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Abstract: In this paper, we study the relations between degree sum and
extending paths in graphs. The following result is proved. Let G be a graph
of order n, if d(u) + d(v) > n + k for each pair of nonadjacent vertices u, v
in V(G), then every path P of G with 35 +2 < |P| < n is extendable.
The bound 35 + 2 is sharp.
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1 Introduction and notation

In this paper, we consider only finite undirected graphs without loops and
multiple edges. For notation and terminology not defined here we refer
to [2]. Let G be a graph, and V(G) and E(G) denote the vertex set and
the edge set of G respectively. For any ¢ € V(G), §,T € V(G) and any
subgraph H of G, we put

Ns(a) = {v e S:va € E(G)}, Nu(a) = Nym)(a), du(a) =|Nu(a)l,

Ns(T) = | J Ns(v), Nu(T) = Nyg)(T),
veT

and the order of H is the number of vertices in H, which is denoted by |H}|
or |V(H)|. The degree of vertex a is defined to [Ng(a)|, and it is denoted
by d¢(a) or d(a). Let

4(G) = min{d(v) : v € V(G)},

02(G) = min{d(u) + d(v) : v,v € V(G),uv ¢ E(G)},

and we denote by G[S] the subgraph of G induced by S.
A path with end vertices u and v is called an (u,v)-path. An (u,v)-
path P is said to be extendable if there is an (u,v)-path P’ in G such that
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V(P) c V(P’) and |V(P')| = |V(P)| + 1. In this case we say that P’ is
one of the extending paths of P. A path is a hamiltonian path of G if it
contains all the vertices of G. A graph G is said to be path extendable if
every nonhamiltonian path in G is extendable.

In recent years, many results on hamiltonian properties of graphs have
appeared. In this paper, we are interested in sufficient conditions for path
extendability and cycle extendability of graphs. For some known results on
path extendability and cycle extendability of graphs we refer to [5, 6, 9, 10,
11, 12] etc. Many of these are related to traditional conditions on degree,
neighborhood union, connectivity, independence number, etc.

We mention two classical results in order of increasing generality.

Theorem 1 (Dirac [4]). If G is a graph of order n, (n > 3), such that
0(G) = §, then G is hamiltonian.
Theorem 2 (Ore [8]). If G is a graph of order n, (n > 3), such that
02(G) 2> n, then G is hamiltonian.

In 1990, Hendry found some sufficient conditions for fully cycle extend-
ability and obtained the following result.

Theorem 3 (Hendry [6]). If G is a graph of order n, (n > 3), such that
(G) 2 ﬁ}i, then G is fully cycle extendable.

A graph G is said to be fully cycle extendable if

(1) for any vertex v € V(G), there exists a cycle C such that |C| = 3
and v € V(C); and

(2) for any nonhamiltonian cycle C in G, there exists a cycle C’ in G
such that V(C) C V(C’) and |V(C')| = |V(C)| + 1.

Theorem 4 (Teng and Wang [10]). If G is a graph of order n such that
0(G) 2 & +1, then G is path extendable.

The bound for the minimum degree §(G) in Theorem 3 and Theorem 4
is sharp.

Other results about degree condition for hamiltonian properties we refer
to (1, 3, 7] etc. In this paper, we show the following result.

Theorem 5. Let G be a graph of order n, if 02(G) > n+ k(k € N), then

every path P of G with ¢35 +2 < |P| < n is extendable. The bound 35 +2
is sharp.
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The sharpness can be seen from the following graph.

Let G; and G be two complete graphs without common vertex, and we
denote their vertex sets by V(G1) = {@1,a2,a3} and V(G2) = {b1,b2,---,
bok+1}(k > 1) respectively. Let Go be a graph, where V(Go) = V(G;) U
V(G3) and E(Go) = E(G1)UE(G2)U{azb; : i =1,2,---,k}U{a1bkyj,azbry; :
j=12---,k+1} . Let n = 2k 4+ 4. The order of graph Gy is n,
and 03(Go) = n + k, but there exists a path P = ajazaz of G with
|P| = %5 +1 = 3 which is not extendable. Thus we can conclude that the
bound gi5 + 2 is sharp.

2 Proof of Theorem 5

Suppose that G satisfies the conditions of Theorem 5. If G is complete, then
Theorem 5 obviously holds. Hence we suppose that G is not complete, then
02(G) < 2(n —2). Let P =v,vy--vp be an (u,v)-path(u = v1,v = vp) of
G with 35 +2 < |P| < n. From the condition of the theorem it is easy to
see that G is connected. We put

R=V(G)-V(P), T = Np(R),

E(R,T)={zryc E(G):zc RyeT),

then it is obviously that R # ¢ # T.

For v;,v; € V(P)(i < j), we put v}' = vy, v7' = vi_y. If there is
no doubt about the path, we only write v}, v; instead of v}', v;!. We
let v;Pv; be the subpath v;v;y; .- v;, and v,--P'vi = v;vj—1--- Y. In the
following proof we always suppose that P is not extendable.

Note that n + k < 02(G) < 2(n — 2), so we have k <n — 4, then

n n 2
> = —_—
19-}-2-*-2_(77,—4)+2+2 3+n—2

|P| >

For |P| is integer, then |P| > 4.

Claim 1. Let zy € E(R,T)(z € R,y € T'), then
(a) zy~,zy* ¢ E(G); and

(b) If z € Np(z)(z # y), then y~27,y*z* ¢ E(G).

Proof. Otherwise, we can get an extending path of P, a contradiction.
The proof of Claim 1 is complete.

Claim 2. Yw € V(P), Ng(w) # ¢.
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Proof. Otherwise, there must exist zy € E(R,T)(z € R,y € T) such that
Ngr(y~) = ¢ or Nr(y*) = ¢. Without loss of generality, we assume that
Ngr(y*) = ¢, then x and y* are nonadjacent vertices in G, and d(y*) =
dp(y*). We put

u"’Pv(y ) = {z ize Nu+PU(y+)})

then Np(x) N N, p,(y*) = ¢(by Claim 1(b)), hence there are at least
[N+ p, (™) vertices in P not adjacent to z. Note that |N_, , (v)| =
|Nu+po(y+)] 2 dp(yt) — 1, we can get

dp(z) < |P| = [Nz, p, ()l < |P] = (dp(y™) - 1).
Thus dp(z) + dp(y*) < |P|+1, and

n+k <0(G) < d(z)+d(yt)
=dg(z) + [dp(z) + dp(y™)]
< (R -1)+(IP|+1) =n,

a contradiction. The proof of Claim 2 is complete.

Claim 3. There must exist v;,v; € V(P)(i < j) such that {v;,v;} #
{w,v}, Nr(v;) N Ngp(v;) # ¢ and

(a) If v; # u, then dp(v]) +dp(v;) < |Pl+1, Ngr(v;)N Nr(vy) # ¢;
and

(b) If v; # v, then dp(v]) +dp(v]) <|P|+1, Nr(v}) Nr(v}) #¢.

Proof. Otherwise, for any {vs,v:} C V(P), and {vs,v¢} # {u, v}, we have
Npr(vs) N Ngp(ve) = ¢, then
Vz € R, d,py- () <2, dy+py(z) < 2. (1)
Thus we have
Vg, vy € V(uPv™) = V(1 Pup_1)(s #t), Ngr(vs) N Ng(v) = ¢,
and

p—-1

|R[ > " |Np(w)!.
=1

Let y € V(uPv™) such that |Nr(y)| = min{|Nr(w)| : w € V(uPv™)},

then
p—1

IRl 2 Y INr(w)| 2 (IP| - 1)INr(y),

=1
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hence R P
INR(Y)| < Ry =TS < Py -1
S rmtmr—l< B —1=k+1 @
= R +D-1 = ~
Since |P| > 4, there must be y* # v or y~ # u. Without loss of

generality, we assume that y* # v. By Claim 2, we have Ngp(yt) # ¢. Let
z € Np(y*), then zy ¢ E(G)(by Claim 1(a)). Note that y* € Np(z) and
y* ¢ {u,v}, and from (1) we have

[Np(e)l = 1. ©)
From (2) and (3), we obtain

n+k <o3(G) < d(z) +d(y)
= (INr(2)| + |Np(2)|) + (INrR(Y)| + INp (%))
<(RI-1)+1+k+1+(P|-1)
=|R|+|P|+k=n+k,

a contradiction, hence there exists v;, v; € V/(P)(i < j) such that {v;,v;} #
{u,v} and Ng(v;) N NRr(v;) # ¢.
(a) First, v # v;(by Claim 1(a)). For w € Np(v;), by Claim 1(b),

we have w # v}, so
w € V(uPv2)u V(v,-ij'z) U V (v, Pv).

If w € V(uPv;2), then wt ¢ Np(v;)(otherwise, P can be extended);
If w e V(viPvy 2), then w™ ¢ Np(v} )(otherwise, P can be extended);
If w € V(v;Pv™), then w* ¢ Np(v; )(otherwise, P can be extended).
So the number of the vertices in P which are not adjacent to v} is at

least
INY, _2(v])| +IN7P,,;z(vi')l +IN; p,- ()

uPy; v

= [Nupo- (v;)] 2 |Nupo(vi)] = 1 = dp(v]) - 1,
hence dp(v;’) < |P| - (dp(v;) — 1), that is,

dp(v;) +dp(v;) < |P| +1.

Suppose that Ngr(v;") N Ng(v;') = ¢. Note that Nr(v:) N Nr(v;) # &,
and that z € Ng(vi) N Ngr(v;) implies z ¢ Np(v; ) U Nr(v; )(otherwise, P
can be extended), we get

|Nr(vi)| + INR(v)I
= |Ng(v;') U Ng(v;)]
< |R| = |Nr(v) N Nr(v;)| <|R| -1,

185



d
o n+k <02(G) <d(vy)+d(v;)
= [dr(v) +dp(v)] + [dr(v]) + dp(v) )]
= [dr(v]) + dr(v])] + [dp(v]) + dp(v))]
<|R -1+|P|+1=n,
a contradiction.

(b) It can be proved in the similar way with (a).
The proof of Claim 3 is complete.

Claim 4. Let v;,v; € V(P)(¢ < j) such that {v;,v;} # {u,v}, Nr(v:)N

Nr(v;) # ¢.
(a) If v; #u, then dp(v;) + dp(v;) = |P| + 1 =dp(v;) +dp(v;),

dr(vi) + dr(v;) = |R| = dr(v;) + dr(vy),

dr(vi) = dr(vy), dr(v;) = dr(v]);

(b) If v; # v, then dp(vi) + dp(v;) = |P| + 1 = dp(v}) + dp(v]),
dr(vi) + dr(v]") = |R| = dr(v;) + dr(v]),

dr(vi) = dr(v]), dr(v;) = dr(v]").

Proof. (a) For v;,v;, by Claim 3(a), we have
dp(vi) +dp(vy) S|Pl +1,

and
Nr(v;) N Nr(vy) # ¢.

Note (5), for v;", v}, by Claim 3(b), we have

dp(vi) +dp(v;) < |P| + 1.

(4)

(5)

(6)

By Claim 1(a), we have Ng(v;) N Nr(v;") = ¢, Nr(v;) N Nr(vy) = ¢,

so

dr(v:) + dr(v;) < |R|, dr(v;) +dr(v;) < |R|.

(7)

Under the condition Ng(v;) N Nr(v;) # ¢, and from (5) and Claim

1(b), we get that v; v},

Vivj ¢ E(G), SO

02(G) < d(v;) +d(vy), 02(G) < d(vi) + d(v;)-
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Consider dp(v]") and dgr(v;):
If dr(v;") < dr(v;), then from (4) and (7), we have
n+k < 03(G) <d(v;)+d(vy)
= [dr(v) +dp(v])] + [dr(v}) + dp(v])]
< [dr(v;) +dr(vy)] + [dp(v;) + dp(v; )]
<|R|+|P|+1=n+1,

a contradiction.
If dr(v;") > dgr(v;), then from (6) and (7), we also have
n+k <o09(G) <d(v;)+d(v;)
= [dr(vi) + dp(vi)] + [dr(v;) + dp(v;))
< [dr(vi) + dr(v)] + [dp(v:) + dp(vj)]
<|R|+|P}]+1=n+1,

a contradiction.

Hence

dr(v;) = dr(v;). (8
Consider dr(v;) and dg(v;’) similarly, we can prove

dr(vi) = dr(vy). (9)

On the other hand, if dg(v;) + dr(v; ) < |R| — 1, from (9) and (4), we
have
n+k < 02(G) <d(v;)+d(vy)

= [dr(v]") +dp(v])] + [dr(v)) + dp(v})]
= [dr(v;) + dr(v:)] + [@p(v] ) + dp(v})]
<|R|-1+|P|+1=n.

If dr(vj) + dr(v;) < |R[ -1, from (9) and (6), we have

n+k <o02(G) < d(v;)+d(vy)
= [dr(vi) + dp(vi)] + [dr(v;) + dp(v;))
= [dr(v;) + dr(v; )] + [dp(vi) + dp(v;))]
<|R|-1+|P|+1=n.

Note the above two contradictions, and from (7) we have
dr(vi) + dr(vy) = |R|, dr(v;) +dr(v;) = |R|. (10)
From (4),(9) and (10), we have

n+1l <n+k<0y(G) <d(vy)+d(vy)
= [dr(v]) +dp(v])] + [dr(v]) + dp(v) )]
= [dr(v]) + dr(vi)] + [dp(v]) +dp(v})]
= |R| +dp(v;) +dp(v])
<|R|+|P|+1=n+1,

187



hence
dp(v;) +dp(vj‘) =|P|+1. (11)

From (6),(9) and (10), we have

nt+l <n+k<oy(G)< dve) +d(v;)
= [dr(v:) + dp(v:)] + [dr(v;) + dp(v;)))
[dr(vy) + dr(v;)] + [dp(v:) + dp(v;))]
= |R| +dp(v;) + dp(vj)
<|R|+|P|+1=n+1,

hence
dp(vi) +dp(v;) = |P| + 1. (12)

(b) It can be proved in the similar way with (a).
The proof of Claim 4 is complete.

Claim 5. |[P| > 5.

Proof. We have shown that p > 4. If p = 4, by Claim 3 and Claim 1, we
have

Ngr(v1) N Nr(v3) # ¢ # Ngr(v2) N Np(vs), v1v3,v2v4 ¢ E(G).

Hence dp(v1) £ 2, and dp(vs) = 2.
By Claim 4, we get

2+22dp(v1) +dp(vs) =|P| +1 =5,

a contradiction. The proof of Claim 5 is complete.

Let {vi,v;} C V(P)(i < 7)(by Claim 3 and Claim 1(a) its existence can
be ensured) such that:

(1) {vi,v;} # {u,v}; and

(2) Ng(vi) N Ng(v;) # ¢; and

(3) ¢ and |v;Py;| are as small as possible.
Claim 6. i=1,j =i+2=3.
Proof. If i # 1, that is, v; # u, by Claim 3(a), we have Nr(v; )NNg(v}') #

¢, which contradicts the choice of i.
By Claim 1(a) and Claim 4(b), we have

j2i+2=3, Nr(v1) N Nr(v2) = ¢, dr(v1) +dr(v2) = |R|.
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Hence R = Np(v;) U Ng(v2).

If j > i+ 2 = 3, then vz # v;. Since |v;Pv;| is as small as possible,
we obtain that Ngr(vs) N Nr(v1) ='¢. By Claim 1(a), we have Ng(vs3) N
Npg(v2) = ¢, so Np(v3) = ¢, which contradicts Claim 2.

The proof of Claim 6 is complete.

Claim 7. Vv, € V(P),dg(v) = &.

Proof. By Claim 6, we have Ng(v1) N Ng(v3) # ¢. From Claim 3(b), we
have
NR(vm)nNR(vm+2) 7E¢s m=1,2,---,p—2. (13)

For vy, v3, using Claim 4(b), we have
dr(v1) = dr(vs), dr(v2) = dr(vs).
Note that |P| > 5 and (13), for vz, v4, using Claimd(b) again, we have
dr(v2) = dr(vs), dr(vs) = dr(vs).

Then
dp(v1) = dr(vs) = dr(v3) = dr(v2) = dr(vs).

Since dr(v1) + dr(v2) = |R|, we have

@ = dr(v1) = dr(vs) = dr(vs) = dr(vy) = dr(vs).

If |P| # 5, for v3,vs, using Claim 4(b) again, we have dr(vg) = dr(v3) =
J%l. In a similar way, we show that

R
dr(o) =, 1=1,2,-.,|P|.
The proof of Claim 7 is complete.

Claim 8. NR('UI) = NR(’Ug) = NR('US) == NR(v2m+1) =,
Nr(v2) = Nr(vs) = Nr(v6) = -+ - = Nr(vam) = - -.

Proof. By Claim 1(a) and Claim 7, we have
R
Ni(wr) N Na(vz) = ¢, [Na(on)| = [Na(w)| = 1, B = Naur) U Naus).
Since Ng(v3) N Ng(vz) = ¢, we get Nr(vz) C Ng(v;1). But |Ng(v3)| =
|NR('01)|, o) NR('Us) = NR(‘UI), hence R = NR('U2) U NR(‘U3).
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Considering v, similarly, since Ng(v4) N Ng(v3) = ¢, we have Ng(v4) C
Ng(v2). But |Nr(v4)] = |[Nr(v2)], so Nr(vs) = Ng(v2), hence R =
Nr(vs) U Nr(va).

From above all, we get that

Ng(v1) = Ng(vs) = Ngr(vs)
Ng(v2) = Ngr(vq) = Npr(ve)

The proof of Claim 8 is complete.

ooo = Np(vamy1) =+,
cvv= Np(vagm) = -++.

Let S; = {v; € V(P) : s is odd number} and S; = {v; € V(P) :
t is even number}.

If |P| = 2m, then |S;| = |S2| = m. By Claim 8 and Claim 1(b), we get
that S is an independent set, so

Np(v1) C 83, dp(vn1) £ |S2| =m.
Similarly, we get dp(v3) < m, hence
dp(’vl) + dp('l)a) <2m= |P|

But by Claim 4(b), we have dp(v,) + dp(v3) = | P| + 1, a contradiction.
If |P| = 2m + 1, then |S;| = m + 1,|S2| = m. By Claim 8 and Claim
1(b), we get that S; — {v;} and S} — {va¢+1} are independent sets, so

Np(v1) C S2 U {var41}, Np(v3) C Sz,

Hence
dp(v1) £ |Sa|+1=m+1. dp(v3) < |52 =m,

and
dp(v1) +dp(v3) <2m+1=|P|.

This contradicts Claim 4(b).
The proof of Theorem 5 is complete.

Corollary. Let G be a graph of order n, if 02(G) > -23-n —1, then G is path
extendable.

Proof. If n < 4, it is easy to see that G is complete, in this case the
corollary holds. Hence in the following proof we assume n > 5.

Since 02(G) > 3n — 1 > n+k, where k = |3 — 1] > 1, by Theorem
5, we get that every path P of G with 4 < |P| < n is extendable. Thus
we only need prove that every path P of G with |P| = 2 or |[P| = 3 is
extendable.
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When |P| = 2, we assume P = v1vs, and P is not extendable. Let
R =V(G) —V(P), then |R| = n - 2, and Ng(v;) N Ng(vz) = ¢(otherwise,
P can be extended). Without loss of generality, we assume that [Ng(v;)| <
|N(v2)], then |[Np(v1)| < 1Bl = 222 Let 2 € Np(vz), then z and v; are
nonadjacent vertices in G, hence

$n—1 <03(G) < d(n)+d(z)
= [dr(v1) + dp(v1)] + [dr(z) + dp(z)]
<Bi1+(R-1)+1
=3Rl+1=%(n-2)+1=3n-2,

a contradiction.
When |P| = 3, we assume P = vjvu3, and P is not extendable. Let

R =V(G) — V(P), then |R| = n — 3 and Ng(v;) N Ngr(vs) = ¢(otherwise,
P can be extended).

If |Np(v1)| < |Nr(v2)|, then |Np(v1)] < 18l = 258, Let z € Np(v2),
then z and v; are nonadjacent vertices in G, hence

3n -1 <03(G) <d(wn)+d(z)
= [dr(v1) + dp(v1)] + [dr(z) + dp(z)]
<sBi24(R-1)+1
=3|R|+2=§(n-3)+2=3n-3,

a contradiction.
If [Nr(v1)| > |Nr(vs)|, then |Nr(ve)| < 1Bl = 253, Let y € Na(w),
then y and v, are nonadjacent vertices in G, hence

$n—1 <03(G) < d(vz) +d(y)
= [dr(v2) + dp(v2)] + [dr(y) + dp(¥)]
<B o4 (RI-1)+2
=3|R|+3=3(n-3)+3=3n-4.

a contradiction.
The proof of Corollary is complete.

The bound -g-n — 1 is sharp, and the sharpness can be seen from the

following graph.
Let H; and H; be two complete graphs without common vertex, and

we denote their vertex sets respectively by
V(Hy) = {a1,¢c2}, V(H2) ={d1,dy, - ,dom}(m >1).
Let Hy be a graph, with
V(Ho) = V(H1) UV(H),

191



and
E(Ho) = E(H))UE(H2)U {c1d;, c2dmyi 1t =1,2,--- ,m}.

Let n = 2m + 2. The order of graph Hp is n, and o(Hp) = -g-n — 2, but
there exists a path P = ¢;¢2 which is not extendable. From this we can
conclude that the bound %n — 1 is sharp.
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