of finite groups (denoted by $d^n(G)$). In fact, for the special cases of the groups N and H, they proved the equality $d^n(N \times H) = d^n(N) \times d^n(H)$.

Lemma 1.1. (Von dyck's Lemma) [7, Proposition 4.2]. Let F(X) be the free group on the set X and let \overline{R} denotes the normal closure of the subset R of F(X). If $G = \langle X|R \rangle$ and $H = \langle X|S \rangle$, where $R \subseteq S \subseteq F(X)$, then there exists an epimorphism $\phi: G \longrightarrow H$ fixing every $x \in X$ such that $\ker \phi = \overline{S}/\overline{R}$. Conversely, every factor group of $G = \langle X|R \rangle$ has a presentation $\langle X|S \rangle$ with $R \subseteq S$.

Lemma 1.2. [8, Lemma 1.4.] Let G be a finite group and N be a normal subgroup of G. Then

$$d(G) \le d(N)d(\frac{G}{N}).$$

We consider the following finitely presented groups,

$$G_{mn} = \langle a, b | a^m = b^n = 1, [a, b]^a = [a, b], [a, b]^b = [a, b] \rangle,$$

where $m, n \geq 2,$

$$H_n = \langle a, b | a^{n^2} = b^n = 1, b^{-1}ab = a^{1+n} \rangle, \ n \ge 2,$$

 $K(n, l) = \langle a, b | ab^n = b^l a, \ ba^n = a^l b \rangle, \ where \ (n, l) = 1.$

In Section 2 we state some results about our considered finitely presented groups and in Section 3 we solve the equation $xy \equiv zu \pmod{n}$, which is needed in next section. Section 4 is devoted to the commutativity degree of groups of nilpotency class 2. In this process, we first give an explicit formula for commutativity degree of G_{mn} , H_n and K(n, l) and using these results, we reach to our goal.

Most of results in Section 3 were suggested by data from a computer program written in the computational algebra system GAP [6].

2. Preliminaries

This section is devoted to explain some results concerned with G_{mn} , H_n and K(n, l). First, we state a lemma without proof that establishes some properties of groups of nilpotency class 2.

Lemma 2.1. If G is a group and $G' \subseteq Z(G)$, then the following hold for every integer k and $u, v, w \in G$:

- (i) [uv, w] = [u, w][v, w] and [u, vw] = [u, v][u, w].
- (ii) $[u^k, v] = [u, v^k] = [u, v]^k$.
- (iii) $(uv)^k = u^k v^k [v, u]^{k(k-1)/2}$.
- (iv) If $G = \langle a, b \rangle$ then $G' = \langle [a, b] \rangle$.

The following lemmas can be seen in [3]:

Lemma 2.2. Let d = g.c.d(m, n), then we have

- (i) every element of G_{mn} may be uniquely represented by $a^i b^j [a, b]^k$, where $0 \le i \le m-1$, $0 \le j \le m-1$ and $0 \le k \le d-1$.
 - (ii) $|G_{mn}| = mnd$.

Lemma 2.3. (i) Every element of H_n may be uniquely represented by $b^j a^i$, where $0 \le i \le n^2 - 1$ and $0 \le j \le n - 1$.

(ii)
$$|H_n| = n^3$$
.

Now, we state some known results concerning K(n, l), the proofs of which can be found in [1, 2].

Theorem 2.4. The groups K(n, l) have the following properties:

- (i) $|K(n,l)| = |l-n|^3$, if (l,n) = 1 and is infinite otherwise;
- (ii) if (l, n) = 1, then $|a| = |b| = (l n)^2$;
- (iii) if (n, l) = 1, then $a^{l-n} = b^{n-l}$.

Lemma 2.5. (i) For every $m \ge 3$, $K(n, l) \cong K(1, 2 - l)$.

(ii) For every $i \geq 2$ and (n, i) = 1, $K(n, n+i) \cong K(1, i+1)$.

Note: If (l,n) = 1, then $K(n,l) \cong K(1,l-n+1)$, which we may write as K_{l-n+1} . Hence we only calculate $d(K_m)$.

Lemma 2.6. Every element of K_m may be uniquely presented by $x = a^{\beta}b^{\gamma}a^{(m-1)\delta}$, where $1 \leq \beta$, γ , $\delta \leq m-1$.

Proof. By parts (ii) and (iii) of Theorem 2.4, every element of K_m can be written in this form. Since $|K_m| = |m-1|^3$, that

expression is unique.

Lemma 2.7. In K_m , $[a, b] = b^{m-1} \in Z(K_m)$.

Proof. Since $a^{m-1} = b^{1-m}$ then $a^{m-1} \in Z(K_m)$. By the relations of K_m we have

$$[a,b] = a^{-1}b^{-1}ab = a^{-1}b^{-1}b^ma = a^{-1}b^{m-1}a = b^{m-1} \in Z(K_m),$$
 as desired.

3. Solving the equation $xy \equiv zu \pmod{n}$

In this section we will solve $xy \equiv zu \pmod{n}$, $n \geq 2$ where x, y, z and u are variables. For this, let $n = p_1^{\alpha_1} p_2^{\alpha_2} ... p_k^{\alpha_k}$. Then (r_1, s_1, r_2, s_2) is a solution of this equation if and only if for every i, $(1 \leq i \leq k)$, (r_1, s_1, r_2, s_2) is a solution of the following equations;

$$xy \equiv zu (mod \ p_i^{\alpha_i}).$$

By the above argument, we solve the equation

$$xy \equiv zu(mod \ p^{\beta}). \tag{1}$$

If (y,p) = 1, then for every z, u when $1 \le z, u \le p^{\beta}$, we have $x \equiv y^*zu \pmod{p^{\beta}}$ is a solution, where y^* is the arithmetic inverse of y respect to p. The following lemma is crucial for the rest of the paper.

Lemma 3.1. For the integer α , $(0 \le \alpha \le \beta)$ and variables x, i and j, the number of solutions of the equation $p^{\alpha}x \equiv ij \pmod{p^{\beta}}$ is $p^{2\beta-1}((\alpha+1)p-\alpha)$.

Proof. Clearly, for $1 \leq i, j \leq p^{\beta}$ the equation $p^{\alpha}x \equiv ij \pmod{p^{\beta}}$ has solution if and only if $p^{\alpha}|ij$. For $0 \leq t < \beta$, let $D_{p^t} = \{(i,j)| 1 \leq i, j \leq p^{\beta}, p^t| ij\}$, then $D_{p^{t+1}} = D_{p^t} - M$, where

$$M = \{(i,j) \in D_{p^t} | g.c.d(p^{t+1}, ij) = p^t\}.$$

First, we calculate |M|. We have $M = \{(i, j) \in D_{p^t} | \exists s \in \{0, 1, ..., t\} \text{ such that } i = p^s k_1, \ j = p^{t-s} k_2 \text{ and } (k_1, p) = (k_2, p) = 1\}$. Hence

$$|M| = \sum_{s=0}^{t} \phi(p^{\beta-s})\phi(p^{\beta-t+s}) = \sum_{s=0}^{t} (p-1)^2 p^{\beta-s-1} p^{\beta-t+s-1}$$
$$= \sum_{s=0}^{t} (p-1)^2 p^{2\beta-t-2} = (t+1)(p-1)^2 p^{2\beta-t-2}.$$

Now by induction on t, we obtain that $|D_{p^{\alpha}}| = p^{2\beta-\alpha-1}((\alpha+1)p-\alpha)$.

Finally, the number of solutions of the equation $p^{\alpha}x \equiv ij \pmod{p^{\beta}}$ is

$$p^{\alpha}p^{2\beta-\alpha-1}((\alpha+1)p-\alpha)=p^{2\beta-1}((\alpha+1)p-\alpha).$$

Thus the assertion holds.

Proposition 3.2. For the integer β and variables x, y, i and j, the number of solutions of the equation $xy \equiv ij \pmod{p^{\beta}}$ is $p^{2\beta-1}(p^{\beta+1}+p^{\beta}-1)$.

Proof. By Lemma 2.1, the number of solutions of $xy \equiv ij \pmod{p^{\beta}}$ is

$$\sum_{\alpha=0}^{\beta} \phi(p^{\beta-\alpha}) p^{2\beta-1} ((\alpha+1)p - \alpha).$$

To complete the proof, we have

$$\begin{split} &\sum_{\alpha=0}^{\beta} \phi(p^{\beta-\alpha}) p^{2\beta-1} ((\alpha+1)p - \alpha) \\ &= p^{2\beta-1} ((\beta+1)p - \beta) + p^{3\beta-2} (p-1) \sum_{\alpha=0}^{\beta-1} \frac{(\alpha+1)p - \alpha}{p^{\alpha}} \\ &= p^{2\beta-1} ((\beta+1)p - \beta) + p^{3\beta-2} (p-1) (p+2 \sum_{t=0}^{\beta-1} \frac{1}{p^t} - \frac{\beta+1}{p^{\beta-1}}) \\ &= p^{3\beta} - p^{3\beta-1} + 2p^{2\beta-1} (p-1) \frac{p^{\beta}-1}{p-1} + p^{2\beta-1} \\ &= p^{2\beta-1} (p^{\beta+1} + p^{\beta} - 1). \end{split}$$

The proposition is proved.

By elementary concepts of number theory, we have the following corollaries:

Corollary 3.3. For the integer $n = p_1^{\alpha_1} p_2^{\alpha_2} ... p_k^{\alpha_k}$ and variables x, y, i and j, the number of solutions of the equation $xy \equiv ij \pmod{n}$ is $\prod_{i=1}^k p_i^{2\alpha_i-1}(p_i^{\alpha_i+1}+p_i^{\alpha_i}-1)$.

Corollary 3.4. Let m, n be integers and x, y, i and j, be variables when $0 \le x, i < n$ and $0 \le y, j < m$. Then, the number of solutions of the equation $xy \equiv ij \pmod{d}$ is

$$(\frac{m}{d})^2(\frac{n}{d})^2\prod_{i=1}^k p_i^{2\alpha_i-1}(p_i^{\alpha_i+1}+p_i^{\alpha_i}-1),$$

where $d = g.c.d(m, n) = p_1^{\alpha_1} p_2^{\alpha_2} ... p_k^{\alpha_k}$.

4. Results and Conclusion

In this section, first we calculate the commutativity degree of G_{mn} , H_n and K(m). Then using these results and Lemmas 1.1, 1.2, we give a lower bound for the commutativity degree of groups of nilpotency class 2.

Proposition 4.1. For every integers $m, n \geq 2$,

(i) if
$$G = G_{mn}$$
 and $d = g.c.d(m, n) = p_1^{\alpha_1} p_2^{\alpha_2}...p_k^{\alpha_k}$, then

$$d(G) = \prod_{i=1}^{k} \frac{p_i^{\alpha_i+1} + p_i^{\alpha_i} - 1}{p_i^{2\alpha_i+1}};$$

(ii) if $G = H_n$ and $n = p_1^{\alpha_1} p_2^{\alpha_2} ... p_k^{\alpha_k}$, then

$$d(G) = \prod_{i=1}^{k} \frac{p_i^{\alpha_i+1} + p_i^{\alpha_i} - 1}{p_i^{2\alpha_i+1}};$$

(iii) if $G = K_m$ and $m - 1 = p_1^{\alpha_1} p_2^{\alpha_2} ... p_k^{\alpha_k}$, then

$$d(G) = \prod_{i=1}^{k} \frac{p_i^{\alpha_i+1} + p_i^{\alpha_i} - 1}{p_i^{2\alpha_i+1}}.$$

Proof. Let $A = |\{(x,y)|x,y \in G, xy = yx\}|$. To prove (i), let d = g.c.d(m,n). Then by Lemma 2.2, every element x of G_{mn} may be represented as $x = a^i b^j [b,a]^k$, where $i \in \{0,1,...,m-1\}$, $j \in \{0,1,...,n-1\}$ and $k \in \{0,1,...,d-1\}$. For every $x = a^{r_1}b^{s_1}[b,a]^{k_1}$ and $y = a^{r_2}b^{s_2}[b,a]^{k_2}$ of G, if xy = yx then

$$a^{r_1}b^{s_1}[b,a]^{k_1}a^{r_2}b^{s_2}[b,a]^{k_2} = a^{r_2}b^{s_2}[b,a]^{k_2}a^{r_1}b^{s_1}[b,a]^{k_1}$$

Since $G' = \langle [b, a] \rangle \subseteq Z(G)$, by Lemma 2.1, we get $[b, a]^{r_2s_1-s_2r_1} = e$. Furthermore, |G'| = d, hence $r_2s_1 \equiv s_2r_1 \pmod{d}$. Also each

of the integers k_1 and k_2 take d possible values, then by Corollary 3.4 we have $A = m^2(\frac{n}{d})^2 \prod_{i=1}^k p_i^{2\alpha_i-1}(p_i^{\alpha_i+1} + p_i^{\alpha_i} - 1)$. Now, the result follows from the definition of d(G) and Lemma 2.2.(ii).

To prove the second part of the proposition, we note that by part (i) of Lemma 2.3, xy = yx if and only if

$$a^{r_1}b^{s_1}a^{r_2}b^{s_2}=a^{r_2}b^{s_2}a^{r_1}b^{s_1}.$$

So by using the Lemma 2.1 we get $[b,a]^{r_2s_1-s_2r_1}=e$. Also $[b,a]=a^m$, so that $r_2s_1\equiv s_2r_1(mod\ m)$ and by the Corollary 3.4, $A=m^2\prod_{i=1}^k p_i^{2\alpha_i-1}(p_i^{\alpha_i+1}+p_i^{\alpha_i}-1)$. Then by the definition of d(G) and part (ii) of Lemma 2.3, we get the required result as

$$d(H_n) = \prod_{i=1}^k \frac{p_i^{\alpha_i+1} + p_i^{\alpha_i} - 1}{p_i^{2\alpha_i+1}}.$$

Part (iii) may be achieved by using the Lemma 2.6 in almost a similar way as above.

The following corollary is now a result of part (iv) of Lemma 2.1 and the proof of Proposition 4.1.

Corollary 4.2. Let $G = G_{mn}$, H_n or K(m) and l = |G'|. Then

$$d(G) = \prod_{i=1}^{k} \frac{p_i^{\alpha_i+1} + p_i^{\alpha_i} - 1}{p_i^{2\alpha_i+1}},$$

where $l = p_1^{\alpha_1} p_2^{\alpha_2} ... p_k^{\alpha_k}$.

We are now in a position to find a lower bound for the commutativity degree of two generator groups of nilpotency class two. Let G be a 2-generated finite group of nilpotency class 2. Then $G \cong \langle a, b | R \rangle$, where $\{a^m, b^n, [a, b]^a [b, a], [a, b]^b [b, a]\} \subseteq R$, for some $m, n \geq 2$.

Corollary 4.3. By the above notations, we have

$$d(G) \ge \prod_{i=1}^{k} \frac{p_i^{\alpha_i+1} + p_i^{\alpha_i} - 1}{p_i^{2\alpha_i+1}},$$

where $d = g.c.d(m, n) = p_1^{\alpha_1} p_2^{\alpha_2} ... p_k^{\alpha_k}$.

Proof. By Lemma 1.1, we get $G \cong \frac{G_{mn}}{N}$ for some normal subgroups N of G_{mn} and integers $m, n \geq 2$. Then the result follows from Lemma 1.2 and the fact that $d(N) \leq 1$.

References

- [1] C. M. Campbell, P. P. Campel, H. Doostie and E. F. Robertson, Fibonacci length for Metacyclic Groups, Algebra Colloq., (2004), 215-222.
- [2] C. M. Campbell, E. F. Robertson, On a group presentation due to Fox, Canada. Math. Bull. 19 (1976) 247-248.
- [3] H. Doostie and M. Hashemi, Fibonacci lengths involving the Wall number k(n), J. Appl. Math. Computing, Vol. 20 (2006), No. 1-2, 171-1800.
- [4] H. Doostie and M. Maghasedi, Certain classes of groups with commutativity degree $d(G) \leq \frac{1}{2}$, Ars. Combinatoria 89(2008). pp. 263-270.

- [5] W. H. Gustafson, What is the propability that two group elements commute? Amer Math. Monthly. 80(1973). 1031-1034.
- [6] The GAP Group, GAPGroups, Algorithms, and programming version 4.4 packages AutPGroup and Small Groups http. A. R.
- [7] D. L. Johnson, Presentations of groups, 2nd edition London Math. Soc. Student Texts 15, Cambridge University Press, Cambridge, (1997).
- [8] P. Lescot, Isoclinsm classes and commutativity degrees of finite groups, J. of Algebra 177 (1995), 847-869.
- [9] M. R. R. Moghaddam, A. R. Salemkar and K. Chiti, nisoclinism classes and n-nilpotency degree of finite groups, Algebra Colloquium, 12.2(2005), 255-261.