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Abstract

Let G be a finite group. The commutativity degree
of G, written d(G), is defined as the ratio

|{(a:,y)|x,y € Gs Ty = ym}l
IGI? '

In this paper we examine the commutativity degree of
groups of nilpotency class 2 and by using the numeri-
cal solutions of the equation zy = zu(mod n), we give
certain explicit formulas for some particular classes of
finite groups. A lower bound for d(G) is obtained for
2-generated groups of nilpotency class 2.
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1. Introduction

In the last years there has been a growing interest in the use
of probability in finite group theory. One of the most important
aspects that have been studied is the probability that two ele-
ments of a finite group G commute. This is denoted by d(G) and
is called the commutativity degree of G. In obtaining the prop-
erties of d(G), Gustafson [5] proved that for a non-abelian finite
group G, d(G) < 2, and P. Lescote (8] studied the groups where
d(G) > 1 and classified these groups. In [4], H. Doostie and M.
Maghaseedi gave some explicit formulas of d(G) for some partic-
ular finite groups G. Also, Moghaddam and et al in [9] studied
the n-nilpotency degree of finite groups (denoted by d"(G) ). In
fact, for the special cases of the groups N and H, they proved
the equality d*(V x H) = d*(N) x d"(H).

Lemma 1.1. (Von dyck’s Lemma) (7, Proposition 4.2].
Let F(X) be the free group on the set X and let R denotes the
normal closure of the subset R of F(X). If G = (X|R) and
H = (X|S), where R C S C F(X), then there exists an epimor-
phism ¢ : G — H fixing every = € X such that ker¢ = S/R.
Conversely, every factor group of G = (X|R) has a presentation
(X|S) with RC S.

Lemma 1.2. [8, Lemma 1.4.] Let G be a finite group and
N be a normal subgroup of G. Then

d(G) < dN)A(S).
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We consider the following finitely presented groups,

Gmn = (a,bla™ = V" = 1, [a,b]* = [a,b)], [a,d]° = [a,b]),
where m, n > 2,

H, = (a,bla™ = b" = 1,b7'ab = a'*"), n > 2,

K(n, 1) = (a,blab™ = ba, ba™ = a'b), where (n,l) = 1.

In Section 2 we state some results about our considered
finitely presented groups and in Section 3 we solve the equa-
tion zy = zu(mod n), which is needed in next section. Section 4
is devoted to the commutativity degree of groups of nilpotency
class 2. In this process, we first give an explicit formula for
commutativity degree of Gy, H, and K(n, !) and using these
results, we reach to our goal.

Most of results in Section 3 were suggested by data from a
computer program written in the computational algebra system
GAP [6].

2. Preliminaries

This section is devoted to explain some results concerned
with G, H, and K(n, [). First, we state a lemma without
proof that establishes some properties of groups of nilpotency
class 2.

Lemma 2.1. If G is a group and G’ C Z(G), then the follow-
ing hold for every integer k and u,v,w € G :

(i) [wv,w] = [u, w][v, w] and [u, vw] = [u, v][u, w].

(ii) [uk,v] = [u, v¥] = [u, v]*.

(iii) (wv)* = ukv*[v, u]kk-1/2,

(iv) If G = {(a,b) then G’ = ([a,}]).
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The following lemmas can be seen in [3]:

Lemma 2.2. Let d = g.c.d(m,n), then we have
(i) every element of Gy, may be uniquely represented by
a'bi[a, b]*, where 0 < i <m—-1,0<j<n—-land0 <k <d-1.
(ii) |Gmn| = mnd.
Lemma 2.3. (i) Every element of H,, may be uniquely repre-
sented by ¥a’, where 0 <i<n?—-1land 0<j<n-1.
(i) |Ha| =1

Now, we state some known results concerning K(n,!), the
proofs of which can be found in [1, 2].

Theorem 2.4. The groups K(n,!) have the following proper-
ties:
(i) |K(n,)| = |l = n|3, if (I,n) = 1 and is infinite otherwise;
(i) if ({,n) = 1, then |a| = |b] = (I — n)?%
(iii) if (n,!) = 1, then @}~ = b,

Lemma 2.5. (i) For every m > 3, K(n,l) = K(1,2 -1).
(ii) For every ¢ > 2 and (n,3) = 1, K(n,n+1) = K(1,i+1).

Note: If (I,n) =1, then K(n,!) & K(1,l — n + 1), which we
may write as K;_n4;. Hence we only calculate d( K.,,).

Lemma 2.6. Every element of K,, may be uniquely presented
by z = aPb7al™ 1% where 1< B, v, 6 <m — 1.

Proof. By parts (ii) and (iii) of Theorem 2.4, every element
of K., can be written in this form. Since |K| = |m — 1|3, that
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expression is unique. 0
Lemma 2.7. In K, [a,b] =b™"! € Z(Kp).

Proof. Since a™! = ™™ then a™ ! € Z(K,). By the
relations of K,, we have

[2,0] = a™'b7lab = a7 0 a = a” 0™ e = 0™ € Z(Kn),
as desired. a
3. Solving the equation zy = zu(mod n)

In this section we will solve zy = zu(mod n) ,n > 2 where
z,y, z and u are variables. For this, let n = p'p3?...pg*. Then
(r1,81,7T2, 82) is a solution of this equation if and only if for
every i, (1< < k), (r1,s1,72,52) is a solution of the following

equations;

zy = zu{mod pi*).

By the above argument, we solve the equation
zy = zu(mod pP). (1)

If (y,p) = 1, then for every 2, u when 1 < z,u < p?, we
have z = y*zu (mod p®) is a solution, where y* is the arithmetic
inverse of y respect to p. The following lemma is crucial for the
rest of the paper.

Lemma 3.1. For the integer a, (0 < a < () and variables z, i
and 7, the number of solutions of the equation p®z = ij (mod p?)
is pP*~1((e+ 1)p - @).
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Proof. Clearly, for 1 < 4, j < p® the equation p*z = ij (mod pP)
has solution if and only if p*|ij. For 0 < t < B, let Dy =
{(&,5)| 1<4,5 < PP, p| ij}, then Dyp+r = Dy — M, where

M = {(3,§) € Dp| g.c.d(p**, ij) =p'}.

First, we calculate |M|. We have M = {(i,j) € Dp| 35 €
{0,1,...,t} such that i = p°k1, j = p'°kq and (k1,p) = (ks,p) =
1}. Hence

|M| = id’(?ﬂ-s)(b(pﬁ't“) = i(p - 1)2p/3—s—1pﬁ—t+s_1

8=0 s=0

= = 1) = (14 1)(p - 1

s=0
Now by induction on ¢, we obtain that |Dpe| = p?*~*"}((a +
p — a).
Finally, the number of solutions of the equation p*z = ij (mod p®)
is
pp* (e + )p—a) =p* e+ p-a).

Thus the assertion holds. O

Proposition 3.2. For the integer 3 and variables z, y, ¢ and
7, the number of solutions of the equation ry = ij (mod p?) is

p2ﬁ—l(pﬁ+1 +pﬁ _ 1)

Proof. By Lemma 2.1, the number of solutions of zy = 5 (mod p?)
is

g
> o (e + 1)p - ).

a=0
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To complete the proof, we have

8
> @)W (a +1)p - a)

a=0

PP ((B+1)p - B)+p*(p 1)2(&%";0‘

_ 26-1 _ B)+p%? ﬂ—li_@__
=p*((B+p-B)+ (p-1)p +2 )

_ _ o
=p3ﬁ _p36 1 + 2p2ﬁ 1@ _ l)p;a_ . +p2ﬂ 1
=p? (PP +p7 - 1)

The proposition is proved. 0O

By elementary concepts of number theory, we have the fol-
lowing corollaries:

Corollary 3.3. For the integer n = p*p5°...p;* and variables
z, ¥, ¢ and j, the number of solutions of the equation zy =
ij (mod n) is TTiy pi* (B + 5 — 1).

Corollary 3.4. Let m, n be integers and z, y, ¢ and j, be
variables when 0 < z,4 < n and 0 < y,j7 < m. Then, the
number of solutions of the equation zy = ij (mod d) is

(—+ )2( =) l_Izr>""“"1(1915"+1 +p5 - 1),

i=1

where d = g.c.d(m, n) = p{* ps?...pp*.
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4. Results and Conclusion

In this section, first we calculate the commutativity degree of
Gmn, Hy, and K(m). Then using these results and Lemmas
1.1, 1.2, we give a lower bound for the commutativity degree of
groups of nilpotency class 2.

Proposition 4.1. For every integers m, n > 2,
(i) if G = Gmn and d = g.c.d(m,n) = p$'p32...pr*%, then

a;+1
R
d(G H 2a,+1 )

i=1

(ii) if G = H,, and n = p{"p32...pp*, then

a;+1
P+t =1
d(G H ‘2a.+1 )

(i) if G = K, and m — 1 = p{*p3?...pp*, then

pa,+1 +po:,- -1
d(G) = ]:E - p2a,+11

Proof. Let A = |{(z,y)|z,y € G, zy = yz}|. To prove (i), let
d = g.c.d(m,n). Then by Lemma 2.2, every element = of G,
may be represented as x = a‘b’[b, a]*, where i € {0,1,...,m —
1}, j € {0,1,..,n — 1} and k € {0,1,...,d — 1}. For every
T = a"b* (b, a]* and y = a™b%2[b,a)** of G, if zy = yz then

a" b [b, a]*¥1a"2b*2 (b, a]*? = a™2b%2[b, a]*2a™b% [b, o]

Since G' = ([b,a)) C Z(G), by Lemma 2.1, we get [, a]"2*1~%2" =
e. Furthermore, |G| = d, hence 35, = so71(mod d). Also each
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of the integers k; and k, take d possible values, then by Corollary
3.4 we have A = m?(3)2[1E, p2™ ' (pf*! + p — 1). Now, the
result follows from the definition of d(G) and Lemma 2.2.(ii).

To prove the second part of the proposition, we note that by
part (i) of Lemma 2.3, xy = yz if and only if

a b a™b*? = a™b%2a" b,

So by using the Lemma 2.1 we get [b,a]?17%2"t = e. Also
[b,a] = a"‘, so that ros; = sor1(mod m) and by the Corollary
3.4, A =m? %, p?* 1 (p2*! 4 p — 1). Then by the definition
of d(G) and part (ii) of Lemma 2.3, we get the required result

as
o;+1

pi i1
d(Hn) - H . 2a.~1—)+-1 :

i=1

Part (iii) may be achieved by using the Lemma 2.6 in almost
a similar way as above. ]

The following corollary is now a result of part (iv) of Lemma
2.1 and the proof of Proposition 4.1.

Corollary 4.2. Let G = Gmn, H, or K(m) and I = |G'].

Then
Qi+1 _ 1

D
d(G) Hl 20,4—1 )

where | = pi"'p3*...pp*.

We are now in a position to find a lower bound for the com-
mutativity degree of two generator groups of nilpotency class
two.
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Let G be a 2-generated finite group of nilpotency class 2.
Then G 2 (a,b|R), where {a™, b", [a,b]?[b, ], [a,b]’[b,a]} C R,
for some m, n > 2.

Corollary 4.3. By the above notations, we have

k o+l o7
i tpi —1
4G 2 ] AT

=1 t

where d = g.c.d(m,n) = p{*p2...0p".

Proof. By Lemma 1.1, we get G = Qg,m for some normal sub-
groups N of G, and integers m, n > 2. Then the result follows
from Lemma 1.2 and the fact that d(N) < 1. ]
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